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RENDICONTIDELCIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 46 (1997), pp. 29-54 

SPECTRAL THEORY OF INVARIANT OPERATORS, SHARP 
INEQUALITIES, AND REPRESENTATION THEORY 

Thomas Branson 

Lecture 1: Conformal covariants 

Let (M, g) be a pseudo-Riemannian manifold of dimension n > 3. Philosophically 
speaking, a conformal covariant D should be a natural, metric dependent operator 
on sections of a natural vector bundle with the following property: if the metric g is 
subjected to a pointwise scaling g = Q2p, 0 < Q e C°°(M), and any relevant auxiliary 
structures are altered compatibly, then 

D = Q~bD[na]. (1) 

Here a and 6 are real numbers, D is computed in the ^-geometry, and [fla] is multipli­
cation by the function f2a. (a, 6) is sometimes called the conformal biweight of D. The 
numbers a, b can actually be adjusted as desired by tensoring with density bundles. In 
particular, a and b can be made to vanish for section densities of the correct weights; 
the result is a conformally invariant operator on section densities. 

Among possible "auxiliary structures" in the above might be a volume form, a spin 
structure, or an embedding of M as the boundary of a larger manifold M. One 
hears most often about conformally covariant differential operators, but it makes per­
fect sense to speak of nonlocal, for example pseudo-differential, conformal covariants. 
Indeed, the Knapp-Stein intertwining operators for representations of the conformal 
group of conformally compactified flat space are generically nonlocal. The extent to 
which these nonlocal operators have conformally covariant generalizations to arbitrar­
ily curved manifolds is an open question. 

Example 1.1 The best-known conformal covariant is the conformal Laplacian 

n — 2 
Y := A + -77 -r K, K = scalar curvature. 

4(n - 1) 

This paper is in final form and no version of it will be submitted for publication elsewhere. 
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Here A is the Laplacian 5d on functions, where S = d*. (We have not assumed that g 
is positive definite, so A may be hyperbolic or ultrahyperbolic.) The weights in (1) are 
a= (n- 2)/2 and b = (n + 2)/2. Though Y is best known for its role in the Yamabe 
problem of prescribing scalar curvature on a Riemannian manifold, it first appeared 
in the early part of this century in connection with conformal relativity. Here too the 
goal was deformation to constant scalar curvature; the Q, effecting this was viewed as 
an extra physical field. 

Examples 1.2 Suppose g is Riemannian, let M have a boundary 9M, and consider 
the boundary problems (Y, V) and (Y, %) with Y as above, V the Dirichlet operator 
u »-> U\QM ) and 11 the Robin (conformal Neumann) operator 

"{{"-&->) дM 

where N is the inward unit normal, and H is the trace of the second fundamental 
form. Because 

V = Sl-aV[Sla) for any a, H = OT^Tl^-^2} (2) 

under g = n 2#, the resulting operators Yp and YJI are conformally covariant. 

More generally, a boundary problem (D, B) produces a conformally covariant operator 
if (1) holds, and B = fi""cB[na] for some c. That is, B should be conformally covariant, 
with the same initial weight as D. 

Example 1.3 Because of (2), the Dirichlet-to-Robin operator is a conformally co-
variant pseudo-differential operator on dM. Let (p be a smooth function on 9M, and 
extend to E(p e C°°{M) with YE<p = 0. The Dirichlet-to-Robin operator T = TIE 
thus carries Dirichlet data to Robin data. The conformal covariance relation for Y 
shows that [ft-(n"2)/2] is a bijection JV(Y) -> JV(Y), and thus 

.g(f2-(n-2)/V) = ^ " ( n " 2 ) / 2 ( ^ ) ; 

that is, E is conformally covariant of biweight ((n-2)/2, (n-2)/2). Since the terminal 
weight of E matches the initial weight of 7£, the composition T is conformally covariant 
of biweight ((n - 2)/2, n/2). 

The Dirichlet-to-Robin operator is a most interesting and quite concrete example of a 
pseudo-differential conformal covariant. Note that 

1/2 

T = Ad'M + lower order, 

by virtue of the relation 
AM = - N + ASM 4- lower order. 
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On the round sphere 5 n , we can obtain T as an intertwining operator for SOo(n+1,1) 
([8], equation (2.16)); here it turns out that 

T = W Д c . + m-
(This can also be computed from the characterization of the A$n eigenfunctions as 
restrictions to the unit sphere of homogeneous harmonic polynomials in Rn+1.) Various 
Dirichlet-to-Neumann operators B have recently become important in the theory of 
electrical impedance tomography [34, 50], which may be characterized as the attempt to 
reconstruct information about the conformal factor Q (given some background metric) 
from measurements of B performed on dM (i.e. from nondestructive testing). 

Examples 1.4 Back in the realm of differential operators, the first-order Stein- Weiss 
operators [49], or gradients, are conformally covariant, by a result of Fegan [26]. Let g 
be Riemannian, and let V be an irreducible vector bundle with structure group SO(n) 
or Spin(n). Since the defining and spin representations of these groups are faithful, 
these V are exactly the irreducible components of the tensor (or tensor-spinor) bundles 
on an oriented Riemannian (or Riemannian spin) manifold. The covariant derivative 
V carries (sections of) V to (sections of) T*M®V, which is generally reducible under 
the structure group: 

r M ® V S f d ( B ) W 1 © . . . © W i V , (4) 

where the Ŵ  are irreducible, and of course N depends on V. As it happens, (4) is a 
multiplicity free decomposition; that is, Wt =so(n) Wj =-> i = j . Thus the composition 

d : V -—> T*M®V Fl°h ) Wf 

is a well-defined first-order differential operator between irreducible bundles. Fegan 
showed that each C7t is conformally covariant, with biweight depending on the highest 
weights of the so(n) modules to which V and Wt are associated. All the natural first 
order differential operators from Riemannian geometry, for example, d, 5, the Dirac 
operator y , the twistor operator on spinors, and the S operator of elasticity theory 
are gradients, or direct sums of gradients. 

Examples 1.5 A new class of conformal covariants on differential forms was dis­
covered in 1981 [6]; these were the earliest known conformal covariants which are not 
versions of operators known in Physics, and the first to involve the Ricci tensor r. Let 
g be pseudo-Riemannian, and let 

J =
 K 

2(n - 1 ) ' 

v = ZЛÏO--•!</-)• 
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Consider the following operator on the k-form bundle kkM\ 

n — 2k 
D2tk := (s + l)5d+ (s - l)d5 + (s + l)(s - 1)(J- 2V-), s = sk = ——, 

where V- is the natural (derivation) action of a two-tensor on the Grassmann algebra. 
Then D2yk is conformally covariant of biweight (s — 1,5 + 1). Special cases are the 
conformal Laplacian Y when k = 0, and the Maxwell operator 5d on vector potentials 
((n — 2)/2-forms when n is even). 

