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ON COMPACT NON-KAHLERIAN MANIFOLDS 

ADMITTING AN ALMOST KAHLER STRUCTURE 

RYSZARD HOLUBOWICZ, WITOLD MOZGAWA 

ABSTRACT. In this paper we construct an infinite family of non-diffeomorphic, (2r + 2)-
dimensional, non-Kahler and compact manifolds admitting an almost Kahler structure. 
KEYWORDS, almost Kahler structure, Kahler structure, almost Hermitian structure 

1. Introduction. Let M be a 2n-dimensional differentiable manifold and let X(M) 
denote the set of all differentiable vector fields on M. We say that M admits an 
almost Hermitian structure if there exist a Riemannian metric g and a tensor J of 
type (1,1) such that 

(1) J is an almost complex structure on M, i.e. 

J(J(X)) = -X for each XeX(M) 

(2) the metric g is J-invariant, i.e. 

g(JX,JX) = g(X,Y) for each X,YeX(M) 

A form F defined by 

F(X,Y) = g(X,JY) for each XeX(M) 

is said to be the fundamental 2-form of the almost Hermitian structure (J, tf). 

Definition 1.1. An almost Hermitian structure (J, g) is said called an almost Kahler 
structure if its fundamental form is closed , that is dF = 0. 

Let us now define the Nijenhuis tensor {J, J} of J by 

{J, J}(X,Y) = [JX, JY] - [X,Y] + J[JX, Y] - J[X, JY] for each X,Y e X(M) 

It is well known (cf. [KN]) that an almost complex structure is integrable if and 
only iff the Nijenhuis tensor {J, J} of J vanishes identically. 
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Definition 1.2. An almost Kahler structure (J,<?) on M is said to be Kahlerian 
structure if the tensor J is integrable. 

The existence of a Kahlerian structure on a manifold M imposes very restrictive 
conditions on the topology of M, as the following theorem shows 

Theorem 1.1. (cf. [G]) If M is a Kahlerian manifold then its odd Betti numbers 
are even, i.e. 

b2i-i(M) = 2pu 

where i = 1, . , . , \ dimM. 

It seems natural to pose the following problem. How to find a family of non-
diffeomorphic, compact, almost Kahler manifolds with odd first Betti number? In 
next sections, using the so called toral bundles (cf. [HM]) we solve this problem, i.e. 
we construct a countable family of compact, almost Kahler manifolds with odd first 
Betti number. In particular, for an arbitrary natural number n, we obtain a four 
dimensional compact, almost Kahler manifold Mn which is not Kahlerian. Moreover 
the manifolds Mn and M* are not diffeomorphic if n 7-= k. The basic idea of our 
constructions is a modification of that given in the Ph.D. thesis of the first author. 

1. The toral bundles. Let us fix a natural number r > 2. For i = 1, . . . , r and 
d eZ Ai (d) denotes a matrix 

(1.1) Md) = 

/ l 0 0 
0 1 0 

Vo 

o 0\ 
o o 

0 l j 

where the number d begins the (i+l)-th row. The remaining entries of this matrix 
except for the main diagonal and the number d are equal to zero. Let us observe that 

(1.2) [Ai(d)ì t _ 

/ l 
0 

td 

Vo 

0 
1 

o 0\ 
o o 

0 1 / 

for t e R. Choosing arbitrary integers dufai-- ,dr we get the family of matri­
ces of the shape (1.1) which are pairwise commuting. Each of the matrices Ai(di), 
i = 1, . . . ,r can be considered as a diffeomorphism of the (r + l)-dimensional torus 
Tr+i = Rr+i/Zr+1 o n t o i t s e l£ W e denote by [ ] : Rr+1 -* T r + 1 , x h-> [x] the canonical 
projection and we put Ai(di)[x] = [Ai(di)(x)]. The relationships: 

( í i , . . . , *»,... , * r + ь [x]) ~j (tu...,U -I-1,... , tг+ь-4»(cř*)И), 
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where i = 1,. . . , r+1 and (tu..., tr+1) G R r+1, x G R r+1 give an equivalence relation 
~ in the product R r+1 x T r + 1 . In the standard manner the product R r+1 x r r + y ~ 
is furnished with the structure of a real (2r+2)-dimensional orientable manifold. We 
also obtain a fibre bundle with a typical fibre Tr+l over the base V*1. This manifold 
is denoted by T 2 ^ 2 ^ A ^ ^ and called a toral bundle of type (r + l , r + 1) (cf. 
[HM]). 

We define multiplication in R r+1 as follows 

(t,xu...,xr,y,zu... ,2rr)*(t',a;i,...,a:r»2/,>^i,... , 4 ) = 

=-(t + tf,x1 + xf
1,...,A^...Ax/(yf,zf

1,...,z
f
r) + (y,zu...,zr)). 

