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RENDICONTI DEL CIRCOLO MATEMAПCO DI PALERMO 
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ALGORITHMIC COMPUTATIONS OF LIE ALGEBRAS 
COHOMOLOGIES 

JOSEF 3ILHAN 

ABSTRACT. The aim of this work is to advertise an algorithmic treatment of the com­
putation of the cohomologies of semisimple Lie algebras. The base is the Kostant's 
result (see below) which describes the representation of the proper reductive subalge-
bra on the cohomologies space. We will show how to (algorithmically) compute the 
highest weights of irreducible components of this representation using the Dynkin 
diagrams. The software package LiE offers the data structures and corresponding 
procedures for the computing with semisimple Lie algebras. Thus, using LiE it has 
been easy to implement the (theoretical) algorithm. 

0. INTRODUCTION 

Each standard parabolic subalgebra p C g of the complex semisimple Lie algebra g 
induces decomposition g = g_ © g0 © p+ where p = go © p+. Given a representation 
7r : p+ —• 0*00) w e define by the usual way the differential d : Hom(/\n p+; V) —• 
Hom(/\n + 1p+;V). The corresponding cohomologies will be denoted Hn(p+, V). We 
will be interested only in cases where n = i/|p+ for some representation v : g —• gl(^)-

Following Kostant (see [Ko]), we define the appropriate representation /3 : g0 —• 
g[(Hn(p+, V)) of the reductive subalgebra go on the cohomologies space and we derive 
the algorithm computing the highest weights of the representation /3 using the notation 
of Dynkin diagrams. Then we describe Lie algebra cohomologies Hn(g-,o) where 
7r = ad |g_, as a dual to Hn(p+, g). Further we derive how to use these computations 
effectively for the complex semisimple Lie algebras with more simple components; it 
will be a special case of the Kiinnet formula. The web implementation of the resulting 
algorithm is available on the address www.math .muni. cz/~silhan/lac. (These pages 
compute moreover cohomologies of real semisimple Lie algebras. These cohomologies 
will be described elsewhere.) 

1. BASIC NOTATIONS AND DEFINITIONS 

1.1. The Weyl group and the weights. Consider the complex semisimple Lie 
algebra g with the Cartan subalgebra f), the sets of simple roots, positive roots and 
roots II C A+ C A and the Weyl group W. The group W is generated by simple 
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reflections i.e. the reflections corresponding to simple roots. The number of positive 
roots a G A+ which are transformed to w(a) G A_ = —A is called the length of w, 
we write \w\. Equivalently (see [FH], [Sa]), the length of w is the minimal number of 
simple reflections in any expression for w in terms of simple reflections. 

The weights of g can be described by labeling the nodes of Dynkin diagram by the 
integer coefficients referring to the linear combination of fundamental weights. The 
weight is dominant for g if and only if all the coefficients are non-negative (such Dynkin 
diagram describes the irreducible representation of g). Using this notation it is easy 
to compute the action of the simple reflection w = Sai corresponding to a{ G II on the 
weight A: 

Let a be the coefficient over the i-th node in the expression of X. In order to get the 
coefficients over the nodes corresponding to Sa.(X), add a to the adjacent coefficients, 
with the multiplicity if there is a multiple edge directed towards the adjacent node, 
and replace a by -a. (This algorithmic background of computing with the Dynkin 
diagrams was established in [BE]). 

a b c 0+6 - 6 c+6 a 6 - o 2a+6 

For example, o a 2(*—•—• ) = • • • , o a i (•=>=• j = • ;• • and 
a 6 a+6 —6 

Sa2 (»->-• ) = • ;» • (the simple root a» corresponds to z-th node of the Dynkin 
diagram from the left). 

The affine action of the Weyl group is defined by 

w.X = w(\ + p) — p 

where p = \ ^ a e A ot is the lowest weight. It means (in the terms of the Dynkin 
diagram) to add one over each node, then act with w and finally subtract one over 
each node. 

1.2. Parabolic subalgebras. The standard parabolic subalgebra p C g is defined 
by some set of simple roots E C II and is generated by the Cartan subalgebra, root 
spaces corresponding to positive roots and root spaces corresponding to negative roots 
except the roots which can be expressed as the negative sum of some roots from E. 
The corresponding Dynkin diagram is obtained from the Dynkin diagram for g by 
crossing out nodes corresponding to simple roots from E. Each parabolic subalgebra 
is conjugated to some standard parabolic subalgebra so we are interested only in the 
standard cases. It induces the decomposition g = g_ © g0 0 p+ where p = g0 © p+. 
(The reductive part g0 includes the semisimple part of p and the rest of the Cartan 
subalgebra and p+ is the remaining nilpotent part of p.) 

