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Nous construisons une application de la K-theorie multiplicative definie par Karoubi 

vers la cohomologie impaire a coefficients C* sur une variete differentielle ce qui permet 

d'associer a tout fibre vectoriel complexe plat la-dessus des classes caracteristiques ana­

logues aux classes etudiees par Chern, Cheeger et Simons. 

1. Prel iminar ies . This paper is an extended version of [7] where all the proofs were 

suppressed. We construct a natural mapping from the multiplicative K-theory due to 

Karoubi [4] to the odd cohomology with coefficients C* on a differentiable manifold X 

which allows us to associate to any flat complex vector bundle E on X characteristic 

classes Ck{E) £ H^_1(X;C*) analogous to the classes studied by Chern, Cheeger, and 

Simons [1, 2]. 

Let X be a differentiable manifold, E a complex vector bundle on X, D a connection 

on Ey and R the associated curvature. The differentiable Chern characters 

chid)(í; )i?) = ( ^ ) * Í T r a c e ( / i t ) 
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define de Rham cohomology classes Ch^ \E) € HJR(X), k = 1,2,3,..., which coincide 

by the de Rham isomorphism with the "topological" [6] Chern characters Chk (E) G 

Hgk(X;Q) in the singular cohomology. Moreover, the integral Chern classes Ck(E) = 

[c*(.E)] can be expressed as universal polynomials Mk (inverses of the Newton polynomials) 

with rational coefficients of the Chern characters. 

We now briefly recall the definition of the multiplicative K-theory K(X) of .X (asso­

ciated to the trivial filtration of the de Rham complex) as defined by Karoubi in [4]. 

A multiplicative fibre bundle is a triplet f = (E,D,u) where a; is a graded odd differ­

ential form, u; G Slodd(X), whose boundary is the reduced geometric Chern character, 

oo 
duj = ch(E,D) = X) chk(E,D). Two multiplicative fibre bundles f = (E,D,u) and 

*=i 

{ = ( £ , i 9 , « ) are said to be equivalent if there exists an isomorphism a : E —• E such 

that 

o;'-C4; = C-S(.D,.D/) 

where C-S stands for the canonical graded odd Chern-Simons transgression form [2]. 

Multiplicative K-theory inserts into the exact sequence 

(1) Kl°*(X) ---» 0 H\R~\X) --• K(X) A K^(X) --> 0 H\R(X). 
r= l r= l 

Here K\op(X) = [X, GL(C)] or the group of homotopy classes of differentiable maps from 

X to GL(C), and Kiop(X) is the Grothendieck - Atiyah - Hirzebruch group of X [3]. 
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In the exact sequence (1), a is induced by the differentiable Chern character and u is the 

forgetful homomorphism. The homomorphism d is defined by associating to an odd closed 

differential form LJ the difference of two multiplicative vector bundles d[u] = [T, d, CJ] — 

[T,d,0] where T denotes a trivial vector bundle endowed with the trivial connection d. 

Finally, if a : X —• GL(C) is differentiable, <J\(a) is represented by the closed differential 

form 

0 0 ,-3r-2 / - i\ | 

z-ť (2ir)r (2r - 1)! v ' 

2. Chern - Cheeger - Simons invariant. Our aim is to combine the exact sequence 

(1) with the Bockstein exact sequence associated to the exponential exact sequence 

0—>Z—*C—*C*—*0iii order to find a commutative diagram 

K?*(X) -IL- § Hfc\X) — /C(X) —-_, K^(X) —--> 8 - * » 0 
r = l r = l 

• i9k ipk i*> ic" I* 
H]k-\X;l) • H]k'\X) • J T J * " 1 ^ ; ^ ) - ^ - * ffJ*(X;Z) • H]k(X) 

Here qk is minus the suspension of Q , and p* is the obvious projection multiplied by 

the coefficient of the homogenous term of M*, that is to say (-l)*_ 1(fc - 1)!. The natural 

map Ck has the property that one recovers C^' when composing it with the Bockstein 

homomorphism /?*. 

The definition of 6k necessitates a universal construction. Any vector bundle E of 
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rank n over X with connection D can be pulled back via some connection preserving 

map h : X —• X from the tautological bundle with universal connection D over the 

Grassmannian manifold X = Gn(Cm) where m is large enough. The map h is unique up 

to homotopy. The difFerentiable and topological Chern classes are the same; in particular, 

on X there exists some singular (2k — l)-cochain 02fc-i such that 

(2) / c[d\E, b) - C<£\E)(7) = e2k-i(di) 

for every singular chain 7 £ E2*-i(X). We now pull back each term of (2) via h. By the 

naturality of Chern classes, we find 

h*(c{d)(E,D)) = c[d)(E,D) = Mh(dLjudLj2,dL>z,...,du>2k-i) = dthk-i 

where the (2k — l)-form ^>2*-i on X is defined modulo an exact form. On the other 

hand, topological Chern classes have integral periods so that a cocycle 6k(E,D,u>) will be 

associated to each multiplicative fibre bundle (E, D, w) by the following definition. For a 

singular (2k — l)-chain A on X, \ G E2jfc-i(X) set 

ck(E,D,u)= / i>2k-i - 02k-i(h o \) mod Z. 

