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CHARACTERISTIC CLASSES OҒ REGULAR LIE ALGEBROIDS 

A SKETCH 

Jan Kubaгski 

The notion of a Lie algebroid comes from J.Pradines (1967) 

C213, C223, and was invented in connection with the study of 

differential grupoids. This notion plays an analogous role as 

the Lie algebra of a Lie group. Observations concerning 

characteristic homomorphisms on the ground of .principal bundles 

(such as the Chern-Weil homomorphism, the homomorphism of a 

flat or a partially flat principal bundle) show that they 

depend only on the Lie algebroids of these principal bundles 

C123, C133, C143. This enables us to build a theory of 

characteristic classes for Lie algebroids and, next, to apply 

this technique to the investigation of some geometric 

structures defined on objects not being principal bundles but 

possessing Lie algebroids, such as transversally complete 

foliations C183, C193, nonclosed Lie subgroups C11.3, C193, 

Poisson manifolds C23 or complete closed pseudogroups C233. 

FUNDAMENTAL DEFINITIONS AND EXAMPLES 

We begin with fundamental definitions. 

Definition 1. By a Lie algebroid on a manifold M we mean a 

system 

A = (-4,1 •, -lfy) 

This paper is in final form and no version of it will be 

submitted for publication elsewhere 
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consist ing of a vector bundle pzA >M and mappings 

[ • , -1 zSecA xSecA >SecA> y : A • TM9 

such tha t 

<1) < S e c A , [ - , - l ) is an R-Lie algebra, 

<2) y is a homomorphism of vector bundles (called an 

anchor]9 

<3) SecY^SecA • £<//)» £i *Y*K* is a homomorphism of 

Lie algebras, 

<4) [?,/• 7)1 =/•[?,»! + <y?) </) -17, f, 7)<sSecA, f <s C^iM). 

[SecA denotes the vector space of global C cross-sections of a 

vector bundle A]. 

A Lie algebroid A is said to be transitive if Y is an 

epimorphism of vector bundles, and regular if y is a constant 

rank. In this last case, F: = Imy is a C constant dimensional 

and completely integrable distribution and such a Lie algebroid 

is called a regular Lie algebroid over iM9F). 

By a [strong] homomorphism 

Hz < A , [ - , -l fy) • <A*,[ •, •!',*-'> 

between two Lie algebroids on the same manifold M we mean a 

strong homomorphism Hz A » A' of vector bundles, such that 

<a> Y* ̂  = Y, 

<b) SecY^SecA ySecA'9 g i » Ho% 9 is a homomorphism of 

Lie algebras. 

Examples 2. CI) A finitely dimensional Lie algebra g forms 

a Lie algebroid on a one-point manifold. 

C2D The tangent bundle TM to a manifold M forms a Lie 

algebroid iTM9C•,•19id) with the bracket C-,-3 of vector 

fields. 

C3) Any involutive C constant dimensional distribution 

FcTM forms a regular Lie algebroid with the bracket as above. 

C4) Any G-principal bundle iP9n9M9G9 •) determines a 

transitive Lie algebroid AiP) » <i4<P),[ •, 19y) C73, C103, C173, 

in which 

<a) AiP)z = TP/G9 

(b) the bracket is defined in such a way that the 

canonical isomorphism Set AiP) » 3E <P) is an isomorphism of 
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Lie algebras, where £ iP) is the Lie algebra of right-invariant 
vector fields on P, 

(c) the anchor y is given by y ilvl) = n^ ix>)« 
C5.) Any vector bundle f determine a transitive Lie 

algebroid Aif) equal to AiLf) - the Lie algebroid of the 

principal bundle-Lf of repers of f. 

Proposition 3. 1121 Let f be any vector bundle on a 

manifold M. For a point xeM9 there exists a natural 

isomorphism 

Aif) -=-ci:Secf •f - I is linear and 
' \x \ ' ' | x ' 

3 veT M9 V /€Q° iM) , V veSecf, lifi>) = / ( x > • I ii>)+vif) i>ix) J 

Therefore we have a ( c a n o n i c a l ) isomorphism of Cl iM)-modules 

Sec A if) 

differential operators J?:Secf •Secf 

such that £ifi>) = f£ii>) + Xif) -i> 

for some X € XiM)> 

Let, in the sequel, £ denote the (covariant) differential 

operator corresponding to the cross-section £ of SecA(f). 
C6.) Any transversal ly complete foliation iM9&) determines 

a transitive Lie algebroid A iM9&) = iA iM9&) ,1 •, -J 9y) in the 

following way C18D, C193: the closure of the leaves of & form 

another foliation &,, called basic, being a simple one 
o 

determined by some fi brat ion niM • W with a* Hausddrff 
6 

manifold W9 called the basic fibration. Let E and £*_ denote the 
o 

vector bundles tangent to & and &.9 respectively, 
o 

Q=TM/E—^M - the transversal bundle of ^, HM9F) - the Lie 

algebra of the so-called transversal fields being 

cross-sections of Q determined by foliate vector fields. 
Lemma 4. If n (x) = rr (y> then there exists a [canonical) 