Example 1.6 Inspired by the example of D2ik and its use of the Ricci tensor, Stephen 
Paneitz [43] in 1983 introduced a fourth-order conformal covariant on functions, mo­
tivated by problems of gauge fixing for the Maxwell equations. This operator was 
independently discovered by Eastwood and Singer [25], who were also motivated by 
the gauge fixing problem, and by Riegert [46] in dimension 4, in connection with the 
trace anomaly. For pseudo-Riemannian metrics g, let 

Q = ±nJ2-2|V |2 + AJ, 

T = (m - 2) J - 4V • on one-forms. 

Then 

P:=A2 + 5Td + ^j^Q 

is conformally covariant of biweight ((n - 4)/2, (n + 4)/2). 

Now (the vacuum) Maxwell's equations on an even-dimensional pseudo-Riemannian 
manifold are 

dF = 5F = 0, 

on an n/2-form F. Modulo cohomological obstructions, we may take a vector potential 
A with dA = F} since F is closed. As a condition on A, Maxwell's equations just 
become SdA = 0; thus the term Maxwell operator for the conformal covariant Sd on 
(n - 2)/2-forms. A can be altered by a closed summand without affecting the physical 
field F; in particular, if u is an (n - 4)/2-form, addition of du to A has no effect; 
this is a change of gauge. By imposing the extra restriction 5A = 0 (so that the form 
Laplacian Sd + dS annihilates .A), we cut down somewhat on the amount of gauge 
freedom. 

Both Paneitz and Eastwood-Singer were concerned about the lack of conformal covari-
ance of the gauge condition SA = 0: though S is conformally covariant on A^n~2^2, its 
initial weight does not agree with that of Sd (namely 0). On doubly-covered compact-
ified Minkowski space M = Sl x S3 in four dimensions, the Coulomb gauge condition 

SA = 0, i(dr)A = 0, (5) 

with r the time parameter on the S1 factor and i interior multiplication, completely 
fixes the gauge: two gauge equivalent Maxwell vector potentials satisfying (5) must 
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be equal. When A is pulled back by a conformal transformation of JVI, however, the 
resulting potential A' is generally not in the space C cut out by the conditions (5). 
As Paneitz pointed out, however, A' is in the somewhat larger, conformally invariant 
space C + dAf(P). In other words, though conformal transformations take us out of 
C7, we do not need access to all gauge changes du in order to return; the relatively 
small class of du with u € N(P) suffice. (See [8], Section 4.b for a more complete 
discussion.) Paneitz also notes that a similar result holds in a more general class of 
conformally flat Lorentz 4-manifolds, by virtue of the possibility of embedding them 
conformally in M. 

Eastwood and Singer made a different observation. First note that P = (A<5 + ST)d 
in dimension 4, and consider the gauge condition 

(A5 + 5T)A = 0. (6) 

This gauge can be imposed, given an arbitrary A, by solving Pf = (AS + ST)A and 
replacing A by A - df. The only gauge changes which preserve (6) are now those from 
dM(P). Though the null space of A5+5T is not conformally invariant, its intersection 
N(A5+5T)r\N(5d) with Maxwell potentials is; this makes (6) a conformally invariant 
gauge for the Maxwell equations. 

Examples 1.7 Also inspired by the construction of D2,fc ax-d its use of the Ricci 
tensor, Wtinsch [53] constructed an analogous operator F2)P on the bundle TFS^ of 
trace-free symmetric p-tensors. All these second-order operators were later subsumed 
in a classification of all second-order conformal covariants; this was first distributed 
as [9], and has now appeared in published form in [12]. The Wtinsch operator F2,2 
was used in an essential way in [11], in the analysis of the extremal problem for the 
functional determinant on S6 (see Lecture 3 below). 

Examples 1.8 In [30], Graham, Jenne, Mason, and Sparling showed the existence of 
a conformal covariant Pm of even order m on scalar functions whenever the dimension n 
is odd, or m < n. Pm has leading term Am/2, and generalizes the conformal Laplacian 
Y = P2 and the Paneitz operator P = P4. The operator P6 had also been constructed 
earlier, in [53]. It is shown in [11] that there is a Pm of the form 

Sm-ld+'^Qm, (7) 

where Sm_i is a natural differential operator and Qm is a local scalar invariant with 
coefficients that are rational in n. It is also shown in [11] that in the conformally 
flat category, Pm is unique and formally self-adjoint. Pm potentially figures quite 
prominently in spectral theoretic questions in higher dimensions. An important open 
question is that of whether Pm and Qm can be chosen to be formally self-adjoint for 
general (not necessarily conformally flat) metrics, and rational in the dimension n, 
without disturbing the validity of (7). 
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The above is really a discussion of individual conformal covariants, or classes of such, 
that are known in some concrete way, with a bias toward those that have become 
important in the spectral theory of differential operators. Not touched upon are im­
portant classification results for conformally covariant differential operators. Working 
on model spaces like compactified Minkowski space (for Lorentz metrics) or the sphere 
(for Riemannian metrics), Baston, Eastwood, Jakobsen, and Rice [33, 24, 3, 4] have 
exploited the theory of Verma module embeddings and the Bernstein-Gelfand-Gelfand 
resolution to obtain far-reaching classification results for differential operators covari­
ant under the conformal transformation groups of these spaces, or in short, differential 
conformal transformation covariants. Baston, Eastwood, and Rice also prove results 
on generalizations of these operators to conformal covariants on arbitrarily curved 
manifolds. A survey of known results is given in [48]. It is known, however, that not 
all conformal transformation covariants generalize to conformal covariants in the arbi­
trarily curved setting: Graham [29] shows that a general P6 (in the sense of Example 
1.8) cannot exist in dimension 4; yet this operator exists as a conformal transformation 
covariant on compactified Minkowski space, and on S4 (see [8], Sec. 2.c and Remark 
2.23). 

Correction 1.9 At an earlier meeting of the Winter School [10], the present author 
claimed that a fourth-order conformal transformation covariant on one-forms ([8], Sec. 
3.d) has no arbitrarily curved generalization in dimension 4. The proof given in [10] 
was in error, and Graham [29] has shown that there is such a generalization. 

Open problems: 

l.a Formulate and attack the classification problem for pseudo-differential conformal 
covariants, and conformally covariant boundary problems. Can an asymptotic expan­
sion of the symbol of a putative conformal covariant or covariants with leading symbol 
|f | be used to get information on the basic problems of electrical impedance tomogra­
phy? 

l.b Exactly which differential conformal transformation covariants have arbitrarily 
curved generalizations? 

l.c What is the connection between the Paneitz operator and the Maxwell equations, 
or Yang-Mills equations, on general (not necessarily conformally flat) 4-manifolds? 

l.d Does the construction of the GJMS operator Pm automatically yield a formally 
self-adjoint operator, with Pm and Qm = Pml rational in the dimension n, satisfying 
(7)? 

l.e Assuming a positive answer to l.d, consider the curvature prescription problems 

PmK=!L^QmU(«+"0/(»-»>), u = n( - m ) / 2 (8) 
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analogous to the Yamabe problem, for m < n. In analogy with the passage from the 
Yamabe problem for n > 2 to the Gauss curvature prescription problem when n = 2, 
consider also the "analytic continuation" of (8) to dimension m: 

P»u> + Qn = Qnenw. (9) 

(8) and (9) govern the conformal change of the quantities Qm under g = fi20, where 
ft = ew. Can we conformally deform to constant Qm ? Which functions can be realized 
as the Qm of some some gl 

l.f Do the differential form operators (Examples 1.5) carry information useful in the 
problem of prescribing the Ricci tensor? 

