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Circular vectors and toroidal matrices 
M Znojil 

Ustav jaderne fyziky AV CR, 250 68 Rez u Prahy, Czech Republic 

Abs t r ac t 

Arrays of numbers may be written not only on a line (= "a vector") or in the 
plain (= "a matrix") but also on a circle (= "a circular vector"), on a torus 
(= "a toroidal matrix") e t c In the latter cases, the imanent index-rotation 
ambiguity converts the standard "scalar" product into a binary operation 
with several interesting properties. 

1 Motivation 

In the applied quantum physics1, wavefunctions (.£,-, z = . . . , —1, 0, 1, . . . 
often appear restricted by the periodic boundary conditions 

Vi = Vh i=j(modN). (1) 

Similarly, square matrices with a double cyclic (or toroidal) symmetry 

fiij = A*,/, * = fc(modN), j = /(modiV) 

may be introduced per analogiam. 
Cyclic symmetry (1) rarely transcedes the role of a technical trick 

which simplifies computations. Here, we shall pay attention to its further 
properties which seem to parallel some geometric aspects of various hyper-
complex numbers2. 

1M. Znojil, Phys. Rev. B40 (1989) 12468-75 
2cf. J. Becvaf, Pokr. mat. fyz. astr. 38 (1993) 305-17 or any other recent review of 

the further related literature) 
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2 A scalar-product-like binary operat ion 

In practice, there might exist an TV-tuple ambiguity of a conversion of the 
cyclic or circular vectors (1) (let us denote them by a super-circle, tp) into 
their row and/or column predecessors, say, 

(¥>Jfc+i, <t>k+2, . . . , V ^ + j v ) -

Thus, whenever k may be arbitrary, an overlap (= scalar product) of any pair 
<p and / also remains ambiguous. Thus, the circular symmetry is a source of 
the whole family of scalar products. We may arrange them in a set 

Iv 

*i+* = X ] & ̂ + ^ i = 0 , 1 , . . . , -W - 1, k = arbitrary. (2) 

i=l 

or, alternatively, 

Iv 
hk+j = ^2 fc+k Wi fc = 0 , 1 , . . . , .AT - 1, j = arbitrary. 

i=i 

Here, we shall pick up the former case for the sake of definitness, and denote 
our "product" by a small square, t = /-"-<£>. 

Similarly, in the case of toroidal matrices, we may contemplate any one 
of the following four quasi-scalar products 

IV IV IV IV 

Ok+p}l+r = 2_j ___j Zi+bj+l fy.t, Pk+p,l+r = __^ 2_j ^i+kj toj+l,i 
t = l j=l i = l j=l 

N IV IV IV 

Qk+p,l+r = 2__j ___j Zij+kftj,i+h Rk+pJ+r = J__j ___j ^t'.j ^j+*,t+- (3) 
i=l j=l i=l j=l 

with k,l = 0 , 1 , . . . , IV — 1 and arbitrary p and r, e t c 

3 Parametrizat ions 

3.1 The simplest example - circular vectors with N=2 
At IV = 2, circular symmetry (1) means that we have to deal with the un
ordered pairs of numbers, / = (a, b). Their parametrization f = [m cht, m shi) 
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induces a new (bracketed, ordered) denotation / = [m, t] and (p = [/z, r ] and 
simplifies their present "multiplication", 

[m, tf]G[/i, T] = [m/x,t + T] . 

This seems inspiring: The set of all the nonzero elements / = (a, 6), a 7-= ±6 
(i.e., m / 0 ) forms a commutative and associative group with the unit [1,0] 
(i.e., (1, 0) = (0, 1)) and with the trivial inversion f~l = [1/m, — t]. 

In the a — b plane, the IV = 2 circularity of vectors / = (a, 6) introduces a 
symmetry a <-> b which unites hyperbolas (mcht, msht) and (mshJ, mch£), 
t £ (—00,00). Their simultaneous rotation is mediated by the elements 
[1, - T ] . 

3.2 The first nontrivial case with N=3 
o 

The cyclically permutable vectors / = (a, 6, c) restricted by the invertibility 
condition 

a3 + 63 + c3 - 3a6c ^ 0 

may be parametrized, say, in accord with the formula 

3a = mexpt + 2m exp(-^t) cos s 
36 = m exp t + 2m exp(— jt) cos(s + |7r) (4) 
3c = mexpt + 2mexp(—^t)cos(s + |7r). 

o 

In the new notation / = [m, t, s] the simplicity and transparency of the 
multiplication law (2), 

[m, t, «s]G[//, T, a] = [m/i, t + T, —5 + a] 

reveals its non-commutativity and non-associative character, 

[M, T, 5]G{[m, *, s]G[/i, T, cr]} = [Mm/x, T + ^ + T, - E - 5 + cr] 
{[M, T, 5]G[m, ^, 5]}G[/i, T , j ] = [ M m / i , r + t + T , + E - 3 + (j]. 

