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RENDICONTI DELCIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 79 (2006), pp. 11-37 

TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIES 

ANDREAS CAP 

ABSTRACT. This is an expanded version of a series of lectures delivered at the 25th 
Winter School "Geometry and Physics" in Srni. 

After a short introduction to Cartan geometries and parabolic geometries, we give 
a detailed description of the equivalence between parabolic geometries and underlying 
geometric structures. 

The second part of the paper is devoted to constructions which relate parabolic 
geometries of different type. First we discuss the construction of correspondence 
spaces and twistor spaces, which is related to nested parabolic subgroups in the 
same semisimple Lie group. An example related to twistor theory for Grassmannian 
structures and the geometry of second order ODE's is discussed in detail. 

In the last part, we discuss analogs of the Fefferman construction, which relate 
geometries corresponding different semisimple Lie groups. 

1. INTRODUCTION 

This is an expanded version of a series of plenary lectures at the 25th Winter School 
"Geometry and Physics" in Srni. I would like to thank the organizers for giving me 
the opportunity to present this series. 

The concept which is nowadays known as a Cartan geometry was introduced by 
E. Cartan under the name "generalized space" in order to build a bridge between 
geometry in the sense of F. Klein's Erlangen program and differential geometry. This 
concept associates to an arbitrary homogeneous space G/H the notion of a Cartan 
geometry of type (G,H), which is a differential geometric structure on smooth mani­
folds whose dimension equals the dimension of G/H. A manifold endowed with such 
a geometry can be considered as a "curved analog" of the homogeneous spaces G/H. 
Although Cartan geometries are an extremely general concept, there are several re­
markable results which hold for all of them, see 2.2. 

The most interesting examples of Cartan geometries are those, in which the Cartan 
geometry is equivalent to some simpler underlying structure. Obtaining the Cartan 
geometry from the underlying structure usually is a highly nontrivial process which 
often involves prolongation. Cartan himself found many examples of this situation, 
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ranging from conformal and projective structures via 3-dimensional CR structures to 
generic rank two distributions in manifolds of dimension five. 

Parabolic geometries are Cartan geometries of type (G, P), where G is a semisimple 
Lie group and P C G is a parabolic subgroup. The corresponding homogeneous spaces 
G/P are the so-called generalized flag manifolds which are among the most important 
examples of homogeneous spaces. Under the conditions of regularity and normality, 
parabolic geometries always are equivalent to underlying structures. This basically 
goes back to the pioneering works of N. Tanaka, see e.g. [29]. 

In section 2 of this article we give a precise description of the underlying struc­
tures which are equivalent to regular normal parabolic geometries. In this underlying 
picture, the structures are very diverse, including in particular the four examples of 
structures listed above. From that point of view, parabolic geometries offer a unified 
approach to a broad variety of geometric structures. 

Some of the advantages of this unified approach will be discussed in the remaining 
two sections. They are devoted to constructions which relate parabolic geometries 
of different types. The common feature of these constructions is that they are quite 
transparent in the picture of Cartan geometries, while from the point of view of the 
underlying structures they are often surprising. 

Section 3 is devoted to the construction of correspondence spaces, which is associated 
to nested parabolic subgroups in one semisimple Lie group. Trying to characterize the 
geometries obtained in that way, one is lead to the notion of a twistor space and obtains 
several classical examples of twistor theory. In the end one arrives at a complete local 
characterization of correspondence spaces in terms of the harmonic curvature. We 
give a detailed discussion of one example of this situation related to the geometry of 
systems of second order ODE's. 

The last section is devoted to Fefferman's construction of a conformal structure on 
the total space of a circle bundle over a CR manifold and analogs of this construction. 
From the point of view of Cartan geometries, the basic input for these constructions is 
an inclusion i:G —> G between semisimple groups together with appropriately chosen 
parabolic subgroups P C G and P C G. Then the construction relates geometries of 
type (G, P) to geometries of type (G, P). 