Lecture 2: The analytic content of conformal covariants 

The classification of differential conformal covariants centers has centered on algebraic 
techniques involving Verma modules. For more general pseudo-differential conformal 
covariants, the theory of Harish-Chandra modules, and especially intertwining opera­
tors for principal series representations, will be necessary. The differential conformal 
transformation covariants then turn up for a discrete set of values of a certain contin­
uous parameter (essentially the conformal weight). Going the other way, a complete 
understanding of the spectra of the differential intertwinors can sometimes be used to 
get an understanding of the nonlocal intertwinors, through analytic continuation, or 
through a functional equation. (See [16], esp. Sec. 5.) 

Recently, intriguing new applications of conformal covariants in harmonic analysis and 
the spectral theory of differential operators have come into view. Since the (differen-
tiable) dependence of the covariant on the conformal weight enters explicitly, the use 
of nonlocal conformal covariants is necessary. A part of this picture has long been 
visible. For example, we can add a nonlinear term to the Yamabe operator, 

N(w) = Yi/ + c|u|(n+2)/(n-2) 

for c a constant, without disturbing conformal covariance. This nonlinear operator 
turns up in the Yamabe equation 

Yu = J±Z*RUW^). (10) 
4 ( n - l ) 

A positive function u solves (10) Iff g = Q?g has constant scalar curvature K, where 
u = ft(n-2)/2. In fact, (10) is just the conformal covariance relation for F, applied 
to the constant function 1. The central issue in the solution of the Yamabe problem 
[54, 51, 2, 47] is the sharp form of inequality describing the Sobolev embedding 

L2 ^ L2»/<»-2) f (11) 

or, equivalently, minimization of the Yamabe quotient (Yu,tt)L-7IM.2n/(n.-2)- The 
problem is difficult because the embedding is borderline: for q < 2n/(n - 2), the 
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embedding L\ «-+ Lq is compact; for q > 2n/(n - 2), there is no embedding. At the 
borderline, the embedding is bounded but not compact. 

The behavior of the Yamabe problem as n 12 is revealing: when n = 2, the constant 
scalar curvature prescription problem is 

Aw + fK=fKe 2 a \ (12) 

where g = e^g. (The quantity \K is the Gauss curvature in dimension 2.) The 
corresponding embedding of the Sobolev class L\ lands in the Orlicz class eL. On 
the sphere, the inequality describing this embedding is known as the Moser-Trudinger 
inequality] its sharp form is due to Onofri [39j. Such exponential class inequalities 
were studied by Adams [1] for domains in Rn, and the transplantation of these to 
manifolds was carried out in detail by Fontana [27], generalizing many special cases 
in the literature. A productive way to think of the Moser-Trudinger inequality and 
its generalization to higher dimensional spheres [5, 21] is as an endpoint derivative of 
the embeddings L2

r <-> L2n/(n-2r) as r t n/2. More precisely, Beckner proves the sharp 
exponential class inequality in [5] by first deriving the the dual inequalities describing 
the embeddings 

L 2n/ (n + 2r ) ^ ^ 2 ^ ( l 3 ) 

differentiating (13) at r = 0 to obtain an inequality describing the embedding L log L «-> 
L_nj2, and then taking the dual of this inequality 

On the sphere Sn the Sobolev embedding and exponential class inequalities have an 
important representation theoretic interpretation: each inequality compares two invari­
ant Banach norms on a (scalar) complementary series representation of SOo(n + 1,1). 
These can be given the following elementary description. 

Recall that a conformal transformation of a pseudo-Riemannian manifold (M, g) is a 
diffeomorphism h : M -> M with h- g = Q,hg, for some 0 < £lh € C°°(M). Here h-
is the natural pushout of tensors under a diffeomorphism ([32], p. 90, Problem 2); on 
covariant tensors like g> h- = (h~1)*. On the infinitesimal level, we have the notion of 
conformal vector fields X, for which Cxg = 2uxg, some ux E C°°(M). An elementary 
calculation shows that the set ctran(M, g) of conformal transformations is a group, 
the set cvf(M, g) of conformal vector fields is a Lie algebra, and we have the cocycle 
conditions 

tthok = fij»(ft • fit), oj[XtY) = XuY - YLJX , (14) 
for all hyk G ctran(M,p), K,V £ cvf(M,p). The connection between the finite 
and infinitesimal notions is made by integrating conformal vector fields to local one-
parameter groups of local conformal transformations. 

Because any conformal transformation can be thought of as a composition 

(conformal change)o(isometry) : (M,g) > (M, Q\g) • > (M,g), 

a conformal covariant D of biweight (a, b) will satisfy 

D(na
hh-<p) = nh

hh'(D<p), 

D(Cx + a->x)<P = (Cx + bux)D(p 
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for any h G ctran(M, <;) and X e cvf(M,#). (If spinors are involved, we need the 
natural extension of ft- and Cx to tensor spinors; see [40] and [35].) 

By the cocycle conditions (14), the maps 

fi£ft • and Cx + awx 

are homomorphisms ctran(M,#) -> AutC°°(V) and cvf(M,#) -> EndC°°(V), for 
each irreducible tensor-spinor bundle V. To make contact with the normalizations of 
Lie theory, we label these maps 

V-f+j(V) a n d Ua_n^j{y) 

respectively, where j (V) is the internal conformal weight of V: if V is a subbundle of 
(*j)-tensors-(^)-spinors, then j(V) =q-p. 

If M = 5 n and g is the round metric, the group G = SOo(n +1,1) acts effectively and 
conformally as follows: view 5 n as the unit sphere 5 n in Rn+1; let x = (XQ , . . . , xn) be 
homogeneous coordinates. Identify S" with 5 n x {1} c Rn+2. If A G G, we can take 
the linear action of A on (x, 1) and then divide by (A(x, l))n+i > 0 to land back in 
5 n x {1}. The homomorphisms uv (on the group level) and U? (on the Lie algebra 
level) are the principal series representations of G. For details on translation to the 
conventional Lie theoretic notation and terminology, see [11], Sec. 2, and [16], Sec. 3.a. 

A standard practice is to study the corresponding (g, K) module. Here g = so(n+l, 1) 
and K = SO(n). Note that the restriction uv |# is independent of r, since SO(n) acts 
by isometries. We denote the common value of these restrictions by uv. This entails 
the use of a smaller section space than C°°(V), namely the K-finite section space 
£(V), consisting of those (p for which span{uv(fc)</> | k £ K} is finite dimensional. 
Alternatively, £(V) may be described as the space of finite linear combinations of 
spherical harmonic sections. 