isomorphism ayzQ >Q having the property: a y ( r > = C 
r x [x ly ° . x x y 

for any transversal field C « * iM9$
r). m 

The construction of the Lie ai^eoroid AiMfF)* 
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The space A <M9&') s = Q/-fc where f o r v9 u> € Q we d e f i n e 

v z:w & n, <r <v) ) = n <r <w) ) & ay <v) = u>. 6 6 x 
The brachet tt-,-1 in, SecA(r7,.y) is defined in such a way 

that the canonical isomorphism SecA<M9&) — - - - ^ M / f , ^ ) is an 

isomorphism of Lie algebras. 

The anchor ^sA(rf,^) • TV is equal to ̂ (Cv3) = rz(v). 

C7) Any not nee e s s a r i I y closed connec ted Lie subgroup H of 

a Lie group G determines a transitive Lie algebroid A<G%H) on 

(3/r7 defined as the v. Lie algebroid of the foliation ^ = ^ r l ; 

g € G\ of left cosets of G by r/ (such a foliation is, of 

course, transversal ly complete). If r/=A7, then the Lie 

algebroid A«3;rO is trivials A (G; H) = T (G/r7) . 

Lemma 5. CI 13, CI23 For any t € r7, the trapping 

R iTG • T<3, talent to trie right translation ©y t, maps E 

onto E giving an isomorphism R sQ » Q. Trie mapping 

Q xH • Q, (v, t) i > R <v) 9 is a right free ac t ion. m 

Lemma 6. C113, C123 (a) A cross-sec t ion C -= SecQ is a 

transversal field if and only if %<gt)=R <%<g)) for all geG 

and t € >7. 

(b) The natural equivalence relation 25 in Q can be 

equivalently defined as follows* for v9 WGQ9 

v*w o 3 t € r7, R (E) =w. 

This means that AiG^H) can be defined as the space of orbits of 

the right action of ff on Q. • 

C83 Any transitive Lie algebroid (A,J•,-5,^) on M and an 

involutive distribution FcTM form a regular Lie algebroid 

<AF
9l- 9-l9r

F) such that AFz = ̂ "iCF3 c A and rF = r\*F* For 

example, such an object is determined by a vector bundle and an 

involutive distribution on the base. 

C9) Any Lie groupoid $ determines a transitive Lie 

algebroid i ?*§ C63, C173, C223, whereas any differential 

groupoid $ determines a Lie algebroid in the same way, 

sometimes being regular C163. 
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Remark 7. A transitive Lie algebroid A is called 

int&grabl& if it is isomorphic to the Lie algebroid AiP) of 

some principal bundle. There exist nonintegrable transitive Lie 

algebroids discovered by Almeida and Molina in 1985 111. 

Theorem 8. (Almeida-Molino CI 3). L&t iM9^) b& any 

transv&rsally compl&te foliation. Th&n th& Li& alg&broid A(M9^) 

is int&grabl& if and only if th& foliation (M,̂ ) is d&v&lopabl& 

in th& s&ns& that the lifting to some cov&ring is simpl&. m 

Tt is evident that any TC-foliation with nonclosed leaves 

on a simply connected manifold is not developable, therefore 

its Lie algebroid is not integrable- A more concrete example is 

the foliation of left cosets of any connected and simply 

connected Lie group by a Lie subgroup connected and dense in 

some torus. 

CONNECTIONS IN REGULAR LIE ALGEBROIDS 

Let (A,I -,-U9y) be any regular Lie algebroid over (M,F). 

g: =/Cery c-4 is a vector bundle. Each fibre g of g possesses 

a structure of a Lie algebra, and g is isomorphic to g if x 

and y lay on the same leaf of the foliation determined by F. 

The short sequence 

is called the Atiyah sequence of A. Any splitting \: F • A of 

this sequence is called a connection in A- \ determines the 

so-called conn&ction form c*>:A • g as follows: a>|g=i.d and 

6)|I»i\-=0, and the cur\>atur& form OeSecA A ®g as a 

g-horizontal form such that 0(\X,\y) = \CX, Yl - I \X,\y .B for 

X, ye S&cF. It is also convenient to define the so-called 

curvature tensor O € SecA F ®g (being a tangential 

differential form C203) in such a way that Ofe(X, y) = 0(\X,\y) 

( = \CX, Yl -[\X,\yB)- \ is said to be a flat conn&ction if 

0 = 0 (equivalently, O6=-0). 

