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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 66 (2001) pp. 133-140 

ON REGULARIZATION OF VARIATIONAL PROBLEMS 

IN FIRST-ORDER FIELD THEORY 

OLGA KRUPKOVA AND DANA SMETANOVA 

ABSTRACT. Standard Hamiltonian formulation of field theory is founded upon the 
Poincare-Cartan form. Accordingly, a first-order Lagrangian L is called regular if 
det( A d i;' v ) ^ 0; in this case the Hamilton equations are equivalent with the Euler-

Lagrange equations. Keeping the requirement on equivalence of the Hamilton and 
Euler-Lagrange equations as a (geometric) definition of regularity, and considering 
more general Lepagean equivalents of a Lagrangian than the Poincare-Cartan equiv
alent, we obtain a regularity condition, depending not only on a Lagrangian but also 
on 2-contact parts of its Lepagean equivalents. In this way one gets a possibility to 
"regularize" many Lagrangian systems which are singular in the standard sense—this 
concerns e.g. all Lagrangians linear in the first derivatives of the field variables, among 
others the Dirac field Lagrangian. Also, with help of the present procedure, one can 
generate new regularity conditions for Lagrangians. Some examples of such regularity 
conditions, differing from the standard one, are stated explicitly. 

1. INTRODUCTION 

It is known that in field theory to a variational problem represented by a La
grangian one can associate different Hamilton theories corresponding to different 
Lepagean equivalents of the Lagrangian (Dedecker [1], Gotay [3], Krupka [5]). Con
sequently, Hamilton equations depend upon a Lagrangian (resp. its Poincare-Cartan 
form), and some arbitrary differential form corresponding to higher contact parts of 
the Lepagean equivalent of the Lagrangian. As pointed out by Dedecker [1], this 
admits a new approach to the problem of regularity in the calculus of variations, and 
leads to a regularization procedure based on a choice of an appropriate Lepagean 
equivalent of the given Lagrangian. 
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Within the classical field theory, regularity of a variational problem associated with 
a first-order Lagrangian L depending on the "space-time variables" x\ 1 < i < n, 
"field variables" ya, 1 < a < m, and their "first derivatives" yf, is identified with 
the requirement 

( u» á'iáh)*°-
ensuring the equivalence of the Euler-Lagrange and De Donder-Hamilton equations 
of L. Apparently, this condition is connected with the preference of a particular 
Lepagean form, the Poicare-Cartan form of L. Unfortunately, it turns out that as 
a definition of regularity this condition is inappropriate, and its "direct" general
izations (e.g. to higher order variational problems on fibered manifolds, or to vari
ational calculus on contact elements) can lead to confusion or even are impossible 
(cf. Dedecker [1], Krupka [6], Krupkova [8], Saunders [10], and others). Moreover, 
almost all physically interesting Lagrangians in field theory do not satisfy the condi
tion (1.1). The attempts to understand properly the concept of regularity resulted in 
different (non-equivalent) definitions, and, consequently, to different generalizations 
of the condition (1.1) (see e.g. Dedecker [1], Krupka [5], Krupka and Stepankova [7], 
Saunders [9]). 

In the present paper we follow the approach to Hamiltonian field theory due to 
Dedecker [1], Krupka [5] and Krupka and Stepankova [7]. Namely, (1) Hamiltonian 
formulation is based upon the Lepagean equivalents of a Lagrangian, and (2) regu-
latity is understood to be a bijective correspondence between the set of extremals 
and Hamilton extremals. 

It is known (Krupka [4]) that to every first-order Lagrangian there exists a family 
of Lepagean equivalents of the following form: 

(1.2) p = 6 + v, 

where 6 is the standard Poincare-Cartan form, and v is an (arbitrary) n-form of 
order of contactness > 2. In particular, we study the case when the form v is 2-
contact, and arizing from a differential form defined on Y\ in fibered coordinates the 
latter assumption means that the components g%jv of v are independent of the yf's. 
Applying Krupka and Stepankova definition of regularity [7], we find the following 
regularity condition 