Irreducible representations of p are irreducible representations of g0 with the trivial 
action of p+. Thus, the weights of p can be described by the labeled Dynkin diagram, 
where coefficients over non-crossed nodes are integers. This weight is dominant for p 
if and only if the coefficients over non-crossed nodes are non-negative (such Dynkin 
diagrams describe the irreducible representations of the reductive part g0 of p). 

For each set E C n and the corresponding parabolic subalgebra p C g we define 
Wp C W as the subset of all elements, which map the weights dominant for g into the 
weights dominant for p. Equivalently, Wp is the set of all the elements w for which 
the set $w = iu(A_) fl A+ contains only roots of p+ i.e. the positive roots of g which 
do not lie in the semisimple part of g0 (see [Ko]). 
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2. LIE ALGEBRA COHOMOLOGIES 

2.L Cohomologies of Lie algebras. For a representation ir : a —• flK^O °f a n 

arbitrary Lie algebra a we define the differential d : Hom(/\n a; V) —• Hom(/\n+ a; 17) 
by the formula 

(dp)(X0A...AXn)= ^2(-l)i^p([XuXj)AX0A...Xi...Xj...AXn) 

+ 5 3 ( - 1 ) V ( J . O P ( X 0 A...Xi...AXn). 
i 

The differential d induces cohomologies Hn(a; 17), called the cohomologies of o with 
coefficients in V because d2 = 0 (we set Hom(/\n a; 17) = 0 for n < 0 and n > dim a). 

We are interested only in the case, where a = p+ and n = */|p+ for some repre­
sentation v : g —• gi(V). It follows from the structure of the parabolic subalgebra 
that we have the natural action of the elements from p on Hom(/\np+; 17) (it is the 
adjoint action on AnP+ a n d the action given by n on 17). This induces the rep­
resentation of p on Hom(/\np+;17) which factorizes (see [Ko]) to the representation 
(3 : p —• g[(Hn(p+, V)) on cohomologies. This representation is completely reducible 
and thus we are interested only in the restriction (3 : go —• g[(Hn(p+, 17)). 
2.2. Theorem. [Ko] KostanVs result. For the finite dimensional representation 
v : g —• 0-00 with the highest weight X and the restriction n = i/\p, the irreducible 
components of f3 are in bijective correspondence with the set Wp and the multiplicity 
of each component is one. The highest weight of the irreducible component of the 
representation 0 corresponding to w £ Wp is w.X = w(X + p) — p and it occurs 
in degree \w\. The generator of this component (the vector of the highest weight) is 
/\ae$w 0° —* SwX where sw\ G V is a weight vector of the weight wX. 

1 0 1 

2.3. Example. Cohomologies with V = • — • — • and p = x — • — • . The zero 

1 0 1 

cohomologies are clearly x — • — • . For the first cohomologies we need the element 

w G Wp of the length one i.e. one simple reflection. It is clearly the reflection cor-
- 3 2 1 

responding to the single crossed node and so we get x • — • . For the second 
cohomologies we need two simple reflections. It is easy to see that we must begin with 
an adjacent node to the cross and then use the crossed node. As the result we will get 
- 4 1 2 
X • • . 

2.4. Lie algebra cohomologies H(g_,g). An important case for applications in 
geometry are Lie algebra cohomologies H($-,$), where we use the representation 
ad|g_ : g_ —• flKfl)- We have H(g_,g) ~ H(p+,g)* because g_ c_ p̂ _ and the 
adjoint representation is self-dual. Thus we must describe the dual representation 0 
for the representation (3. The same is true for all self-dual modules 17. In general, 
H(g-,V) * H(p+,V)\ 

2.5. Dual representations for reductive algebras. It is well known how to com­
pute the dual representations for simple Lie algebras (for .A/,D2/-i-i and EQ we use 
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k ke{i,...,i} A;€{1, . . . , /} 

X Ai Afc_i Afc A f c + i A/ Ai Afc_i Afc A f c + i A І _ I Xi X 
• • • • • X ' • • • • • 