Theorem 9- If A»A(P), P b&ing a principal bundl&9 th&n 
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there is a bijec tion beti/>een connec tions in A and in P. m 

Theorem 10. // A-AiP) , P being a principal bundle on a 

manifold H andF an involutive distribution on H9 then there is 

a bijec tion bet\t>een connec tions in A and partial connec tions in 

P over the distribution F. m 

Theorem 11. C123 // A = AiH9&)9 IH9&) being a 

transversally complete foliation, then there is a bijec tion 

bet\i>een connec tions in A and C distributions C cTH fulfilling 

the conditions 

(1) C + E^ = TH9 

b 

(2) C n E =E, 
o 

(3) C^=|x(x); XєSecCnHH9Э?)\ for x € H. 

[ in the case of left cosets of G by H9 see Example 7 above9 

condition (3) is equivalent toi 

(3# ) C is Jl-right-invariant"} . 

In particular, such a distribution C always exists. 

A connec tion in A is flat if and only if the corresponding 

distribution in TH is completely integrable. m 

THE CHERN-WEIL HOMOMORPHISM OF A REGULAR LIE ALGEBROID 

By a representation of a Lie algebroid A on a vector 

bundle f (both over the same manifold Af) we meat* a homomorphism 

T\A • A(f) of Lie algebroids. A cross-section ueSecf is 

said to be T-invariant if, for each ?€SecA9 X (i>)=-0 (£ „ 
7©£ *• ToJj 

is the differential operator in f corresponding to the 

cross-section T*£, see example 5 of Lie algebroids). Denote by 

(Secf) o the space of all T-invariant cross-sections of f. A 

representation T induces a representation of A on each vector 

bundle associated with f. 

Theorem 12. If A is a transitive Lie algebroid, then each 

T-invariant cross-sec tion of f is uniquely determined by its 

value at one arbitrarily tahen point of H [H is assumed to be 

connected], m 
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Example 13. The adjoint r&pr&s&ntation of a regular Lie 

algebroid A = (A,I • , -II 9y) over (H9F) is the representation 

ad iA • A(g) defined by 

X . <i>) =[f ,vl. 

ad induces a representation, denoted also by ad , of A on the 

symmetric power V g of the vector bundle dual to g, and we 

have: 

r '€ ( S e c V k g * ) o . *• V^csSecA, V<r , . . . , o \ e S e c g , 

( K X Г , < r V...ЧXГ >-= E < Г , C Ґ V-..vfi*f,CГ J VЧ..VCҐ > . 
1 k y i J k 

The space © SecV g ) o , forms an algebra. 

Put O (W) = Sec AF* f = k
&°SecO

k
 (M) where O

k
 (//) = Sec A

k
r*l. 

This is the space of r&al tangential diff&r&ntial forms C203. 

In the space O <H) there works a differential 6 defined by the 

same formula as for usual differential forms. Let H (H) denote 
F 

the space of cohomology of the complex (O <H) ,6 ). 

Theorem 14. C123 L&t X b& any connection in A and O its 
o 

curvature tensor. Define the mapping 

^:
k
^S*eVV>,.

( a V
—• V

M ) 

r ,_• I l r -<r.o t v. . .vo;> 
k tim»B 

[being a homomorphism of algebras). 

Tten 

(1) the tangential forms ftiD are closed, 

(2) the induced homomorphism of algebras 

v ^ c s ^ v V v —>*,<» 
r I • C/3(D] 

is independent of the choice of a connection, m 

h i s called the Chern-Weil homomorphism of A9 whereas the 
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subalgebra Pont iA) :-= Im ih .) cH ihi) - the Pontryagin algebra 

of A. 

Theorem 15 (T?ie comparison with the Chern-Weil 

homomorphism of a principal bundle C33). If A = AiP)9 ' P being 

any connec ted- principal bundle, then there exists an 

isomorphism a of algebras9 making the following diagram commute 

k£o._ wk * 

A <P> 

tf iH) 
dJR 

where Q is the Lie algebra of the strueture Lie group G, and 

(VQ ) is the space of Ad-invariant polynomials, m 

We pay our attention to the fact that this holds although 

in the Lie algebroid AiP) there is no direct information about 

the Lie group G (which may be disconnected ! ) . 

Besides, the Lie algebroid of a principal bundle P is - in 

some sense - a simpler structure than P. Namely, nonisomorphic 

principal bundles can possess isomorphic Lie algebroids. For 

example, there exists a nontrivial principal bundle for which, 

the Lie algebroid is trivial (the nontrivial Spin(3)-structure 

of the trivial principal bundle RP(5)xSO(3) C93, C103). 

Remark 16. C123 If A = AiP)F
9 P being a principal bundle 

on a manifold M and F an involutive distribution on M9 then the 

Chern-Weil homomorphism h of the Lie algebroid A is called the 

tangential Chern-WeiI homomorphism of a principa I bundle P over 

a foliated manifold (W,^) (& being the foliation determined by 

n-
One can notice that: 

CI} Always, cfiM.F) • (SecVkg*) <, ,. c (SecVkg*) • , , 
6 / la.dAiFf I <adA>9 

which means that £/ T. is ad -invariant when f are &-basic 

and r. are ad -invariant. 
1. A<P> 

The occuring inclusion can not be replaced, in general, by 
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t h e e q u a l i t y . Such a s i t u a t i o n can ho ld i f P i s c o n n e c t e d , but 

i t s r e s t r i c t i o n P t o many l e a v e s L of t h e f o l i a t i o n F i s no t 

c o n n e c t e d . 