(U) ia{eB*-i&)*°-
involving both the Lagrangian and the 2-contact component of its Lepagean equiva
lent. This suggests a regularization procedure, based upon a proper choice of the g's 
such that the regularity condition (1.3) be satisfied. We apply this procedure to gen
erate new regularity conditions for Lagrangians. Also, we investigate regularization 
of some interesting physical fields (the Dirac field, the electromagnetic field). 
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It should be pointed out that though our regularity condition (1.3) looks formally 
be the same as Dedecker's [1], its range of applications and meaning are different. 
First of all, the underlying manifold structures used are different: Dedecker develops 
the theory on contact elements, while we use fibered manifolds. This enables us, 
among others, to consider Hamilton theory based upon Lepagean equivalents of 
order of contactness up to 2, which is the first natural step in generalizing the De 
Donder-Hamilton equations. Moreover, compared to Dedecker's, the definition of 
regularity we use is different (stronger). For more information and recent results 
in Hamiltonian field theory concerning the problem of regularity for higher order 
Lagrangian systems we refer to [9]. 

2 . L E P A G E A N EQUIVALENTS AND REGULARITY 

Let us consider a fibered manifold 7r : Y —> X, dimK = n, d imy = ra+n, and its 
first (resp. second) jet prolongation n\ : J1Y -» X (resp. 7r2 : J

2Y - ) I ) . A fibered 
chart on Y (resp. associated chart on JlY) is denoted by (V, tp), ty = (x% ,ya) (resp. 
(Vi,^>i), if>\ = (xl,ya,ya)). We use the following notations: 

w0 = dx1 A dx2 A ... A dxn, Wi = id/dx^o, ^ij = id/dziVi > 

and 

(2.1) ua = dya-yjdxj. 

A section 8 of the fibered manifold ir\ is called holonomic if S = J*7 for a section 7 
Of 7T. 

Recall that every q-form 77 on JlY admits a unique (canonical) decomposition 
into a sum of a-forms on J2 Y as follows: 

j f e = l 

where 7r21 is the canonical projection J2Y —> JlY, h(n) is a horizontal form, called 
the horizontal part of 77, and Pk(T)), 1 < k < q, is a fc-contact form, called the 
k-contact part of 7] (see e.g. [4] for review). 

By a first order Lagrangian we shall mean a horizontal reform A on JlY. A form 
p is called a Lepagean equivalent of a Lagrangian A if (up to a projection) h(p) = A, 
and pi(dp) is a 7r2,o-borizontal form [4]. For a first order Lagrangian we have all its 
Lepagean equivalents of order 1 characterized by the following formula 

(2.2) P = 9x + v, 

where 8\ is the Poincare-Cartan equivalent of A and v is an arbitrary n-form of order 
of contacness > 2, i.e., such that h(v) = pi(v) = 0. With the help of Lepagean equiv
alents of a Lagrangian one obtains an intrinsic formulation of the Euler-Lagrange 
and Hamilton equations, respectively [4], [5]: 
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A section 7 of n is an extremal of A if and only if 

(2.3) Jli*ij*tdp = 0 

for every 7r-vertical vector field £ on Y. 

A section S of the fibered manifold 771 is called a Hamilton extremal of p if 

(2.4) 5*iidp = Q, 

for every TCI-vertical vector field £ on J*F. 

Notice that while the Euler-Lagrange equations (2.3) are uniquelly determined by 
the Lagrangian, Hamilton equations (2.4) depend on the choice of v. Consequently, 
one has many different Hamilton theories associated to a given variational problem. 

Clearly, if 7 is an extremal then Jl/y is a Hamilton extremal; conversely, however, 
a Hamilton extremal need not be holonomic, and thus a jet prolongation of some 
extremal. This suggests a definition of regularity as follows: 

Definition [7]. A Lepagean form is called regular if every its Hamilton extremal is 
holonomic. 

