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RENDICONTIDEL CIRCOLO MATEMATICO DI PALERMO 
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Singleton Representations of Ug(so(3,2)) 

V.K. Dobrev 
P. Moylan*)**) 

The singleton representations of Uq(so(3,2)) (including roots of unity cases) were 
constructed by us in [1]. Here we give more detailed and explicit results about these 
representations when q is not a root of unity. In particular, we introduce orthonormal 
bases in the representation spaces, and we give explicit formulae for the action of the 
generators of Uq(so(3,2)) on these bases. 

1. In a previous work [1] we have constructed positive energy representations of 
the q-deformed anti de Sitter algebra 17^(50(3,2)) [2] with \q\ = 1, from a modern 
approach [3]. This approach is based on a Verma module construction, and it involves 
elimination of singular (or null) states associated with the Verma modules, in order 
to obtain the irreducible and, in some cases, infinitesimally unitarizable subquotient 
representations [3]. In paper [1] we gave a detailed description of this construction 
for the singleton representations at both roots of unity and the generic cases (q not a 
root of unity). Here we obtain additional and more explicit results for the singleton 
representations when q is not a root of unity. 

Our definitions and notation for q numbers are the following: [m]q = q i/2~
?_.i/a • 

The g-factorial is [m]q\ = [m]q [m - l ] g . . . [1] and [0]g! = [1]<~! = 1. For 
the definition of the g-gamma function Tq(x) see [4]. We use the following facts: 
Tq(n) = [n - l]g! and Tq(x + 1) = [x]q Tq(x) . The g-Pochammer symbol 

(a)n = ^rJSf1 ta ako lucd below' 
We recall the q-deformation Uq(so(b,W)) is defined as the associative algebra 

over (Fwith Che valley generators Hj, Xf (j = 1,2) and relations [1], [2]: 

[Hj,Hk] = 0,[H;.,X±] = ±ajkXt (j,k = 1,2), (la) 

[Xf, K-7] = 5jk[Hj]q. (Ql = q, q2 = q2) (j, k = 1,2), (16) 

(Xt)3Xt - IMXtfxtxt + P)qXtXt(Xt)2 - Xt(Xt)3 = 0, (lc) 

*) Presented by this author at the 16th Winter School "Geometry and Physics", 
Srni, Czech Republic, 13-20 Jan. 1996. 
**) J.W. Fulbright scholar on leave of absence from the Pennnsylvania State Universit 
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(XtfXt - [2}q,Xtxtxt +Xt(Xt)2 = 0, (Id) 

where (a,jk) = 2(aj,afc)/(aj,aj) (j, k = 1,2) is the Cartan matrix of so(5,(E). ai 
and a 2 are the simple roots with products: (ai, ai) = 2, (a2, a2) = 4, (ai, a2) = —2. 
The non-simple positive roots are a3 = a i + a 2 and a* = 2ai+a 2 . The Cartan-Weyl 
generators corresponding to these non-simple roots are [1]: 

Xf = ±q^{q^Xfxt - q^Xfxf) , [2}qXf = ±[Xt,X±] . (2) 

We define Hz = iiIi+2.ff2, H4 = Hi+II2. All commutation relations for f/g(5o(5, W)) 
now follow from the above definitions and relations; in particular, 

[X+, X3) = [H3)q, [Xt, X4"] = [H4]q, . (3) 

We define the real form Uq(so(312)) of C/g(5o(5, d)) as in the 5 = 1 case [5]. The 
generators of LJg(so(3,2)) are given by the following expressions: 

M2 1 = Hx/2, M31 = \(X+ + X{), M32 =
 %-(X+ - Xf) , (4a) 

M04 = \(Hx + 2H2), M30 = -\(X+ -X3), M34 = ~(X+ + X3) , (46) 

M10 = \(Xt + X2- + X+ + X4"), M20 = i(X+ - X2~ - X+ + X4-), (4c) 

M4 1 = i(X+ -X4- + X+ -X2"), M42 =
 l-(X+ + X4~ -X + - X 2 ) . (4d) 

For |g| = 1 the generators in (4) are preserved by the following antilinear anti-
involution w of Uq(so(5,(P)): 

U (Щ) = Щ (j = 1,2), w(X+) = X-, w(X+) = - Xï (к = 2, 3, 4). (5) 