C2!) If G is connected, then the above inclusion is an 

equation^ therefore* equivalentiy, 

h zcfiM.F) • ( V Q * ) • * (Af>> r / r . i • / - h <r.>. 
- 4 © / F t P x. 

Remark 17. The case of P being the principal bundle L f of 

repers of a (3-vector bundle f, 6cGL(n,lR) (n = rarifc f}, is 

important C203. In this situation, the homomorphism obtained 

above is called the tangential Chern-Weil homomorphism of a 

vector bundle f over a foliated manifold (/f,̂ ). It is trivial 

when in f there is a flat partial covariant derivative (over 

F). The superposition (under the assumption that L f is 

connected) 

(Vg*> £&(SecV kg*) o ^ < •Q°(W,r> &(SecVkg*> o ^ c 

c&(SecV kg*) o , • * (Af) 
AiF^' F 

agrees with the homomorphism obtained by Moore and Schochet 

C20.1 to investigating such covariant derivatives. However, the 

holding of the above strong inclusion can be the source of 

quite new characteristic classes which cannot be obtained by 

the construction of Moore-Schochet. 

The geometric signification of the Chern-Weil homomorphism 

in the theory of TC-foliations is presented by the following 

Theorem 18. J/ A = A <M9&') , iM9&) being a transversally 

complete foliation, and the Chern-Weil homomorphism. h is 

nontrivial* then there exists no completely integrable 

distribution C cTM satisfying the conditions 

(1) C + E^ = TM9 
o 

(2) CHE^ = E9 
o 

(3) C x = | x ( x ) ; XeSecCnL<M93
!')\ for xeM. 
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Now, we are going to give a wide class of TC—foliations 

for which the Chern-Weil homomorphisms of the corresponding Lie 

algebroids are nontrivial. It will be some class of foliations 

of left cosets of Lie groups by nonclosed connected Lie 

subgroups. 

First, we.formulate as preparatory the following theorem. 

Theorem 19. Let H<zG be any connected Lie subgroup of G 

and let t)» ?) and g be trve Lie algebras of H9 of its closure H 

and of G, respec tively. Denote by h : (VV) ) *HiM) the 

Chern-Weil homomorphism of the H-principal bundle 

p = (<3 1G/H). Then there exists an isomorphism a of 

algebras such that the following diagram commutesz 
\c 

k S 0 <S*cV . -*> 7 . -j • W«3/J7> 
• AiO;M> x t A 

V(f>A»* ) • <Vfc*)7 . • 

Since, for any connected, compact and semi simple Lie group G9 

h<
p

2>
ii^)j—^H<2\G/H) 

is an isomorphism (cf C43), we obtain 

Theorem 20. If G is a connected* compact and semisimple 

Lie group and H is any nonclosed connected Lie subgroup of G 

and H is its closure, then 

h<2> : ( f> /*) )*> •A/<2>(G/r7) 
A<O;H> *" -* ' 

is a nontrivial monomorphismz therefore h is nontrivial. 
J A<O;H> 

This means that then there exists no C completely integrable 
distribution C <zTG such that (1) C + F =-r<3, (2) CnE^=*E9 

b b 
(3) C is H-right-invariant. 

Corollary 21. Taking G as above and, in addition* simply 

connected, we obtain a nonintegrable transitive Lie algebroid 

whose Chern-Weil homomorphism is nontrivial. m 
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Now, we give a simple example of a flat connection in the 

Lie algebroid A(G\H). 

Example 22. If c<zg is a Lie subalgebra such that 

then the (3-1 eft-invariant distribution C determined by c is C°° 

completely integrable and such that <1) C + E -=-T<3, <2) 
b C n£. -= E, <3) C is r7-right-invariant, therefore C induces a 

o 

flat connection in AiGfH) . The existence of such a Lie 

subalgebra implies then the triviality of the Chern-Weil 

homomorphism h of A(G\H). 

The previous theorem gives 

Corollary 23. If G is a conn&c t&dt compact and s&misimpl& 

Li& group and H is any nonclos&d connec t&d Li& subgroup of G9 

and f), t) and Q are th& Li& alg&bras of Ht of its closure H and 

of <3» r&sp&c tiv&ly> th&n no Li& subalg&bra -Ceo, satisfying 

c + f) = 9» cnf) = t), exists, m 

This theorem is valid if one weakens the assumption on 

n <G) to be finite C113. One can also prove that the existence 

of such a Lie subalgebra c gives the minimal closedness of t) in 

the sense of Malcev CUD. 

The analysis as in "Bott's ph&nom&non" C53 gives the 

following results. 