When no superscript V appears explicitly in the notation, we shall take V to be the 
trivial (scalar) bundle. In particular, £ will be the space and (Ur, u) the homomor­
phisms of the spherical principal series. Note that r may be taken to be complex. The 
(Ur , u) for r G t'R are the unitary spherical principal series; these are the representa­
tions involved in the Fourier and Radon transforms on G/K. (The same can be said 
of the (U? ,uy) for suitable bundle-valued Fourier and Radon transforms; see [17].) 
There is a unique (up to a constant factor) intertwining operator A2r carrying (U_r, u) 
to (C/r, u) for each r. By [16], Sec. 3.a, or [12], Theorem 3.20, A2r has the eigenvalue 

"' -r(f+r)r(f+j-r) UD; 

on Ej, the space of j - - - order spherical harmonics. If § + r € -N, the formula is to 
be interpreted in the sense of analytic continuation (cancelling poles and zeros). Since 
the operator 

B = І A + m 
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has eigenvalue j + (n - l)/2 on Ej, we have 

^-r ( 5 + r )r (B-r+ | ) - (16) 

Note that A\ is just J5, up to a constant factor, and that B is none other than the 
Dirichlet-to-Robin operator for the sphere, viewed as the boundary of the (n + l)-ball. 

Similar statements can be often be made for vector bundles; for example, see [16], 
Theorem 3.1 and [12], Theorem 3.12. 

The pushout of the volume form dvol by an orientation-preserving conformal trans­
formation h is fijjdvol, so the inner product (<p, -42rV>)L2 on £ is (U_r, u)-invariant for 
real r. Indeed, for general r, if X e cvf(Sn, <l), 

(<p,A2rU-r(X)i>)L2 = I <pA2rU-r(X)1>dvol 
Jsn 

= / <pUr(X)A*1>dvol 
Jsn 

= - / A^Cx&dvol) + (f + f) / u>x<p$dvol 
Jsn Jsn 

= - f (V-f(X)<pMdv6i, 
Jsn 

since Ur(X) = £x + (f + r) ux. (w-invariance is immediate, since A2r has a consistent 
eigenvalue (15) on each K-type Ej.) For r real and \r\ < n/2, the eigenvalue ^ is 
positive, so (Ur, u) is unitarizable. These are the spherical (i.e. scalar) complementary 
series representations. 

A key point is that the (Ur, u)-invariant pre-unitary structure on £ is an L_r Sobolev 
norm for r 6 (-n/2, n/2). Indeed, by Stirling's formula applied to (16), 

A2r = T (f + r)"*1 Ar + (lower order) (17) 

as a pseudo-differential operator; the positivity of ^ shows that the resulting norm 
is equivalent to (•, (A + l)r-)L- • 

The sharp Sobolev embedding inequalities, as proved by Beckner, read as follows. If 
d£ is normalized measure on 5n , then 

||/||£2«/(n-2.)(S»,dO < r (f - r) (/, A2rf)L2{SnA) , (18) 

with equality iff / has the form cQ^ r'' for some h in the conformal transformation 
group SO0(n +1,1), and some constant c. 

Note that the conformal transformations are generated by the orientation-preserving 
conformal transformations, together with the isometries. It is also worth noting the 
explicit form of the conformal factors Qh of the sphere. In homogeneous coordinates 
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(#0»• •., xn), the transformations which "pull in the X{ direction" have conformal fac­
tors cosh* + (sinn*)^ as t runs over R To get a general conformal factor, we just 
apply the rotation group SO(n +1) to any of these. 

The £2n/(n"2r) norm is another (U_r, u)-invariant pre-Banach norm on the space £, 
again by the behavior of the volume form under conformal pushout: 

/

, n ,2n/(n-2r) f ti t tt 

\^l h • f\ dt = J(h- |/|2»l(-2r))n^e = J h • (|/|2nl("-2r><e 
The proof of (18) and the statement about extremals is ultimately based on Lieb's 
sharp LP-to-Z/7 estimates for the Riesz kernel operators rA* on Rn [36]; the connection 
is made clear by the diagram 

t 

Ll(S\dZ) > L<(S\dQ 

t >--2r t-4-2r 

Llr(S
n,dt) i 27(5^, df) 

in which p = 2n/(n + 2r), q = 2n/(n - 2r), and the maps i are Sobolev embeddings. 

When r = n/2, we reach the endpoint of the complementary series, and simultaneously, 
the end of the series of borderline Sobolev embeddings. By uniqueness, An is a constant 
multiple of the GJMS operator (recall Examples 1.8) Pn in even dimensions n; (17) 
fixes the normalization at An = P„/r(n). Beckner's exponential class inequality (see 
also [21]) says that 

^(u;, Anu)LHS«A) - log / en{"-Q)di > 0 (19) 
- Jsn 

(where u> = /o;d^), with equality iff ew has the form cQh for some h G SOo(n + 1,1) 
and some constant c. 

The nature of the extremals in both (18) and (19) strongly suggests the interpretation 
of the functions f and OJ being estimated as metrics] namely, the conformal metrics 
gu = e 2 ^ , where / = e^"21^'2. With these identifications, the second term in (18), 
resp. (19) is 

/vol&A1 1^ _ vol&, 
—-— , resp. - nu + log ——. 

\ vol g0 J vol g0 

The value of this interpretation is borne out by the analysis of the extremal problem 
for the functional determinant in the conformal class of the round metric g (Lecture 
3). 
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2.a What are the sharp forms of the Sobolev embeddings L2 «-> L2n/ (n~2r) on arbitrarily 
curved manifolds? Do they involve arbitrarily curved generalizations of the pseudo-
differential operators Air ? (See [23].) 

2.b Widom [52] shows that for the exponential class inequality on S1, the sharp 
constant n/2 = 1/2 can be divided by k + 1 if we assume that ew is orthogonal to all 
trigonometric polynomials of degree < k. Can this be generalized to 5n? I.e., can we 
improve the best constant under the assumption that e^, or e™", is orthogonal to all 
spherical harmonics of degree < kl 

2.c Do bundle-valued complementary series intertwinors give sharp forms of bundle-
valued borderline Sobolev embeddings? 

2.d What are the analogues of (18,19) for CR (tangential Cauchy-Riemann) geometry 
on the odd spheres? 

2.e A principle explored in more detail in [16], Sec. 5 states that "smaller" bundles 
generally have wider complementary series. Assuming a positive answer for 2.c, what 
happens to the Sobolev embeddings that are "beyond the fringe" of the narrower 
complementary series? 

Lecture 3: The functional determinant 

It is perhaps surprising that elliptic differential operators like the Laplacian A on an 
n-dimensional Riemannian manifold have an associated quantity that deserves to be 
called a determinant. Indeed, the eigenvalues of the Laplacian grow at the asymptotic 
rate Xj ~ const • j 2 / n [28], so the product of the Xj is badly divergent. 