In the sequel we shall consider Lepagean forms (2.2) where v is 2-contact, and 

*=.P2(/J)-

where /3 is defined on Y and such that Pi(/3) = 0 for all i > 3. In a fiber chart, where 
the Lagrangian A is expressed by A = Lwn, we can write 

(2.5) p = LUJ0 + 3 - ^ Aujj -f g%^A^Au)i5 , 

(summation over all sequences of indices) where the functions g%Ju do not depend on 
the yf's and satisfy the conditions 

(2.6) 9% = -9%, !& = -<&> 9%=9i\-

Theorem. Let X be a first order Lagrangian, let X = LUQ be its expression in a 
fiber chart (V, ip), ip = ( z \ ya) on Y. Let p be a Lepagean equivalent of X of the form 
(2.5), (2.6). Assume that the matrix 

<2-7) ^=(aSr4*) 
with rows (resp. columns) labelled by the pair (<r,i) (resp. (v,j)), is regular. 
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Then p is regular, i.e., every Hamilton extremal 5 of p is of the form 6 = J1^, 
where 7 is an extremal of X. 

Proof. Expressing the Hamilton equations (2.4) in fiber coordinates we get along 6 
the following system of m + mn first-order equations: 

?L-d.?L + (J^ ^_ + 4 4 ^ V ^ - ^ 
By' J dyj + \dy°dyV dy»dy°* k9°v)\dxi Vl) 

^ • ' « - * ) (2 8) dyZdyj\dxJ 

< % - * ) - * • 

The matrix Ajv is regular, hence the second set of the Hamilton equations gives 

i.e., 6 = Jx7. Now the first set of Hamilton equations means that 7 is an extremal. D 

Taking into account the above theorem we can generalize the concept of a regular 
Lagrangian as follows: 

Definition. Let IV c Y be open, W C V, where (V,^) is a fiber chart on Y, and 
let A = Luo be a Lagrangian on TTJ"J(V). We say that L is regular over W if there 
exist functions gjv on W satisfying (2.6) and the condition 

( 2 i o » d e t ( ^ ? - 4 » ^ ° -

If A does not satisfy the standard regularity condition (1.1) but is regular in the 
sense of the above definition, we also say that A is regularizable over W. 

Corollary. Let m > 2. Then every Lagrangian linear (affine) in the first derivatives 
is regularizable. 

3. EXAMPLES OF REGULARITY CONDITIONS FOR LAGRANGIANS 

If, in particular, in the condition (2.10) the functions gjv are expressed by means of 
the Lagrangian L, one obtains regularity conditions involving only the Lagrangian. 
We list some of these possibilities below; obviously many other conditions can be 
generated in a similar way. 
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(1) Suppose that dg^/dyf = 0, where 

P=1(J---J*L-) 

Then the regularity condition for L is of the form 

( d2L d2L \ 

(2) Suppose that dg^/dy* = 0, where 

{j _ 1/ d3L d_L d3L d3L  
9au ~ Adx'd^dyJ dxidydy? dxldyudy? + dxidy'dy0 

Then the regularity condition for L is of the form 

)• 

( d2L _ д3ь d3L d3L дЧ \ 

\ду?ду] д&дуду* + дх'дудуХ + д&дуГЩ дхзду'ду?) * ' 

(3) Suppose that dg%/dy? = 0 and dg%/dy?s = 0, where 

ij =

 l (d

 d 2 j L

 d

 d * L d * L d 2 L 

9av 4 V * dy'dy* j dy°dy? i dydyj j dy»dy\ 

Then the regularity condition for L is of the form 

/ d2L _ d2L d2L d2L _ d2L \ 

\dy?dy] didy°dy»+djdy°dy!+didyxdyj
 djdydy°)*°' 

4. R E G U L A R I Z A B L E LAGRANGIANS IN CLASSICAL FIELD THEORY 

The following examples show that the Dirac field and the electromagnetic field, 
which are singular in the standard sense (i.e., not satisfying the regularity condition 
(1.1)), are regularizable. Hence, one obtains Hamilton equations which are equiv
alent with the Euler-Lagrange equations, without the need of using the theory of 
constraints (compare with Giachetta et al. [2]). 