The left unit is u = [1,0,0] but there exists no right unit. Thus, even though 
the inverse elements exist whenever m ^ 0, our multiplication only forms a 
groupoid. 

In a way parallelling the IV = 2 case where zeros form the pair of lines 
a = ±6, the IV = 3 zeros lie not only in the analogous plane a + b + c = 0 but 
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also on the line a = 6 = c With these zeros removed, the remaning three-
dimensional space may move under the left or right action of its elements. 

Due to the absence of right units, a preservation of any element by the 
right action is not possible. In this sense, the left-unit elements [1, 0, 0] may 
only be re-interpreted as certain involutions or "square-rooted" right units. 

The IV = 3 analogues of the IV = 2 hyperbolas are surfaces defined by 
their elliptic intersections with certain planes. Indeed, we have, identically, 

a3 + 63 + c3 _ 3abc s i , a + b + c j { ^ _ 6x2 + (a _ cy + (b__ CN2 j 

where, by our above definition (4)'we havl a + 6 + c = expt etc. 

3*3 Circular vectors with N = 4 

As long as the IV = 4 "zeros" m = 0 reflect just a disappearance of the 
determinant 

a 6 c d \ 
d e t ' t d I 6 = ( « + 6 + c + a ' )(a-6 + c - a , ) { ( a - c ) 2 + (6-a , ) 2} 

6 c d a J 

we may parametrize the whole four-dimensional space and its motion via 
hyper-planes 

a + 6 + c + a, = exp(t + s), a — 6 + c — d = exp(t — s) 

and hyper-ellipsoids 

{(a - c)2 + (6 - d)2} *= exp(-2^. 
o 

Thus, with a — c= cosr, / = [m,t,5,r] and multiplication rule 

[m, t, 5, r]D[/i, r, a, p] = [m p,, t + T, s + af$^r + p] 

the motion of the space splits in the multiplicative and rotational parts again. 
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3.4 Playing games with the higher TV's 

An extension of all the above constructions to IV > 4 is more difficult: At all 
the IV's we have 

a b c ... y z 
z a b ... x y 

det = (a + Ь + c+... + z)D(a,Ъ,...,z) 

b c d z a 

but D(...) does not always decompose easily. Even in a maximally reduced 
case with zero parameters c = d = ... = 0, it is rather difficult to get the 
factorization 

D(a,Ь,0,0,0) = a4 - a3b + a2b2 -abz + Ь 

16 
(a - Ь)2 + 

( - * ) < • 
+ ьy (a - b)2 + (1 + £>(° + ь)' 

Similar difficulties emerge also at IV = 7 etc. 
The question of feasibility of the underlying algebraic manipulations is 

more challenging at the even IV's. Thus, we get 

D(a, b,c,d,e,f) = (a-b + c-d + e-f)xE+(a, b, c, d, e, f)E-(a, b, c, d, e, f) 

with 

2E±(a,b,c,d,e,f) = ±[(a-b)2+(b-c)2+(c-d)2+(d-e)2+(e-f)2+(f-a)2} 

+[(a-c)2+(b-d)2+(c-e)2+(d-f)2+(e-g)2+(f-b)2)+2[(a-d)2+(b-e)2+(c-f)2 

at IV = 6, and 

D(a,b,...,h) = (a — b+c — d+e — f+g — h) xE(a,b,c,... ,h)F(a,b,c,.. .,h) 

with 

E(a,b,c,...,h) = -[(a-e)2 + (b-f)2 + (c-g)2 + (d-hf) 

+[(a-c)2 + (b-d)2 + (c-e)2 + (d-f)2 + (e-g)2 + (f-h)2 + (g-a)2 + (h-b)2) 

and 
F(a,b,c,...,h) = (a2-1

2 + 2fi6)2 + (/?2 - 62 - 2a 7 ) 2 

with a = a — e, (3 = b — f, 7 = c — g and 6 = d — h at N = 8. 
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3.5 Toroidal matrices at N = 2 

Let us pick up, say, the (J-type products (3) of the doubly cyclic matrices, 
and re-write their N = 2 realization 

(S5)-o(;?) 
in the standard linear-algebraic form 

л \ 
(a c b d\ ( a 

в c a d b ß c r b d a c X 
7 

D \ d b c a J U 
Now, in a close parallel to the case of vectors at N = 4, we may put a + b + 
c + d = exp(t + r) , a — b + c — d = exp(t — r) and a + b — c — d = exp(—t + s), 
a — b — c + d = exp(—t — s). In the new parametrization and notation, 

( c ! ! ) = Km» *>r'41 

the entirely straightforward manipulations confirm that 

[[m,t,r,s]p[[^T,p,a)] = [[mfl,T+\r + \s,t+p+\r-\s,t+<T-\r+\s]} (5) 

We may conclude that the non-existence of the right unit survives the tran
sition to matrices. 

In the standard linear algebra language, the "angular" part of the product 
(5) reads 

u2 = /, u = 

In contrast to the similar four-dimensional vectorial case, the new "imaginary-
unit-like" square root of the identity U becomes non-diagonal. 
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