However, if A is a finite square positive symmetric matrix with eigenvalues Xj, and 
CA{S) is the complex function £) Aj ' , then (^(0) = -logdet A. This can be used to 
generalize the determinant to the situation in which A is an operator like the Laplacian. 
Suppose A is a formally self-adjoint differential operator with positive definite leading 
symbol on a Riemannian vector bundle V over a compact, n-dimensional Riemannian 
manifold (M,g). Then necessarily A is elliptic, and the order of .A is an even number 
It. (To avoid trivialities, we always assume £ ^ 0.) The eigenvalues Xj of A are 
bounded below (though a finite number may be negative), and Xj ~ const • j 2 / / n . We 
define the zeta function of A by 

The range of summation and the absolute value signs are just artificial devices to 
handle the possibility of zero and negative eigenvalues. We could also use, for example, 
-CA>O ^7*' w m c n differs from our ^(s ) by an entire function of s. Our conventions 
in tnis regard affect later formulas, but have no conceptual effect on the problems we 
consider. 
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The eigenvalue growth rate shows immediately that (A(s) is holomorphic in the half-
plane {Re(s) > n/2£}. There is also an analytic continuation to a meromorphic 
function on the complex plane, with isolated simple poles. The best way to see this is to 
use the small-time asymptotic expansion of the heat operator trace. Let / G C7°°(M); 
then 

1VL2/e-M-at(A,/)^-n)/2/, n o , 
where 

ai(A,f)= f fUi[A]dvo\9. (20) 
JM 

Here Ui[A] is a local invariant of the symbol of A, and the UQdd = 0. More specifically, 
Ui[A] is a polynomial in the total symbol of A, with coefficients that depend smoothly 
on the leading symbol. 

This is actually more information than we need just to describe the operator trace 
Tx L*z~tA- The formula involving the auxiliary function / , however, is useful in de­
scribing the variation of the heat operator trace and other spectral quantities. In 
particular, it will be necessary in the study of the conformal variation of the func­
tional determinant. 

The heat operator trace asymptotics and the zeta function are related by the Mellin 
transform, 

^)'ml"'"'ғm 

Indeed, this provides the required analytic continuation of (A(s)> and shows that 
r(s)C.4(s) has, at worst, simple poles at the (n-i)/2£, for i G 2N. (See, e.g., [19].) In 
particular, (A(s) is regular at s = 0, and we may define the determinant by 

| det A\ = e"^(0), sgn det A = (-1)#<A'<0>. 

Now let D be a conformal covariant of biweight (a, 6), and suppose that A = Dh 

is formally self-adjoint with positive definite leading symbol for some h G Z+. For 
example, we could take D = A = Y, the conformal Laplacian; or we could take 
D = y , the Dirac operator, and A = y 2 . We shall be interested in how det A 
varies within a conformal class {gu = e^go \ u G C°°(M)} of metrics. Adopting the 
convention that all objects computed in the metric gu will bear the subscript w, what 
we wish to compute is 

=£• w 
It will be convenient to have some mechanism for ignoring uniform scale changes; i.e., 
conformal factors u that are just constants. One way to do this is to demand that 
vol(<7u,) is always 1. A better way, in terms of making contact with sharp inequalities 
like (18,19), is to renormalize the zeta function. Since the operator root D of A has 
conformal biweight (a, 6), it has in particular level b - a, in the sense that Da = 
e-(&-a)a£)o £or a c o n sta nt. A thus has level ft(6 - a), and the level agrees with the 
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order 2£, by considerations of naturality and positive definiteness of the leading symbol 
(see [11]). As a result, the function 

ZA,9(S)=Vo\(9)-
2t"nCAs(S) (22) 

is insensitive to uniform scaling. What we shall calculate is the functional 

V(A,go,u>) := - . ^ ( 0 ) + .^(0). (23) 

The information carried by (23) is equivalent to that carried by (21). In fact, 

2£ 
^,9(0) = a(0)--Os(0)logvol(ff). 

n 
Thus (23) is the log of (21) if vol(^w) = vol(<fo). Note that although the choice of 
a background metric go is prominent in our formulation, this is just a convenience: 
one could instead speak of determinant quotients within a conformal class, without 
reference to g0, by forming the appropriate two-metric functional. Our use of the 
background metric is analogous to the use of an origin o to represent a two-point 
kernel function K(x,y) as a one-point function K(x,o), in the presence of a transitive 
symmetry group. 

A key issue in dealing with the functional V(A,g0,u) is the 

Conformal Index Theorem 3.1 [18] Under the assumptions above, the quantities 
0,(0), QA,g •= dimAf(Ag), an(Ag), and #{Aj < 0} are invariant under conformal 
change of metric. Here an(Ag) := an(Ag, 1) is the integrated heat invariant from (20), 
and the Xj are the eigenvalues of A, counted with multiplicity. The first three of these 
invariants are related by an(Ag) = C.4fl(0) 4- qA,g. If w € C°°(M), then 

(d/de)ai(AEU>, 1) = (n - i)ai(A£Uf, u). (24) 

Note that the conformal invariance of an(Ag) is really the special case i = n of (24). 
This equation may be viewed as a formula for the conformal variation of the integrated 
heat invariant a*(A), or, from the opposite point of view, as a formula for the conformal 
primitive, or integral, of the local heat invariant ai(A, / ) , provided i 7- n. When i = n, 
the "missing primitive" for an(A,f) is supplied by the functional determinant: 

Polyakov Principle 3.2 [19] Under the assumptions above, 

(d/de)CAJO) = It I an(Aeu,w) - £ ^ W ( | ^ | 2 dvol ) e u J , (25) 

wnere {ty} is an orthonormal basis of the null space of A. 

It is easy to see that the last term in (25) has its own conformal primitive: take the 
variation in the direction of another conformal factor 77, and verify that the result is 
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symmetric in u and 77. (One first uses the conformal covariance of D to show that if 
{ipj} is a basis for M(Dg) = J^f(Ag)) then {Qraipj} is a basis for J\f(DQ2g) = Af(An2g).) 
The formal calculation giving the Polyakov Principle (ignoring analytic issues and the 
effect of a possible null space) goes as follows: let D = Deu,. Then 

iй-m-é MЪD-h,)=lL{-ksЋ &}"-*"') (26) 

But the conformal covariance relation for D gives 

d 2V 
j-D = -(b - a)uD + a[D, M] = — T ^ + a [ A Ml-
as n 

(We apologize for the notational collision resulting from using square brackets both 
for the commutator and the multiplication operator.) Thus the quantity in (26) is 

— (2£sTr uD~h5) = 21 • Tr uD~hs = 21 • TV LJA"' . 
ds 5=0v ' 

Here we have used various trace identities, and the regularity of the local zeta function 
TrfA"8 at s = 0. For the full justification, see [18, 19]. 