Dirac field in two dimensions. In this case the fiber dimension m = 2, and 
dimX = 2. The Dirac Lagrangian is linear in the variables yv> hence regularizable. 
The conditions (2.6) on the functions glJv mean that we have only one independent 
free function g\%. Denote u = u(x^yv) = 4g\l. Then for Lepagean equivalents of 
the Dirac Lagrangian of the form 

/>= Ldx1 Adx2 + -^^a AO;J + u(x\yv)u)1 Aw2 , 
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the regularity condition (2.10) reads 

det 

/ 0 0 0 - u \ 
0 0 u 0 
0 u 0 0 

\-u 0 0 0 / 

^o. 

Consequently, for every function u(x? ,yv) (on an open subset W of Y) such that 
u(xi ,yv) T«- 0 on W, the corresponding Hamilton equations are equivalent with the 
Euler-Lagrange equations. 

Dirac field in four dimensions. Now m = 2, dimX = 4, and we get 6 inde
pendent functions gxJv. Denote 

A2 Д З Д 4 ,.23 - >!Л24 34 u!=4o12, u2 = 4gl2, u3 = 4g12, uA = Ag{2, u5 = ig12, u6 = 4p1 2. 

The matrix (2.7) takes the form 

/ 0 - M \ 
^M 0 ) 

where M is the 4 x 4 matrix 

/ ° 
-Щ 

щ 
0 

u2 щ' 
щ щ 

~u2 -щ 0 
V -

щ 
щ -щ -щ 0 

We can see that for any choice of functions Uk(x%, y°), 1 < k < 6, such that det M7-O 
we obtain a regular Hamilton theory for the Dirac field, based upon the Lepagean 
form 

p = L dx1 A dx2 A dx3 A dx4 + - - — uf A CL>J 

+ u\ a;1 A u2 A a;12 + u2 w1 A J1 A 0^3 + U3 a;1 A CJ2 A 0^4 

+ U 4 W 1 A C J 2 Ac<;23 + U5U1 Aw2 ALJ24 + UQU)1 AUJ2 ACJ34. 

A simple admissible choice is e.g. 

p = L dx1 A dx2 A dx3 A dx4 + - — ua A ui + f w1 A u2 A u)i4 + g u1 A u2 A CJ23 

oy? 

with f,g 7-O. 

Electromagnetic field. For the electromagnetic field Lagrangian 

(4.1) L = -\F^F»" = \{yWa - sTantirt) 
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(where ($au) is the Lorentz metric, and yl = dAa/dxu), the condition (1.1) gives 

However, this Lagrangian is regular izable, and admits many regularizations. 
If, in particular, dimX = 2, we have m =- 2, and one independent parameter 

u = u(x^yv) = 4#i2- Hence, the matrix (2.7) is of the form 

0 0 0 -u> 
0 1 u + \ 0 
0 u+\ 1 0 

. - u 0 0 0 

i.e., it is regular for every function u ^ 0 , - 2 (cf. Dedecker [1]). 
If dimX = m = 4, the computations are more complicated (since we have 36 

independent functions gxJv), but completely analogous to the preceeding case. Again, 
one obtains many possibilities for regularization of the problem. 
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ON RECURRENCES ON THE STREAMS 

A. K. KWASNIEWSKI 

ABSTRACT. New kind of recurrences implicit in constructions of [2] and [3] "for se
quences on streams" is defined. A peculiar set of solutions of such recurrences are 
Tchebyshev-like special functions introduced in [2] and [3] which are polynomials in 
coordinates of a certain curve on hypersurface in Rm determined by quasi-numbers of 
determinant one [4]. These Tchebyshev-like special functions are shown [5] to satisfy 
an ordinary m-th order recurrence with parameter dependent coefficients. If m — 2 
then one gets classical Tchebyshev polynomials of both kinds. 

I . INTRODUCTION 

Let m € N and m > 1. Let Z m — {0 ,1 , . . . , m - 1} denotes the cyclic group. Let 
{hj(a)}j£zm be the family of hyperbolic functions of the m-th order [1] 

(1) R 3 a -> hj(a) = — Y^ u~kj exp(uka)\ j € Zm u = exp [ i— ) . 
kesm

 x 7 

It is not difficult to establish that 

(2) - J2 hj(uk* + P) = M*)M0); J'^ Zm, 
kezm 

due to "hyperbolic-trigonometric" properties [4] of the set {hj(a)}j€zm of these 
fundamental solutions of -^-ya = ya. 