Theorem 24. C153 If A is any r&gular Li& alg&broid ou&r 

<tf,F), Pont (A) <zH (M) is th& Pontryagin alg&bra of A and A 

admits a partially flat connection X' ou&r som& involutive 

subdistribution F cF of codim&nsion [with r&sp&c t to F) 

equalling o\ th&n 

Pont p <A ) = 0 for p>2<o+l). 

If X* admits a basic conn&c tion9 th&n 

Pontp(A) =0 for p><?+l. • 

One can notice that in the Lie algebroid A(G9H) any Lie 
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subalgebra C c Q such that 

(1) f)nc = t), 

(2) f:=^ + C is a Lie subalgebra of 0, 

gives a partial flat connection over the involutive 

distribution on G/H being the 6-left-invariant one determined 

by f/f) (codimension of this is equal to codimf). If f is a Lie 

algebra of a compact Lie subgroup of G9 then C admits a basic 

connection- From the above we obtain the following corollary: 

Corollary 25. C153 If A = A(G9H) and Pontp(A)=09 then 

there exist no Lie subalgebra c of Q such that 

(1) f)nc = t), 

(2) f: = I) + c is a Lie subalgebra of Q whose codimension 

is < (p/2)-l, or is <p-l provided that f is a Lie subalgebra of 

a compact Lie subgroup of G. m 

2 

Since Pont (A)?*Q when G is compact and semi simple, we 

obtain 

Corollary 26. C153 // G is compact and semisimple, and H 

is not closed^ then tfxere exists no Lie subalgebra CcQ such 

that 

(1) t>^c = t), 

(2) f: = f) + C is a Lie subalgebra of a closed Lie subgroup 

of G whose codimension is 1. • 

THE CHARACTERISTIC HOMOMORPHISM OF A FLAT 

REGULAR LIE ALGEBROID 

Consider in a given regular Lie algebroid (A , !•,-I9y) over 

(AT,F) two geometric structures C133: 

(1) a flat connection X:F • A9 

(2) a subalgebroid B<zA over <H9F), see the diagram 
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(*) 

0 • h < • B 1+ F • 0 

Notice that h=gr)x9 (hs = Kery ). 

The system (A ,B,X) will then be called an FS-regular Lie 

algebroid [over (If, P)). 

We construct some characteristic classes of an PS-regular 

Lie algebroid (A ,B,X)» measuring the independence of X and B9 

i.e. to what extent ImX is not contained in B. First, we give 

some examples of such Lie algebroids. 

Examples 27. CI). Let P be a flat G-principal bundle with 

a flat connection o> and P' a reduction of P. co determines a 

flat connection X in A(P), and the system (A(P)9A(P' ),X) is an 

FS-transitive Lie algebroid. 

C23 (An important generalisation of the above example]. 

Let (P,P* ,d>') be any foliated G-principal bundle on a manifold 

H C53, with an //-reduction P' and a flat partial connection o>' 

over an involutive distribution F <zTH. co determines a flat 
F 

connection X in the regular Lie algebroid A (P) over (If, P), and 

the system (A(P)r,A(P*)F,X) is an FS-regular Lie algebroid. 

C3D FS-transitive Lie algebroids on the ground of 

TC- foliations. Let A =- A (If, &) , (If, 3**) being an arbitrary 

TC-foliation. 

Proposition 28. There exists a 1-1 correspondence 6etu>een 

transitive Lie subalgebroids B of A and involutive 

distributions B<zTH such that 

(a) EcB9 

(b) E^ + B=TM9 
o 

(c) B x = | x ( x ) ; X€Sec£nL(W,*F)|, x€ I f . 

For the foliation of left coset$ of G by H9 

(c) s (c# ): a is C00 and Tl-right-invariant, m 

Some example of a Lie subalgebroid of A(G;IO is given by 
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the following theorem. 

Theorem 29. // b c: Q is a Lie subalgebra such that 

t)cb, |) + b = 0, 

then the G-left-invariant distribution B« determined by h 

fulfils (a), (b) and (c*) from the above proposition, giving at 

the same time a Lie subalgebroid of A(G;H). m 

To sum up» a system (b,c) of Lie subalgebras of 9 such 

that t)cb, ?) + b = g and ?) + c==9i t>nc = t), determines some 

FS-transitive Lie algebroid on (3/77. 

C4D FS-regular [nontransitive] Lie algebroids on the 

ground of TC- foliations. Let A = AiM9 &) 9 (A/, 30 being an 

arbitrary TC-foliation. 

Proposition 30. An involutive distribution F on M is a 

lifting of some involutive distribution F on the basic manifold 

W if and only if 

(l) rcf, 
b 

(2) F ={x(x); X€ SecFnHM9F)\ , X€H. 

The correspondence F\ » F is 1-1. For the foliation of left 

cosets of G by H> 

(2) *(2'): F is C°° and H-right-invariant, m 

Denote the lifting of F c 7V to M by TFM. 