Knowing the conformal variation of CAW, w e c a n integrate along the conformal curve 
of metrics g£u, e £ [0,1], to get dw(0)~Cio(0)- To do this explicitly, one needs explicit 
knowledge of the quantity an(Ayf) appearing in the variational formula. The combi­
natorial complexity of the heat invariants ai increases quickly with t; since here we are 
interested in i = n, only low dimensions n will be immediately accessible. When n is 
odd, an(A, f) vanishes, so the only contribution to the variation of the determinant is 
the relatively trivial one due to the null space. Thus the determinant as a functional on 
a conformal class is uninteresting in odd dimensions. (For odd-dimensional manifolds 
with boundary, however, the conformal behavior of the determinant is interesting: the 
a0dd , instead of being 0, are integrals of local invariants of the boundary.) 

In fact, the process of integrating in e is especially simple, given explicit knowledge 
of the an: by the scale homogeneity of the heat invariants together with qualitative 
results on the conformal variation of local invariants (see, e.g., [7], Proposition 1.8), 
we know that Un(Aeu))(dvo\)euJ is polynomial in e. (The exponential-in-e weight factors 
for Un and dvol cancel.) The computation can be streamlined further by computing 
conformal variations of quantities that might appear; this "table of variations" may 
then be used in reverse as a "table of primitives". Slightly more sophisticated is 
analytic continuation of (24) in the dimension n; this involves setting up the calculation 
in such a way that all coefficients one meets are guaranteed to be rational in n. Both 
of these streamlined approaches are discussed in detail in [11]. 

The lowest even dimensions are, of course, 2, 4, and 6. Explicit information is available 
in each of these dimensions; for n = 2, this is the classic work of Polyakov, Onofri, 
and others [44, 45, 39]. The formula for n = 4 was given in [20], and a formula for 
conformally flat 6-manifolds was given in [11]. On the spheres in these dimensions, 
these formulas, together with the sharp inequalities in [5], immediately give extremal 
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results for the determinant. We shall concentrate on the case of the sphere for the 
remainder of this section; see [41, 42, 14, 23] and the references mentioned just above 
for results on other manifolds. 

Theorem 3.3 [39] If gQ is the round metric on S2, 

-V(A,gQ,u) = V(f2,9o,u) = \ f - l o g ^ e 2 ^ - ^ + ^2a;(Aoa;)^ . 

Thus as a result of (19), V(A,gQ,u) is maximized, and T>{f2,g0,u) is minimized, 
exactly when ew is a multiple of some conformal transformation factor Q,h • Another 
way of saying this is: Any extremal metric conformal to and having the same volume 
as go is diffeomorphic to go. 

Note that (19) is Onofri's sharp form of the Moser-Trudinger inequality in the case 
n = 2, and that the operator A2 that appears there is just Ao. In fact, Onofri proved 
more. Dimension 2 is special in that the space of metrics, modulo conformal changes 
and diffeomorphisms, is a finite-dimensional object. The just-mentioned quotient of 
the space of metrics on S2 is a one-point space: one can get from any Riemannian 
conformal class on S2 to any other via a diffeomorphism. Since spectral invariants 
are diffeomorphic invariants, one can assert that the scale-normalized functional deter­
minant of Ag is maximized, and that o / y minimized, exactly at the metrics c(p*go, 
where <p is a diffeomorphism of S2 and c is a positive constant. As a result, any 
extremal metric with the same volume as g0 is diffeomorphic to go. 

In dimension 4, new phenomena turn up. There is no hope of cutting across confor­
mal classes, at least in such an elementary way as in dimension 2, so results on S4 

are confined to the standard conformal class (at least so far). As described above, 
the computation of the determinant formula begins with a computation of the heat 
invariant Un, here C/4. If A is a geometric, orientation-insensitive operator (with no 
special conformal behavior assumed), UA[A] must be a linear combination of K2, |r|2, 
|C|2, and AK, where C is the Weyl conformal curvature tensor. If A = Dh is a power 
of a conformal covariant as above, then the Conformal Index Theorem imposes one 
linear relation on the coefficients. A way of stating this relation that has turned out 
to be extremely productive is the following: 

UA[A] = PM]\C\2 + p2[A]Q + p3[A]AJ. (27) 

(Recall the definition of the Paneitz quantity Q from Example 1.6.) Using Q in the 
basis for the level 4 local 0(n)-invariants was one of the main ideas in [20]; in the 
process of integrating along conformal paths, it inevitably brings the Paneitz operator 
P explicitly into the determinant formula. 

Theorem 3.4 [20] If go is the round metric on S4 and A is as above, then 

-V(A,g0,u>) = ^ (-logJste^-M+\Js^(P^)d^j 
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i h l {(J-dm\)u-(J-dml)0}. 
* J54 

Note that the ft term above is exactly the quantity asserted positive by the n = 4 
case of the exponential class inequality (19), and that the operator At appearing there 
is |Po = |A 0(A 0 + 2). A less obvious point is: 

Remark 3.5 The ft term in Theorem 3.4 is estimated by the sharp Sobolev em­
bedding inequality (18), with n = 4 and r = 1. Indeed, with these parameters, 
A2r = A2 = Y0/2 = (A0 + Jo)/2. By (18) and the Schwartz inequality, if / is nowhere 
zero, then 

2 | |/ | | 2 < / /(A0 + J0)/^<||/2||2|^- + Jo| . 
Js* ' / l 2 

Taking / = ew and using the Yamabe equation (10), we have 

2 < 
\Yoeш 

2 

Є^JoЈ 

\ eш 
2 e" 1 =(Ĺ 

v 1/2 

(ЛШ 

Here (df)w = dvob/vol^o)- Thus the L2 norm of J, with everything computed in 
the metric e2a,^0 > is minimized exactly when ew is (up to a positive constant factor) a 
conformal transformation factor f̂ . 

Remark 3.6 A more general form of the argument in Remark 3.5 goes as follows. 
Suppose n is even, and let r be an integer < n/2. Put S = (n - 2r)Q2r/2, so 
P2r = P + 5, where P annihilates constants. Then if / is nowhere zero, (18) and 
Holder's inequality give 

ll/|lw(.-2r)< / /(i,0 + So)/de<||/2 | |-/(»--r) 
Jsn 

p°Us 
— + 5 0 

n/2r 

Taking / = e^n 2rW2 and using the prescription equation (8) (as we are entitled to do 
in the conformally flat case), we get 

2r/n 

5 0 < 
e(n+2r)a, /2£ 

e(n-2r)u/2 = ([ {\s\-"-dt)u) 
n/2' \ jS» / 

Note that S0 = (P2r)ol = r(f + r) / r(f - r) > 0, so the Ln '2r norm of 5, with 
everything evaluated in the metric e2w<7o. is minimized exactly when ew is a positive 
constant times a conformal transformation factor fin. This more general inequality 
can already be put to use in dimension 6; see (28) below. 