The center of *J,(so(3,2)) is, in the classical case (q = 1), generated by two 
Casimir operators, and we have explicitly [6]: 

£>2 = Ml + M2
2 + M2

3 + M0
2
x + M2

2 + M2
3 

- (Ml + M2
2 + M2

3 + M2,) 

= - Ml + Ml + Ml + M2
3 + Q2, (6a) 

I>4 = Q4 - I ]T ^ i j k M4. Mjfe ] + 
\i j k = 1 / 
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3 i i 
+ ] C (€< j k {- MІO Mjk + M4k M0j})(ei i m {-Mi0 Mtm + M4t Mom}), (66) 

€ m — L 

l J K L Q ч u -~J* • "чк^ujjA-nm lл * u ш 

where 
C?2 = M0

2i + M 2

2 + M 2

3 - M 2 

and 

Q 4 = (M12 M30 + M23 Mю + M31 M 2 0 ) 2 

(7a) 

(76) 

M 2 = M 2

2 + M23 + M31 *s * u e square of the angular momentum, and D2 and 
D4 are the 2nd order and fourth order Casimir operators of 50(3,2), respectively. 
(eijk is the totally antisymmetric symbol.) The q analog of M 2 is well-known[4]: 
M$ = [\(Hi - l)]g + -X"i"-XT - \ ; however, as far as we know, there are no 
explicit results on q analogs of D2 and D4. An expression, which is the analog of D2 

for Uq(so(by W)) is given in [7], but it does not seem to be of much use for c7g(so(3,2)). 

2. The singleton representations of Uq(so(3,2))i which we have described in 
[1] are lowest weight representations. The name "singleton" comes from the fact 
that the reduction of these representations with respect to a Cartan subalgebra (the 
Cart an subalgebra having basis Hi and H2) is multiplicity free. For q = 1 there 
are two such representations called Di and Rac. These representations are unitary, 
irreducible representations of the univeral covering group SO0(3,2)' of 5O0(3,2), and 
both of these representations are characterized by the values +5/4 and 0 for D2 and 
D4, respectively. They can be traced back to Majorana [8], and they have also been 
studied by Dirac [9], Evans[10], Flato and Fronsdal [11] and others. Some authors use 
singleton representations of SO0(3,2)' to mean representations of 5O0(3,2)', which 
have a multiplicity free decomposition with repect to the maximal essentially compact 
subgroup, SO(2)'M 4 o x SU(2)M{J [12], [13]. Many such representations, although 
unitary, do not have positive energy, and little is known about their q deformations. 

Denoting the lowest weight vector by |A > = \E0 m0 >, we define the singleton 
representations as follows: 

M04 |A > = £0|A > , Af2i|A > = m0|A >, (8a) 

K-|A>= o (k = l, 2, 3, 4) . (86) 

For the q analog of the Rac: E0 = | , m0 = 0; and for the q analog of the Di: 
E0 = 1, m0 = —\. The q deformed Di and Rac are obtained as subquotients of 
these lowest weight representations and are characterized by the following null state 
vanishing conditions (for q not a root of unity) [1]: 

^ . 0 > = 0, ((Xt)2 - qH2]lX+Xt)\\,0 > = 0 (Rac); (9a) 

(X+)2 |l, - \ > = 0, ((Xt - (1 + q)XtXt)\h ~\ > = 0 (Di). (96) 
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The representation space for the Rac is given by [1]: 

H0 = £.s.{X+jX+€X+k\A > | j , k = 1, 2,. . . , c = 0, 1}; (10a) 

and the representation space for the Di is [1]: 

Hi = £.s.{X+jX+kX+e\A > | j , ft = 1, 2, . . . , € = 0, 1}. (10a) 

/.s. means linear span. We refer to the q deformed Di and Rac simply as Di and 
Rac. Using u and the X+ it is possible to construct a contravariant hermitian form 
( , ) on each one of these representation spaces [1]. With respect to this form the 
lowest weight vector has length one: 

| Л > | | 2 :=- ( |A>,|A>) = 1, 

and the Mij are hermitian i.e. 

(MijV.w) = (v.Mijw) (ij = 0, 1, 2, 3, 4) 

for all vectors v, w in the given representation space. 