Proposition 31. Let FcTW be any foliation of W. There 

exists a 1-1 correspondence between partial connections in 
F —* 

AiMtF) over K- i.e. connec tions in A(M%&) • and distributions C 

in TM such that 

(a) E^nC = E, 
b 

(b) E^ + C = TFM9 
b (c) C ^ = | x ( x ) ; XeSecCnUM,?)|, xeAf. 

In particular» such a distribution C always exists. For the 

foliation of left cosets of G by Ht 
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(c) = (c#): C is C and F?-right-invariant. 
A partial connection in AiH>&) is flat if and only if the 

corresponding distribution in TH is involutive. m 

Some examples of foliations of G/Tl and partial connections 
in AiG\H) are given by the following theorems. 

Theorem 32. // f eg is a Lie subalgebra such that 

*) c f, 
then the G-left-invariant distribution Fif)<zTG determined by 
f fulfils E <zF(f)9 and Fif) is R-r ight- invar i ant, therefore 

b 

gives some foliation Fif) of G/R. 

Theorem 33. Let f and C be Lie subalgebras of 0 such that 

l)<zf and t> + c = f.. ̂ nc = t); 

then the G-left-invariant distribution C = Cic)<zTG determined 
by C is C , R-right-invariant and fulfils E nC = E9 

b 
— p 

E +C=T H9 therefore induces some flat partial connec tion in 
AiGsM) over Fif) . m 

To sum up, the triple (b,f,c) of subalgebras of g such 

that 

§cb, f> + *>=-8, §cf and t> + c = f, §nc = l) , 
determines an FS-regular Lie algebroid. 

Return to diagram (*). 

We construct a characteristic homomorphism 

A :r/(g,£) • tf iH) 

measuring the independence of X and B in the sense that A
#
= 0 

if Im\<zB. 

Here H (g, B) -= H(iSecA (g/h) *) /0 ,6) where 
(1) (SecA <g/h) ) o is the space °* invariant 

cross-sections with respect to the canonical representation 

B n4<A<g/h)*) induced by ad\BzB • A(g). Precisely, 

* € (Sec AkCg/h)*) / 0 * V? <s SecB, V i>±9..., i>k € Secg, 
ir •?)<», Ci> 3/S...^CJ^. 3> = £<* , CI> l*...*tlZ9i>$1*...*Li> 1> , 

where tu.l -= s«i>. € Secg /h and s :g • g /h i s the canonical 
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projection. 

<2) 6 is a differential in <SecA<g/h) ) 0 defined by the 

formula 

<o¥, li> 3/s...xvCv, 3> = - r < - l ) v + J < * , Clt>. , I > . E 3 / S C P l*...i...J...*Zv 1 >. 
O k . . " - J O k 

First, we construct the homomorphism A on the level of 
# forms. 

Theorem 34. There exists a homomorphism of algebras 

such that 

A^:SecN <g/h) • OpiM) 

A ¥<x;u> ,...,u> ) = ¥<x , Co><x:it> )]A...ACw(X5WA]) # * i k i * k 
for W.GF where w.eB satisfy Y **-0 — W.-

J lx J lx 'i j j 

Theorem 35. A res trie ted to the invariant cross-sec tions 
— p 

commutes with differentials 6 and 6 , giving a homomorphism. A 
# 

on cohomologies. 

36. The fundamental properties of A are: 

<a) A^ = 0 if Im\<zBm 

<b) The functoriality of A . 
# 

<c) The independence of A of the choice of homotopic 
# 

subalgebroids B in trie following sense* 
If B is homotopic to B , then there exists an isomorphism 

a:I/<g,Я ) >/<g,i9 ) of algebras, such that the diagram 

«(g,вo> 

/ / ( g , ^ ) 

нm («) 

com/mites. 7?ie r e l a t i o n ©/ .*iomotopy oet iueen sitoalg ,e&roi.ds is 

naturally defined as followsz B <*B ** there exists a Lie 

subalgebrotd B c T R x A [on Rx/tf) such that v e B «t <0 ,t>) € B9 

t = Q , 1 ( 0 6 e £ n # trie n u l l vector at t € R ) . • 

The construct ion of a i s not t r i v i a l . We uses a few times 
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the existence of global solutions to 

differential equations. 

some systems of 

Theorem 37 (The comparison with a flat principal bundle, 

see C53). If A = A iP) , B = AiP')9 where P' is a connected 

H-reduc tion, then, for each flat connection in P and the 

connec tion in AiP) corresponding to it, there exists an 

isomorphism * of algebras such that the diagram 

Hi&9H) 

tf ІM) 
dR 

Жg,A<P' )) 

c ommutes. 