Theorem 3.4 and Remark 3.5 combine to show that the functional V(A1go)u) is 
extremized exactly when eu has the form cftft, provided the universal constants (32[A] 
and Pz[A] have the same sign. When A is the conformal Laplacian Y or the square 
y 2 of the Dirac operator, the signs actually do agree: - for Y, and + for y 2 . (See 
[20] for exact values. Note that the /52 of the current discussion is half of the ft in 
that paper.) We have: 
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Theorem 3.7 [14] If g0 is the round metric on S4, then V(Y,g0,u) is minimized, 
and V(f2, g0, u) is maximized, exactly when eu is a multiple of some conforms! trans­
formation factor Q,h. As a result, any metric which is extremal in the conformal class 
of g0, and has the same volume as g0, is diffeomorphic to g0. 

It seems rather lucky that the signs of ft and ft should agree for these very basic 
choices of A. This luck persists in dimension 6 [11], and for boundary problems in 
dimension 4 [15, 22]; in both cases several constants (not just 2) must have the same 
sign in order to couple the inequalities involved. There are also indications that in the 
problem of cutting across conformal classes, in which the sign of ft begins to play a 
role, that this sign "is what it needs to be" to give a chance at some results. 

However, an "unlucky" example is also known. The Paneitz operator P in dimension 
n = 4 has ftft < 0. (See [13] for exact values.) This, of course, does not rule 
out an analogue of Theorem 3.7 for the functional V(P,g0,u). It shows, however, 
that this functional is more delicate than the ones corresponding to Y and y 2 , and 
that analysis of this functional will involve comparison of the gaps in the exponential 
class and borderline Sobolev embedding inequality. Given the formula for V(P, g0,u), 
one can compute rather easily that at the round metric u = 0 (which is of course a 
critical metric for both functionals, that with coefficient ft and that with coefficient 
ft), the second variation of V(P,g0,u) is positive semidefinite, and positive definite 
in directions not tangent to curves of conformal transforms of the round metric. Thus 
a reasonable conjecture is that V(P,g0,u) is minimized at the round metric and its 
conformal transforms. 

A calculation on S6 [11] gives positive results for the extremal problems involving 
V(Y,g0,u) and V(f ,g0,u). Some invariant theory, together with the Conformal 
Index Theorem 3.1, shows that for operators A as above, our problem is to extremize 

ai[A) {- log J^ e^ds + 1 £ «((P«Mde} 

+a2[A] f (\dJM)u + a3[A\ [ ((\dJ\2 + 2J3)dO. 
Js« Js« 

+a<[A] J^ ({\dJ? + j J3 - j J|Vf) d ^ , 

where the at[A] are constants. The constancy of the conformal index allows us to 
remove the invariant tr V3 = VxjVjkVki, at the cost of shifting the whole expression 
by a constant. Thus for suitable a{[A], the above is an expression for V(A, g0, o;)+c[A], 
for some constant c[A]. 

The expression with coefficient a\[A] is nonnegative, and vanishes exactly at conformal 
transforms of g0, by Beckner's Theorem. The expression with coefficient a2[A] is easy 
to analyze: it is nonnegative, and vanishes iff Ju has constant scalar curvature. By 
Obata's Theorem [38], Ju has constant scalar curvature iff^, is a conformal transform 
of 00-
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The expression with coefficient a3[A] brings us in contact with the Yamabe number 

6-.,(*)-. inf Z^mi. 
uec°°(s*) ||«|||3(<f0 

This is a conformal invariant, meaning that we can evaluate Y and d£ in any of the 
metrics gw and get the same answer. In fact, if 

^ ' ; nun2 

then y(u + n,u) = y(u,e2r)u), by the conformal covariance relation for Y (Example 
1.1 above). Working in the metric &, and choosing u = Jw , we get 

£ ((|dJ|2 + 2J3) d*)u > 6 (JjWM).) > 6J0
2 = 54. (28) 

The second > in (28) comes from Remark 3.6, with n = 6 and r = 1. If g„ has the 
form ft • <lo for ft in the conformal group, equality holds in each >. But by Remark 
3.6, equality can only hold in the second > if gu = ft • g0. Thus the expression with 
coefficient a$[A] is at least 54, and has the same extremals as the a\ and a^ terms. 

The estimate on the a± term features the Wtinsch operator F = F2.2 described in 
Example 1.7. It is somewhat analogous to the last estimate, in that F is applied to 
the Einstein tensor b = V — Jg/n. The idea, which yields an inequality for n > 
5 is as follows. F has positive definite leading symbol, so it is reasonable to ask 
whether it is positive definite, in the sense that (F<D, (D)̂  > 0 for all smooth trace-free 
symmetric tensors ip, with equality iff (D = 0. (Note that the trace-free condition is 
conformally invariant.) Since F is conformally covariant, the positive definiteness of 
F is a conformally invariant condition: it holds at g„ = e2u)go if and only if it holds 
at go. By analyzing bundle-valued principal series representations of SO0(n + 1,1), 
one finds that F is indeed positive definite on (Sn,go) for n > 5. In particular, 
((Fb)aJ,6aJ)L2((^)w) > 0, with equality iff b = 0. By Obata's Theorem again, 6 = 0 
iff pa, is a positive constant multiple of a conformal transform of go. This gives a 
sharp inequality in dimension n > 5, essentially describing the Sobolev embedding of 
L2(TFS2) into L2"/("-2)(TFS2) on the sphere. (See [11] for details.) 

In dimension n = 6, the expression with coefficient a±[A] is just ((Fb)w, ̂ )L-((< )̂U>) 
shifted by a multiple of the conformal index. The upshot is that the a4 term too attains 
its minimum exactly at conformal transforms of the round metric; the minimum value 
is 108. 

To sum up: 

Theorem 3.8 [11] If tie at[-4], i = 1,2,3,4, are ail nonnegative (resp. nonpositive) 
and at least one is nonzero, then V(A,go,u) is minimized (resp. maximized) exactly 
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at positive constants times the metrics g^ = h- g0) for h a conformal transformation 
of(S«,g0). 

All cii[Y] are negative, and all a,[y2] are positive; see [11] for exact values. Thus we 
have: 

Theorem 3.9 On S6, V(Yy g0, OJ) is maximized and V(f2, g0, u) minimized exactly 
at positive constants times the metrics gu = h- g0. As a result, any metric which is 
extremal in the conformal class ofg0, and lias the same voiume as g0, is diffeomorphic 
tog0. 

Open problems: 

3.a Let P be the Paneitz operator. Are there critical metrics for V(P,g0iu) other 
than constant multiples of the round metric g0 and its conformal transforms h- g0i h 
in the conformal group of (S4,^)? 

3.b For the conformal Laplacian Y and the square of the Dirac operator, results on the 
extremal problem for the functional determinant obtained so far give a "checkerboard" 
pattern: 

• Y y2 

dim. 2 
dim. 4 
dim. 6 

max mm 
min max 
max min 

Should this be expected to continue in higher dimensions? (See [11], Sec. 8 for an 
inconclusive discussion.) 