It was observed in [2], [3] that Tchebyshev-like special functions T^\x)\ j 6 Zm : 

(3) T[j\x) = hj(na); j € Zm ; x = h0(a) 

where ft € Am = {n, n -f a;1, n + u2,..., n -f a/71-1; n G Z} do satisfy the equation 

(4) - Y] Tn+iJs(x) = xTn(x); n e Z . 
se~m 

2000 Mathematics Subject Classification. 11B39, 11A39. 
The paper is in final form and no version of it v/ill be submitted elsewhere. 
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For 77i = 2 equations (3) and (4) lead to classical Tchebyshev polynomials of the first 
and second type respectively: T-i (x), f^xK 

The case of Pi }; n € Am was considered in quite a detail in [2], [3], [1] where rela
tion (4) was treated implicitly as supplemented by the de Moivre group [4] property 
of its solutions i.e. the following convolution formula was used throughout: 

(5) hk(a + ß)= £ hj(a)hkч(ß); k Є Z„ 
j€Z m 

In view of (3) and with /3 € A(Zm) we may write the requirement of de Moivre 
property of the set Tz\x)\ j € Zm of solutions of (4) in extended form as follows: 

W Tg*(z)= £ f ( x ) r « - f c ) ( _ ) ; J £ Z m i M € A ( Z m ) 
k£Z„ 

where 

(7) Л(Zm) = [ñ(fc) = ] Г „,_•'; k, Є Z; s Є Zm} 
sЄZ„ 

with k = (fcn> &!.•••. Am-i) (see Figure 1). 

. L 

* ч 
_ V ф -

« Џ. —• 

— * _ . . „ . . * . _ - _ . _ ^ 

-2+2Ú> - 1 + 2 Ú ) 2Ú>X 

ч ^ 

— i 

ì-
1 • * • 

2o> 2 + 2 Û ) 3+2Ú> 

ľ ^ ^ . _. 
- 2 + Ú ) -l+ú> / û > \ 

\ д 2+ű> 3 + Ű ) 

-3 -2 л ) u 2 3 

- 2 + Ö У -ì+й)1 , # *-—. ~^+úř 2+Û>2 
3+Ú) 2 

-2+2Ú)2 -1+2_>J , - V 

/ / / 

i- 2wг 2+loў 3+2й>ł 

/ 

2_>-aside stream 

fir-aside stream 

* <_>°-main stream 

o>2-aside stream 

2o)2-aside stream 

Figure 1 
Neighbour streams for m = 3 

Then in particular 

(8) r l ( x ) = £ TW(x)Ttt-kHx); j e Zn 
fc€Zm 

771, П Є Z 



ON RECURRENCES ON THE STREAMS 1 43 

for the "main stream" (i.e. ft = n G Z) solution of (4). 

Observation 1 
Equation (4) solutions of the form {Tn(x)}j^zm are not the only one solutions 

unless the requirement (8) is added to (4). This observation is implicit in construc
tions of [2] and [3]. D 

It is not difficult to recognize that 

Observation 2 
The solutions {Tn (x)}j^zm of equation (4) result from pseudo-characteristic 

equation of equation (4) 

(9) * = ^ E A " » 
m L—J 

sezm 

(we are looking for some solutions of the form T^(x) = An(x); n G Am). D 

Remark 1. It is easy to see that { exp{a/a.}} z under the identification x = 
h0(a). 

Remark 2. We call (9) the "pseudo-characteristic" equation of equation (4) because 
of Observation 1. 

Example. Consider m = 3 case and equation (4) without any additional require
ments imposed on the set of its solutions - as for example the requirement (8). 
It is clear that in order to determine - say - {Tn(x)} sequence ("the main stream 
sequence") two other: {Tn+U,(x)} and {Tn+W2(.r)} sequences ("aside neighborhood 
stream sequences") must be given apriori (see - Fig.l). 