X Afc-i Ai Afc A/ Afc+i 

• • • •—x—• • • • 
Afc_i Ai Âfc A f c + i A І _ I Aj X Afc-i Ai Afc A/ Afc+i 

• • • •—x—• • • • • • X • ~—**—* 

h ^k = ~ _Ci=l ^* ^k = -(Z)i=i î + 2 Ei=fc+1 Л«) 

TABLE 1. The duals of reductive subalgebras for types A and C. 

k *Є{1 1-1} к = l 

X Ai Afc_i Afc Afc+i Ať_i A/ Ai Aг Aj_i Xt 

• • • • • • î» X X 
• • • • X " • 9 "Ћ • 

Ai Aг Aj_i Xt 

• • • • • • î» X 

X Afc-i Ai Afc A f c + i A І _ I Aj 
• • • • — x • • • • • '% • 

Aj-i A І _ 2 Ai Xi 
• • • • • • ì i x 

Xk Â* = - ( E L I A . + 2 £ £ + 1 A J + AÍ) Â«---(2EІ_ÌAł + Ai) 

TABLE 2. The duals of reductive subalgebras for the type B. 

a non-trivial symmetry of the Dynkin diagram and the other cases are self-dual). 
Consider the irreducible representation 7 of the reductive subalgebra go with the high­
est weight A and denote A the highest weight of the dual. If we eUminate crossed 
nodes of the Dynkin diagram we will get a semisimple Lie algebra; consider some of 
it's simple components Q3. It is easy to see that X\Q3 = X\g3 (it follows from the fact 
that the highest weight and the lowest weight are on the same orbit of actions of the 
Weyl group). 

It remains to compute the coefficients of A over the crossed nodes. Suppose that the 
2-th node is crossed and A» is it's coefficient. It is easy to show that we can restrict 
only to the Dynkin diagram with the 2-th node and the maximal simple component (s) 
adjacent to this node. Thus, the coefficient A* over a crossed node depends only of the 
coefficients over the adjacent simple components. In other words, it suffices to consider 
the reductive subalgebra with one dimensional center. In such case, let us consider 
an arbitrary generator Z of the center. Then X(Z) = —X(Z). This yields the hint 
how to compute the unknown coefficient of A (there is only one unknown coefficient): 
find an element Z of the center in each simple Lie algebra with one crossed node (case 
by case) and solve the (linear) equation X(Z) = —X(Z) (there is only one unknown 
parameter). The results for classical simple Lie algebras are in the tables. 

2.6. Example. Lie algebra cohomologies H($_;g) for x—•—• . Since the 

adjoint representation has the highest weight x- —• , we can use the previous 

example and we only need to compute the duals. With formulas from Table 1 we will 
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k G {1, . . . , / - 2}, I — k even 

Ai Afc_i Afc A f e + i Aj_ ; 

• • • • • X • • • 

• • • • • — x — • • • • 

h Â* = -(Eî=i Л І + 2 EІIfc+i Л І + Л,-i + A,) 

* € { ! , . . . , i - 2 } , /-fcodd 

Ai Лfc_i Лfc Л f c + i Лť 

• • • • • X • • • • 

Afc-i Afc Afc Afc+i A/_ 
• • • • • x-.—• ' • 

л* = -(Eľ=i Л І + 2 Ľ s U i Л І + лt-i + л<) 

к = l-l 

Ai Aг Лj_; • • • • 

AІ A І _ 2 Лг 
• • • • 

A._i 

A,_! = -(Ax + 2 E ; : 2 AÍ + A,_! + A,) 

get 

TABLE 3. The duals of reductive subalgebras for the type D. 

яҷà-J-

#2(І-

1 1 o 
" • ) _ _ ( * — * _ ч* -2 

- • ) * = x -

1 0 

-• • 
ГJІ/ 1 ° Ч Г3 2 Ч* ° l 2 

H (x—•—• ) = ( x — • — • ) = x—•—• 
0 1 - 4 1 2 1 2 1 

-• • ) = ( x • • ) = X • • . 
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H'(p+@PІ;sЏ,Ü)j 
1 
X-

- 3 

- 5 
X -

- 3 
M v -

0 1 

IЛI л 

- 2 
M v 

1 0 
LЛI Л 

0 
Rl X-— 

0 

—•— 
0 

—• 

/m®PÍ;s[(4,ě)T 

- 2 1 
X • 

- 4 
M v 

1 2 
IЛI Л 

- 3 
M v 

2 1 
LЛI Л 

1 
IЯ X— 

0 

—•— 
1 

—• 

TABLE 4. The cohomologies H(p+;g) for g semisimple. 