Assume that A and B mean the same as in Theorem 37 above, 

but X is a partially flat connection in A, say* over an 

involutive distribution F <iTM. Denote by & the foliation 

determined by F. Equivalently• we have given some foliated 

principal bundle and an //-reduction of it. By the general 

theory, there is a homomorphism of algebras 

А#:IV<g,B'> H ІM) 
ғ 

Theorem 38. If H is connec ted9 then 

His9B
f) £ CfiM9F)-HiQ9H) 

and A <E/*Cy/.-->» V. <-- <A <g/f)> > , is the tangential 
cohomoIogy cI ass determined 6y the form 

.A* </L- w,) <x;n> A...AW ) =- E / N x ) "<V. > Cto<x; w±) 3^...^Cco<x;i.;k> .3) 

for w. € F where w, € T P' sat isfy n' iw.) = w.. • 
\ \x t Z J * * \ \ 

Problem 39. Consider an arbitrary leaf L of 3**. From the 

functoriality property, under the assumption of the 

connectivity of H9 we have the following commuting diagram 
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A 
/ь-lv.l Of ІMЩF) -HІQЧH) í • H ІM) 

•L Ь F 

+ 4- A + 

[ / ( x ) - v A HiQ9H) L£+ HdRiL) 

Find an example of the situation in which A is not 
# 

trivial, whereas A is trivial /or each lea/ L € &. 
* i# J J 

An example of the nontrivial A on the ground of 

TC-foliations. 

A) The transitive case. Let A -= AiM9&) , iM9&) being an 

arbitrary TC-foliation. Assume that we are given a Lie 

subalgebroid B<zA9 equivalently - a distribution B <zTM such 

that 

(a ) E<zB9 

(b) E ̂  + B = TM9 

b 
( c ) Bx=łXix)9 XєSecBnLiM9Э?)\ far X€H, 

and a f l a t connection X in A, equ iva len t l y - a d i s t r i b u t i o n 

C<zTM such tha t 

(1) C + E^= TM9 
b 

(2) CnE^ = E9 
b 

(3) C ^ = | x ( x ) ; XeSecCnLiM9&)\ f o r x*M. 

From the general theory we obtain:. 

1/ the charac teristic homomorphism A is not trivial, then 
# 

£ cannot be homotopically changed to the one which contains 

Im\ ( equivalent ly, Bz>C]. 

Here we calculate the characteristic homomorphism of the 

FS-transitive Lie algebroid iA (G;A/) 9B9\) in which 

(i) B-B^ is the Lie subalgebroid of AiG^H) determined 

by a Lie subalgebra b e g satisfying (1) t)<=̂ » <2> ^ + b = g, 

(ii) \ is the flat connection determined by a Lie 

subalgebra c c g satisfying (1) c + ?) = g, (2) enf)**)-

Theorem 40. There exist an canonical isomorphism a o/ 

algebras and a homomorphism A o/ algebras* making the 
# 
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following diagram commute 

A 
K < g , B > - > H io/m 

•1-
dR 

A _ I 
A<t>/<t>nb>)* — 2 - 4 1/<A<g/l»*> 7> ^ H^G/m . 

<A<g/t)> >f denotes here the DG-al#e6ra of vectors invariant 

with respect to the adjoint representation 

Aa^zN •GL<A<Q/?)) ) ( c / C5D). The homomorphism A on the 

level of forms is defined 6y the equality 

<A <¥) , Lw l**...+>tw% D> = <*,co <w )^...^a> <w ) > 

/or *€ A <t)/<t)nb)> and w. € 9, inhere u>. € b are vectors 

such that Lw. 1 -= Lw. 1 (̂ 9/f)) inhere 00 : 9 •|/.^nb) is 

defined as the superposition 

a> : 9 • g/*) = '!>/*> * c/t) i_-> t)/t) • V (^nb). 

For a compact G, the right arrow in the diagram below is an 

isomorphism, m 

Theorem 41. A^ is trivial if and only 1/ Ccb. • 

Each case c£b (for a compact G) is the source of the 

nontrivial characteristic homomorphism of an FS-regular Lie 

algebroid on the ground of TC-foliations. 

BD The nontransltlve case. Here we calculate the 

characteristic homomorphism of the FS-regular Lie algebroid 

<A (G; r / ) F < f > , a^ < f > ,X c ) in which 

<i) F<f) is the foliation of G/ff determined by a Lie 

subalgebra f eg such that f)cf, 

<ii) £.£<f> is the Lie subalgebroid of AiG\M) where B^ 

is determined by a Lie subalgebra b e g fulfilling <1) *)<-:b, 

<2> t) + b = g, 

<iii) X is the partial flat connection determined by a 

Lie subalgebra c c g for which <1> c n | = t), <2) c + t) = f, . 

By the general theory, there is a homomorphism 
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A :r/(g,.B5
<f>
) >H iG/R) 

# °* b r<f> ' 

of algebras. 