Conclusion 1, Equation (4) is a relation resulting from a certain recurrence relation 
among "sequences on streams" {Tft(x)}fieA(zm) - the relation obtained by restriction 
of a recurrence to the main and "aside neighbor stream sequences", This is to be 
defined rigorously in what follows. 

II. RECURRENCES ON THE STREAMS- AN EXAMPLE OF TCHEBYSHEV TYPE 

In this section we define a recurrence relation for sequences of objects which are 
sequences "on the streams" in A(Zm) thus giving to the equation (4) a proper setting 
-see-conclusion at the end of this section. 

Let us consider the set A(Zm) defined by (7). We may define the following map
pings 

Definition 1. For j e Zm let T& : A(Zm) x R -> C; T^(n,x) = hj(nat) where 
x = ho(a). 
We shall call {T^}\ j 6 Zm the Tchebyshev mappings. 

Notation. 
T^%x)=TJf\x); j€Zm . 
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It is easy to see that 

Observation 3 
The special functions {Tij (x)}fj6A(zm). 3 € z m form the set of particular solu

tions of the equation 

(10) - Y, T*+«a (x) = xT*(x); s (*) G A(Z™) 
5 € Z m 

The linear equation (10) is a kind of recurrence for sequences on streams what we 
are now going to make precise. Let n(k) 6 A(Zm). 

Definition 2. Let 

5(ki, k2,. • •, km-i) = {n(k)\ k0 € Z} C A(Zm); ki, k2,..., fcm_i G Z . 

Then 5(ki, k2,..., &m-i) is called a stream. 5(0 ,0 , . . . , 0) is called the main stream. 
A stream 5(ki, k2,..., km-i) 7- 5(0,0 , . . . , 0) is called an aside stream (see [2] and 
see Fig.l for m = 3). 

Definition 3. Let 

m — 4 for m = 6k; k 6 1V; 

r(m) = I m-2 for m = 6k + 2 V m = 6k -f 4; k G N U {()} ; 

w m - 1 for m = 2k + 1; k e N. 

We shall call this r : Nu {0} —r N function the rank function of the equation (10). 

It is not difficult to see (consult Figure 1 and draw corresponding pictures for 
other values of m) that the following holds: 

Observation 4 
For any given m > 2 and for any different r(m)-neighbour to the main one - aside 

streams S^k = 1,2, . . . , r (m) with the sequences Ti,T2, ...,Tr(m) on them being 
given ("initial sequences") the solution of equation (10) is uniquely determined. 

Name. We call the recurrence (10) the rank r(m) recurrence on the streams as it 
is recurrence relation between sequences defined on streams i.e. objects indexed by 
streams. 

Remark 3. The set of streams 5(ki, k2,..., fcm_i) = 5(£); n = (ki, k2)..., km-i) € 
Z m _ 1 ; is linearly ordered by the following order relation <: 

S(Z) < S(x) = Z<x iff either Im |n(£) = ^ KSUJS} < Im |n (x) •= ] T Xs"3} 
sezm sezm 

or - in the case of equality of the above imaginary parts - the order relation K < x 
is defined lexicographically. Because of this the phrase ur(m) neighbour stream 
sequences" has appropriately established meaning. 



ON RECURRENCES ON THE STREAMS 145 

Conclusion 2. Summarizing: the relation (4) is not a recurrence relation for infinite 
sequence of objects. It is a relation between r(m) streams. 

This relation results from the recurrence relation (10) via restricting this relation 
to the subset Am C A(Zm) i.e. via restricting relation to r(m) neighbour stream 
sequences. 

For m = 2 and only for m = 2 Am = A(Zm), which is the Tchebyshev polynomials 
standard case. 

Information. Other "non-trigonometric" extensions of Tchebyshev polynomials 
to polynomials of several independent variables aire known from rather scattered 
literature. 

A summarizing paper on that subject is [6], which is recommended here. The 
author of [7] seems to rediscover the family of hyperbolic functions of the ra-th 
order {hj(a)}j£zm and made a lot of new observations relevant to our approach. 
However the author of [7] had decided to pursue the "non-trigonometric" approach to 
extend the definition of standard Tchebyshev polynomials onto specific polynomials 
of several independent variables. 
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