Indeed, c* is co-closed: 

6ck(E,D,u)(\) = / dxl)2k-i -602k-i(ho\) mod Z 

= 4 ( ) ( ^ o A ) mod Z 

= 0 mod Z. 
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The cohomology class of c*(.E,D,u;), to be denoted by Ck(E,D,w), is independent 

of the choice of 02*-i as> by Bott periodicity, the universal Grassmannian has no odd 

cohomology. By standard homotopy arguments, Ck(E, D,u>) is also seen to be independent 

of the choices of h and V Ĵfc-i • A similar homotopy argument also applies to the proof that 

Ck(E,D,Lj) is independent of the choice of the representative of the multiplicative K-

theory class, once one recalls from [4] the following alternative characterization of K(X)\ 

two multiplicative vector bundles & = (E%,Dx,ux), i = 0,1, are equivalent if and only if 

there exists a homotopy (Dtiut) such that Do = D°, ^o = <*A Di = »*(D1)> ^ i = wl f° r 

an isomorphism a : E° —• .E1. 

Hence we have a natural well-defined map 

<?*:«(X)-->.ffJ*-1(jr;C*). 

It is appropriate to call the resulting characteristic class the Chern-Cheeger-Simons invari­

ant as our construction is analogous to theirs [1], [2]. 

3. The commutative diagram. We now establish the commutativity of the above 

diagram. This was the main result announced in [7]. Let us number the squares of the 

diagram by I-IV from left to right. 

Square I: In the de Rham cohomology the arrow K1
op(X) —* H2k~1(X) is described 

by integration with respect to the suspension parameter — 1 < t < 1. But to compute 
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in terms of differential forms, one needs to deal with the differentiable Chern class and, 

first of all, to endow with a connection the vector bundle n : E —> EX determined by 

a : X —+ GL(C) over the suspension EX. 

For this, let T = {[/, V} be a trivializing open cover of EX such that U (resp. V) is the 

contractible open set obtained by puncturing the suspension double cone at the south pole 

p_ (t = - 1 ) , resp. north pole p+ (t = 1), i.e. U = EX\{p_} , V = EX\{p+}. Let {fiyv} 

be a partition of the unity subordinate to T = {17, V} such that //(p+) = 1, H[-i,o]xX — *• 

Construct a connection D of the vector bundle TX : E —> EX by choosing for the local 

connection 1-forms associated to the trivialization T 

uu(x) =v(x)gy]j(x)dgvu(x) = v(x) a~~l (x) da(x) , x € U 

uv(x) =fi(x)g~y(x)dguv(x) = -f*(x) da(x) a"1 (x) , x € V 

Then 
9uv-dguv + Quv-vu-guv = a.da"1 + a. v.a"1 da.a"1 

= (-l + v)da.a~~1 

= — fi.da.a~"1 

= uv 

as wanted. The associated curvature 2-forms are 

ӣu = duju + vu Л UJU 

= dv.a"lda - ^ ( a " 1 ^ ) 2 + v2(a~lda)2 

= dv.a~~lda — џv(a~~lda)2 
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and 

Qv = —dfi.da.a~1 — fiv(da.a~x)2. 

To integrate c\ (E, D) from —1 to -f 1 with respect to t we note that the terms of bidegree 

(ra, 2k — ra), ra = 2,3,4,..., 2k, of the k'th power of the curvature trivially vanish; the term 

of bidegree (0,2k) or (—l)k(fiv)k(a~1da)2 k~1 is traceless, and there only remains the term 

of bidegree (1,2k — 1) or (—l)k~1k(fiv)k~1dv(a~1da)2 k~1. Consequently, all the products 

of Chern characters vanish in the universal polynomials M*, and there only remains the 

term in Ch]^ (E,D) whose coefficient is (--l)fc""1(k — 1)!. We thus compute that 

= - ( s ) * H~'(<>-,'i»)"-,<-i)'-,*/,

i(/'''),-,<<<' 

= j-y v~-v Tr^lda)2k-1 L <*«> ~ " W 1 d^ 
;3k-2 i rl 

= J^W^y.Tr{a'lda)2k'1l{t-t2ridt 

iзk-2 (Jb- l) l 

(2x)» (2fc - 1 ) ! 
~ľr(a--da)2*--

and 

- £ c[d\E, D) = ( -1)*" 1 (fc - 1)! ( - £ c^\E, D)) ; 

that is, the representative of (p* o v\)[a] . 

Square II: For [u>] € © HJ^^X) we find 
r = l 

(fik o 0)[u] = <J-[T,<f,«] - C*[T,d,0] = [/] € #2*--(X; C*) 
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where modulo Z 

f(\)= / V,2*-i - 02k-i(h o j) + 02k-x(h o <y) = / ^2fc-i. 

Now, for CJ closed, we see that only the homogenous term will survive in the definition of 

V>2*-i, that is, 

^ t - i ^ C - l ) * " 1 ^ - ! ) ! ^ * - ! . 

But 

f(\) = (-i)k-1kiju2k-u \ex2k-i(x) 

is exactly the cochain needed for the square II to be commutative. 

Square III: One only needs to recall the definition of the Bockstein homomorphism. 

Square IV: It is trivial. 

We have thus established the main theorem of [7]. 
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