3.c The sphere 5 n , equipped with its standard conformal class, is a "model space" 
for conformal geometry, in the sense that it has a conformal diffeomorphism group, 
namely SOo(n +1,1), of the largest possible dimension. Similar things can be said of 
three other series of geometries, spaces, and groups: 

space geometry transformation gгoup 
(real case) 5 n conformal SO0(n + l,l) 
(complex case) 5 2n+l CR SU(n + l, l) 
(quaternionic case) g4n+3 Sp(n + l,l) 
(octonionic case) S 1 5 -^(-гo) 

The last "series" consists of just one space/group. (See [16] for details.) In particular, 
CR, or tangential Cauchy-Riemann geometry is the subject of intense current interest 
among analysts. How does the extremal problem for determinants of operators natural 
to these geometries, for example the CR sub-Laplacian, interact with harmonic analysis 
on these spaces? In particular, what are the CR inequalities analogous to (18) and 
(19)? Do they estimate the determinant of the CR sub-Laplacian? 
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Epilogue 

In dimension 4, the Paneitz operator P and Paneitz curvature quantity Q may be 
important in Quantum Gravity. Starting with Riegert [46] in 1984, attempts have 
been made by physicists to include contributions from P in an action functional for 
gravity. Because of the interplay between P and the Maxwell equations, and thus the 
Yang-Mills equations, a theory based on P would seem to be apt for natural coupling 
to matter field equations. 

For various reasons, it has been difficult to construct a quantum theory starting from 
the classical Einstein equations for the metric. Thus, despite the beauty and simplicity 
of the Einstein functional, the search for an action which incorporates the right classical 
features, and in addition produces produces a quantum theory, goes on. One of the 
themes of the work described in these lectures is uniformization - driving the geometry 
to a uniform state by requiring that some natural functional take an extreme value. 
This is typically associated with a constant curvature condition - the Polyakov formula 
(25) essentially says (among other things) that the curvature quantity an(-4,u>) should 
be constant at a conformal critical metric. Gravitational theories have the same general 
character: the Einstein equations, like the Yamabe and conformal relativity problems 
mentioned under Example 1.1 above, are all uniformity conditions on the geometry 
(at least before coupling to possible matter fields). Different uniformity conditions 
typically have solutions in common, so one need not lose the familiar solutions to 
Einstein's equations by using an alternative action functional. 

The Einstein equations assert a uniform state for the Einstein tensor in empty space, 
or assert that the Einstein tensor compensates the nonuniform effect of matter fields. 
One way to retain some of the content of the Einstein equations in choosing alternative, 
higher order equations, is to require that the new action functional be improved by the 
Einstein flow, a variant of the Ricci flow studied by Hamilton, De Turck, and others. 
Some work in this direction is currently being done by Matt Gursky; the paper [31] 
is good background for this topic. Specifically, one could ask whether any conformal 
metric n2^0 on Sn having constant Paneitz quantity Q, for n > 4, is diffeomorphic to 
9Q. 

The analogous statement for K (and n > 3) is Obata's Theorem (recall Lecture 3), 
and its proof goes as follows. Let b = V - Jg/n be the (trace-free) Einstein tensor. 
Then with all covariant derivatives and curvatures computed in the metric g = Q?go, 

^ = -n- 1 |n w + i(An)^iJ, 

0<Jn\b\2 = -Jbvfaij + ̂ AtygiA 

= -Jb%ij 

so 
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= /*w 
Since the "other" Einstein tensor E = V - Jg is divergence free and J is constant, b 
is divergence free, so the last line above equals 0. We conclude that 6 = 0, whence g 
has constant sectional curvature (since the Weyl tensor C also vanishes by virtue of 
conforma! flatness), and thus g is diffeomorphic to go • 

A rationale for the appearance of the Einstein tensor(s) in this proof is as follows. The 
total metric variation of a curvature quantity H is the contravariant 2-tensor T = T[H] 
for which 

g=n => (iHdvolg) = jT^ijdvolg. 

Here the bullet • denotes the variation operator (d/ck)|e=o for a smooth (not necessarily 
conformal) curve of metrics g£. T is automatically divergence free. For the scalar 
curvature K, the total metric variation T[K] is, up to normalization, the divergence 
free Einstein tensor E\ this is, in fact, the derivation of the Einstein equations. The 
Obata argument may be seen as a way to take advantage of the fact that the Einstein 
flow tends to "evenly distribute" the total scalar curvature, and to "improve" (lessen) 
the functional f K. (Note that |6|2 = Etjb{j, since 6 is traceless.) 

For n > 5, to work with the Paneitz quantity instead of the scalar curvature, we may 
take the total metric variation T = T[Q] and compute / SIT**by . Here the integrand 
is not manifestly nonnegative, as it is in the Obata argument; nevertheless, careful 
integration by parts, together with some hard analysis (work of Gursky) shows that 
this integral may be written as a sum of nonnegative terms; when all these vanish, we 
must be at a metric diffeomorphic to the round one. When n = 4, T[Q] vanishes, but 
rational continuation in the dimension still makes an argument possible, using 

T[Q] 

n - 4 

in place of T[Q]. The positivity result may be interpreted as saying that, roughly 
speaking, the Einstein flow improves the functional / Q, and evenly distributes the 
total Paneitz curvature. 

It is also possible to investigate the same Obata type question with other local invari­
ants in place of Q\ specifically, quantities like U\[P]. (See [13] for an exact formula for 
this invariant.) The relevance of the constant c74 condition in dimension 4 comes from 
the Polyakov formula: C/"4 = const is the Euler-Lagrange equation arising from varying 
the determinant (and either fixing volume, or compensating for volume dilation as in 
(22)). As a result, a successful Obata argument in the case of U^[P] would say that 
^(-°..9o .^) has no critical points a>, other than the "obvious" ones, for which e^go is 
diffeomorphic to g0. 

In another direction, Carlo Morpurgo [37] has discovered that the dual to Beckner's 
exponential class inequality (19), the logarithmic Hardy-Littlewood-Sobolev inequality 
(see [21]), also appears in spectral extremal problems. This inequality describes the 
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embedding of the Orlicz class L log L in I?_n ,2. Specifically, the rightmost pole of the 
function ZA^S) from (22), for suitable A, is at s = n/2£. "Subtracting the pole", i.e. 
taking 

\l (*\ ReSs=n/2lZAlg{S)' 
AAtg(S) ~ s-n/2£ J5=n/2,' 

yields a spectral invariant whose dominant term is the difference between the two sides 
in the log HLS inequality. Morpurgo has since related other quantities encoded in the 
zeta function to other inequalities in the harmonic analysis of the sphere (work in 
progress). The basic idea is to attempt to estimate ZA,Q{S) as a function of g within a 
conformal class, for generic real s, and make conclusions for the case in which n/2 - s£ 
is a nonnegative integer. 

An open problem: 

For which divergence free symmetric 2-tensor local invariants T at a given level h can 
/ Q,Tijbij be bounded (on either side) by 0? Here we work, as above, in a metric SI2go 
conformal to the round metric on the sphere. For which local scalar invariants H does 
T[H] have this property? What happens when we ask the same question for manifolds 
other than the sphere (with, say, locally symmetric background metrics), especially in 
the non-conformally flat case? 
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