The pair (R2r+2, *) forms a Lie group, denoted by G^ 1 , r + 1 . For a uniform discrete 
subgroup T = {(t)x1,...,xr,y,zu... ,zr) : xu...,xr,y,zu... ,zr G Z} one can see 
that the compact orientable manifold Tjr^di) Ar(dr)

 anc^ t n e homogeneous space 
r\Gr

d+*>r£ are diffeomorphic (cf. [HM],' [E]).' 
Since the fundamental group n(T?r^di^ Ar(dr)) of the toral bundle 

T2r+2 —V\ <Qr+1»r+1 

1I,A1(d1)t...,Ar(dr) - 1 X^di,...,^ 

is isomorphic with the group T (cf. [HM], [H], [C]) then by the Hurewicz theorem (cf. 
[BT] we get 

where [r, T] denotes the commutator subgroup of T. Note that the group T has 2r + 2 
generators e,di,b,Ci, i = 1,. . . , r acting on R2r+2 as follows: 

e: (t,xu...,xr,y,zu... ,zr) h-> (t + l,xu...,xr,y,zu... ,zr) 

a,i: (t,xu...,xr,y,zu... ,zr) H> (t,xu...,Xi + l,... yxr,y,zu... ,Zi + diy,... ,zr) 

b: (t,xu...,xr,y,zu... ,zr) h-> (t,xu...,xr,y+ l,zu... ,zr) 

Ci : (t,xu...,xr,y,zu... ,zr)^ (t,xu...,xr,y,zu... ,z{ + 1,. ..,zr). 

Therefore, we have the following relations 

ea.j = a^e, eb = 6e, ec» = Cie, aiCj = Cja,i, bci = Cib 

and 
a»6 = bciiC*1 for i, j = 1,. . . , r. 

The abelianization [r, T] of the group T is a group which is isomorphic with a direct 
sum Zr+2 0 D, where D is a group generated by the elements cu... ,cr with the 
relations cri = 0 for i = 1,. . . , r. Thus we have prove the following 

Theorem 2.1. - f f^Ij^^) , . . .^^) ,Z) = Zr+2 0 Zdl 0 . . . 0 Zdr. 

Directly from this theorem we obtain 
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Corollary 2.1. The first Betti number of the manifold T2r+2 ;q oiwn hv 

h (T1r+2 x . 9 1'Md^AAdr) » &™ ty 
6 l ( T / ,A 1 (d l ) , . . . , - 4 r (d r ) ) = r + 2-

In virtue of Theorem 1.1 we get 

Theorem 2.2. Ifr is odd then T*T
A*{di)A is a compact, non-Kahlerian mani­

fold. 

3. Some almost Kahler structure on T^{dl)t_tAr{dry In this section we give 
explicite an almost Kahler structure on Tf^2 . which is a solution of the 
problem stated m Introduction. 

It is easy to observe that the forms 

e = dt, ai = dxu P = dy, li-dZi-diXidy, i = l , . . . , r 

create a basis for left-invariant 1-forms on G^+1,r+1, whereas the vector fields 

~ d ^ d ^ J d z d ~ d 

* = 3 V Y=6i + Z.**8? Zi = 8^> T=8i> < = 1 - - P 

create a basis for left-invariant vector fields on Gr,+1,rt1. These forms and vector fields 
<*i , . . . , 0 2 

are T-invariant and give at the same time globally defined, linearly independent 1-
forms 0, au /3, 7* and vector fields Xi, Y, Z^ T on T?Tt2

(A , A ,. *, where i = 1, . . . , r. 
liAi{ai)}...tAr\ar) 

Putting 
JXi = Zu JZi = -Xi, JY = T, JT = -Y 

and extending these formulas by linearity we get an almost complex structure on 
^Ttxidx) ..,Ar(dr)>

 s u ch ^ a t ^ e Riemannian metric 

</=E(«2+^)+^2+^2 

i=l 
is J-invariant. Since the fundamental 2-form of this structure (J, g) 

r 

F = /3A0 + ^ a i A 7 i 

t = i 

is closed then we obtain the following 

Theorem 3.1. Ifr is odd then the manifold T2r£2 . A ,d . is a compact, almost 
Kahler which does not admit any Kahler structure. 

In particular, if we put 

-<->-(i!) 
then four-dimensional toral bundles TjB,n) are compact, almost Kahler, but non-
Kahler manifold. As #i(T/ | B ( n ) , Z) = Z3 $ Z„ we have 

Theorem 3.2. There exists a countable family four-dimensional non-diffeomorphic, 
compact, almost Kahler, non-Kahler manifolds. 

Remark 3.1. The manifold TjB{1) is the well known Thurston example (cf. [T]). 
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