2.7. The semisimple Lie algebras composite from more simple components. 
If we begin with a semisimple Lie algebra g, we can compute the cohomologies by the 
procedure described in the examples above. But there is a more effective approach: 
we can "put together" the required cohomologies from the cohomologies of the simple 
parts. 

Suppose (for simplicity) that g = g1 ©g2 is the complex semisimple Lie algebra with 
the simple components g1 and g2 and that p = p1 © p2 where p 1 C g1 and p2 C g2, is 
the parabolic subalgebra. Denote KVi, IV2 C W the Weyl groups of g1 and g2. Each 
element w G W can be expressed as composition w = W\W2 where w\ G W\ and 
W2 G W2 commute. Clearly \w\ = \w\\ + \w2\ and the condition w G Wp is satisfied 
if and only if w\ G IVP and w2 G Wp . Consider again an irreducible representation 
v : g —• Ql(V) w - t n t n e highest weight A. Denoting Ai = A|g! and A2 = A|g2, we 
can write A = (Ai, A2) and clearly w.X = (wi.Xi,w2.X2). Moreover, the representation 
v is equivalent to (external) tensor product of representations v{ : g» —• g-(^) w - t n 

highest weights A*, i G {1,2} i.e. v ~ v^v2 : g —• gI(ViHV2). Summarizing, we have 
shown that the highest weight w.X of each component in the cohomologies H(p+; V) 
can be written as a couple (wi.Xi,w2.X2) where Wi.Xi is the highest weight of some 
component from the cohomologies H(pt

+;Vi), i G {1,2}. Thus, the cohomologies of 
H(p+;V) in degree n can be described as couples of the cohomologies H(p^.;Vi) in 
degree n\ and the cohomologies H(p\; V2) in degree n 2 such the n\ + n2 = n. This is 
the special case of the Kunnet formula for Lie algebras: 

Consider simple Lie algebras and parabolic subalgebras p* C g* and their irreducible 
representations v{: g* —• gt(^)> * ^ {!> 2}- Further consider algebra g = g1 ©g2 with 
parabolic subalgebra p = p1 © p2 and its (irreducible) representation v = v\ t3 v2 : 
g —• Qi(Vx 13 V2); let us denote V = Vi tE V2. Then holds 

£T(p+; V) = Hn(p\ © p2.; Vx B V2) = 0 (H^ Vx) B ̂ '(p2,; V2)). 
t-|-j=n 

If we compute cohomologies H(g_; V), it suffices to compute the duals of cohomolo­

gies if(p+;V). As an example, cohomologies of x — • © x — • — • and the adjoint 

representation are displayed in Table 4. (This representation is not irreducible. In such 
case, we obtain cohomologies as the sum of cohomologies corresponding to irreducible 
components of the requested representation.) 
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3. T H E ALGORITHM 

3.1. The algorithm in the terms of the roots and the weights. The input for 
our algorithm will be the simple Lie algebra (represented by it's type), the parabolic 
subalgebra (represented by the set II C A+), the highest weight of the representation 
v (represented by the coefficients over the nodes of the corresponding Dynkin diagram) 
and the degree j of the required cohomologies. 

The computation of the affine action of w G W is easy if we have w expressed as a 
composition of simple reflections. The problem is so retrenched into two steps: to find 
all the elements of Wp of the length j in the form of the composition of the simple 
reflections and then to compute the dual weights. The second step is easy (you can 
use formulas from the tables). The first step can be done in the following way: 
1. Generate all sequences of j nodes of the Dynkin diagram. 
2. Compute a length of each sequence which is understood as an element of the Weyl 
group (as a number of the positive roots transformed into the negative ones) and 
remove the elements with the length smaller then j . 
3. Remove the duplicities (by using some canonical form). 
4. Compute the set w(A_) fl A+ and check that there are only the roots of the 
semisimple part of go in this set. The elements satisfying this condition are the required 
elements of Wp with the length \j\. 

3.2. Implementation. The most tedious part of the implementation is to make some 
representation of the data of simple Lie algebras (i.e. the root systems, the Weyl groups 
etc.). The software package LiE l offers such data and procedures for manipulating 
with them. Thus the implementation in LiE corresponds to the "theoretical" algo­
rithm above. (LiE contains all necessary steps not specified above, e.g. using of some 
canonical form of elements of the Weyl group). The web implementation (based on 
LiE too) is on the address www.math.muni.cz/~silhan/lac. 
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