Theorem 42. There exist a canonical isomorphism a of 

bras and a homomorp 

following diagram commute 

algebras and a homomorphism A of at gebrds9 making the 
# 

Л 

н < g , в £ ( f > > > нғ(f)iв/R> 

j„ 
id-A I 

ď<м,э?) Л(ђ/<Ъпb)) í-—• a°iм,ю -и ІG/R) 
Ь Ь .F<f>#/ 

The homomorphism A on. the level of forms is defined by the 
# 

eqaia l i t y 
л л 

< A ( Ф ) , ClD 3.>ч...,*чClt>. 3 > = <*%<*> ( W )^S...УNCЛ> (lt> ) > 

/ o r * € A ( t ) / ( t ) n b ) ) and w . e f , u>here w. e b n f are vectors 

such that Lw, 3 = Cn>. 3 ( € f/f>) where a> : f ^ / ( | n b ) i s 

d e / i n e d as the superposition 

« : f — • fA>=f>/t>*c/*> - 4 ^ • V ( ^ ) n b ) . 

For a compact Gt the canonical inclusion 

O iG/R) < — — • O iG/R) induces a monomorphism on 

cohomologies H iG/R) > » // iG/R). therefore the 

nontriviality of A Spites the sctme /or A . • # # 

Theorem 43. A is trivial if and only if ccb. • # 

Each case c£b (for a compact (3) is the source of the 

nontrivial characteristic homomorphism of an FS-regular Lie 

algebroid an the ground of TC-foliatians. 

THE CHARACTERISTIC HOMOMORPHISM OF PARTIALLY FLAT 

REGULAR LIE ALGEBROIDS 

Consider in a given regular Lie algebroid (4,11•,-19y) over 
iM9F) two geometric structures C143: 



CHARACTERISTIC CLASSES OF REGULAR LIE ALGEBROIDS - A SKETCH 9 1 

(1) a p a r t i a l f l a t connection X ' : F ' • A' ( :=^"1CP' 3) , 
(2) a subalgebroid B<zA over <M9F)9 see t h e diagram 

X' 

4» -y 4» 

-• A • F • 0 

J Ą , Î 
0 • h < • B -U F • 0 . 

The system (A9B9\) will then be called a PFS-regular Lie 
algebroid [over iM9F,F* )). 

Examples 44. Examples 27(2) and (4) from the previous 

part: 

- a foliated bundle (P,P',co') C53, 

— a triple (b,f,c) of some subalgebras of 9, 

are the source of PFS-regular Lie algebroids: 

( j4(P),A(P' ),X' ), and <A(G9H) 9B^9\C) 9 

respectively. 

We construct some characteristic homomorphism of a 

PFS-regular Lie algebroid (A ,B,X ') 

A . :-V(<T(g,h) , o,<5) • //(*), 
q # q 91 F 

measuring the independence of X' and B9 where 

V(g,h) , • » (Sec (A (g/h) *<&V<q' g*)) Fo 
q , / / 

is the space of invariant cross-sections with respect to the 

canonical representation of B9 and 6 is the differential 

defined point by point, coming from the differential d^ in the 
Weil algebra l/g of the Lie algebra g, , and <?' >codimF' \x |x 
(and Q' > [ <?/2] for the "basic" case). 

The homomorphism A , on the level of forms is constructed 

as follows: 

Take s:g 1 g/h, the canonical projection, and 
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A s * « i d : A ( g / h ) * « V ~ q g * • Ag*«V"~q g * , t h e induced 

homomorphism, and 

k: 4>Sec ( A g * « V l g * > ^O(A ) 

v*r i •c^(v>)^os'(r> 

where o/N y/)-=—'• <y>,cô ...,sG>> for y € Sec A (g/h) and Os/(D 

= —-<r,Os/...vO> for r e Sec V g , whereas co and O are the 

connection form and the curvature form of some adapted 

connection. 

The form j (k (As #£d(*))) is h-horizontal, which implies 

the existence of a tangential differential form A*eO (Af) such 

that y-*(A*) = J* (k(As*®id (*))). Put A , = (*i •A*). 

Theorem -45. If q9 > codimF' ( and q' > [ <?/.?] for th& "basic" 

case), th&n A f:<y(g,h) # 0 » O (Af) cowwiutes wi th suitabl& 

diff&r&ntials9 giving a homomorphism on cohomologi&s. m 

The properties: 

CI) Th& functoriality, 

C2) Th& ind&p&nd&nc& of th& choic& of an adapt&d 

conn&ction> 

C3) For two Li& subalg&broids b&ing homo topic, th& 

corresponding charac teristic homomorp>hisms are equivalent. m 

The comparison with the characteristic homomorphism of 

foliated bundles C53 is described by the following theorem. 

Theorem -46. Let A = AiP)9 B = - A ( P ' > , P9 b&ing a 

H-r&duction. If P' is conn&ct&d9 th&n th&r& exists an 

isomorphism, a of alg&bras9 such that 

thj& following diagram 

/ / (^ (g ,h ) , ,. ,6> 
q ч 

N H ІM) 

HІWІQ9H) ,) 
4 

comлtut&s. 
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