In [1] we have determined the "norms" of the basic states given in eqns. (10a) 
and (10b). They are (with correction of some typographical errors): 

IIX4

+%+«X2

+*IA>II2 = [ a + i r ^ w n t a - U v n i i - L = 
o=l 6=1 

= [2k + l}q\j}q,\[k}q,\(l + e)f{ht (Rac); (Ha) 

аnd 

\\Xt'X+kXt%>\\2 = \j}qil[k}qi\f[[a-l + e}qif[[b+l-e}ql = 
a=l 6=1 

= \J}Ak}?K\ + t)f(l-*)( Pi)- (lib) 

Note that, although they are never zero, only for q = 1 are these "norms" positive. 
(q is not a root of unity!) Hence only for q = 1 does ( , ) define a scalar product 
on the representation space [5]. 

Now we define £ = k + j + e, m = j - k for the Rac, and £ = k + j + | , 
m = j — k -f e — T[ for the Di. Then we see that for the Rac £ and 
m take the values £ = 0, 1, 2 . . . , - / < m < £ (m integer ) , and 

j = §(/ + m - c) , * = W ~~ m " c) • F o r t h e D i w e h a v e t h a t ' 
and m take the values J? = 5, § , . . . , - / < m < ^ (m half integer ) , and 
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j = §(ť + m — e) , k = \{£ — m - l - f e ) . Normalized basis vectors for 
the Rac are: 

| /m> = | [ / - m ] J [ | ( / + m - e)]*\[\{t - m - e)]j\} * x 

{(\ + e)f(* + . _ ., (5)f(l _ m _ e)}" *4+JX+%+fc|A > • (12a) X 

Normalized basis vectors for the Di are 

_ i 

\ím> = j[*-m];[i(Z + m - e ) ]ť ! [ | ( / - m - e ^ l } ' x 

x {(5 + «)f(l + m . ., (5 " 0f(l _ m _ x + ., P J t í^XÍ- IA > • (126) 
Theorem: Let \q\ = 1 and q is not a root of unity, then the action of the 

generators H\, H2, Xf, Xf in the Rac representation on the basis \lm > are as 
follows: 

Hi\£m>= 2m\£m> , H2\£m> = (- + i - m)\£m> , (13a) 

Jřf |*m > = a(ť, m; q±l) {[£ Ť m],[(* ± m + l)]g)* |/m + 1 > , (136) 

X ± K m > = j S f t m ; ^ 1 ) ^ - m±l ] , . [ i (* - ( m T l ) + 1)]**) * 

| / ± l m T l > , (13c) 
where a(*,m;g+1) = gM« + m ~ [M-mlmoB^ a n d p^m]q±i) \s Slx^ that 

(3{£,m\q±l) -» 1 as g -* 1 . 

Sketch of proof: (13a) gives the action of a basis (Hi, H2) for the Cartan sub-
algebra of Uq(so(3,2)) on the \£m > basis, and it follows easily from the definitions 
(eqns. (la) and (lb)). In order to obtain the other results we establish by induction 
arguments the following equations: 

X+Xf = q~kX+kXt + [kfcX+Wx} , 

X-L X4 = q X4 Xx , X3 X2 = q X2 X3 . 

We also use 
X+kXť\A > = [2]*«r2*-§x+x+(*-i)|A > , 
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which follows from (1) and the defining relations for the Rac representation (9a). We 
did not succeed in obtaining a very succinct expression for P(l,m]q±l)} and we do 
not write it down here, since use of it is not made in the following. 

3. We háve established by the samé methods a similar Theorem for the Di. In 
fact there are equations for the Di representation identical in form to eqns. (13), 
except that in this čase i and m také half integer values in the ranges stated above 
for the Di, and a(l,m;q±l) and p(£, m; q±l) are different. 

Using the Theorem and the statements just made in the previous paragraph, we 
readily obtain the results stated at the beginning of Séct. 2 about the eigenvalues of 
Z>2 and JD4 for the Di and the Rac wheň q=l. With a little more work we are also 
able to show that Q2 and Q4 are also constant operators in these representations, 
and that the unique eigenvalues of Q2 and Q4 are | and 0, respectively, in these 
representations. 

We are applying the analysis of the Di and Rac presented here, to a study 
of the higher spin massless representations of ř7g(so(3,2)). We are exploiting a q 
generalization of the the result of Flato and Fronsdal, which states that the tensor 
product of two singleton representations decomposes into the sum of infinitly many 
massless representations of the anti de Sitter group [11]. 
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