2. CARTAN GEOMETRIES AND PARABOLIC GEOMETRIES 

We start with some general background on Cartan geometries. 

2.L Homogeneous spaces and the Maurer Cartan form. Let G be any Lie 
group and let H c G be a closed subgroup. The basic idea behind Cartan geometries 
is to endow the homogeneous space G/H with a geometric structure, whose auto­
morphisms are exactly the left actions of the elements of G. The natural projection 
G —> G/H is well known to be a principal bundle with structure group H. Left multi­
plication by g e G lifts the action of g on G/H to an automorphism of this principal 
bundle. Of course, the group of principal bundle automorphisms of G —* G/H is much 
bigger than just the left translations, so an additional ingredient is needed to recognize 
left translations. 

It turns out that the right ingredient is the (left) Maurer Cartan form uMC e 
Ql(G,g). Recall that this is just a different way to encode the trivialization of the 
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tangent bundle TG by left translations. By definition, for f G TgG we have 

uMC(t) = T\g-i.teTeG = o, 

where Xg-i denotes left translation by g~l. 

Proposition. Let G be a Lie group and let H C G be a closed subgroup such that the 
homogeneous space G/H is connected. Then the left translations Xg are exactly the 
principal bundle automorphisms of G -* G/H which pull back uMC to itself 

For later use, we note some further properties of uMC. Denoting by Lx the left 
invariant vector field generated by X G g, we by definition have uMC(Lx) = X. 

Note that for X G (), the vector field Lx coincides with the fundamental vector 
field CY on the principal bundle G —* G/H generated by X. For g G H, consider the 
right translation r9 by g. Using that the adjoint action of g is the derivative of the 
conjugation by g, one immediately verifies that (r9)*uMC = Ad(g-1)oo;MC. Note that 
for g G H, the map r9 is the principal right action on the bundle G —» G/H. Finally, 
there is the Maurer-Cartan equation: The fact that [Lx, Lx] = L[X,Y] for all X,Y G g 
implies that duMC(^rj) + [u(Z),u(r))) = 0 for all vector fields f and 77 on G. 

2,2. Cartan geometries. The definition of a Cartan geometry is now obtained by 
replacing G —» G/H by an arbitrary principal H-bundle and uMC by a form which 
has all the properties of uMC that make sense in the more general setting. 

Definition. (1) A Cartan geometry of type (G, H) on a smooth manifold M is a 
principal H-bundle p : Q —• M together with a one form u G ^(Q.Q) (the Cartan 
connection) such that 

• (rh)*u = Ad(h)~l o u for all heH. 
• u((A) = A for all A el). 
• CJ(IZ) : Tu(7 —> g is a linear isomorphism for all u G Q. 

(2) A morphism between two Cartan geometries (Q -» M,o;) and (£ —* M,a)) is 
a principal bundle homomorphism § :Q -+ Q such that §*u = uL 
(3) The curvature K G f22(£,g) of a Cartan geometry (Q —> M,u) of type (G,H) is 
defined by 

forcI,7?G2(£). 

Notice that a Cartan geometry is a local structure, i.e. it can be restricted to open 
subsets: For (p : Q —> M, u) and an open subset U C M, we simply have the restriction 
(p : p"~!(U) —> U,u)\p-i(u)). The curvature evidently is a local invariant, i.e. the 
curvature of this restricted geometry is the restriction of the original curvature. 

Any morphism $ between two Cartan geometries as in (2) has an underlying smooth 
map tp : M —• M. It turns out (see [27, chapter 5]) that $ is determined by <p up to a 
smooth function from M to the maximal normal subgroup of G which is contained in 
H. In all cases of interest, this subgroup is trivial or at least discrete, whence this map 
has to be locally constant. In fact, it is necessary to included the possibility of having 
various morphisms covering the same base map to deal with structures analogous to 
Spin structures. 
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By definition (G —> G/H,UJMC) is a Cartan geometry of type (G,H), and Propo­
sition 2.1 exactly tells us that the automorphisms of this geometry are exactly the 
left translations by elements of G. This geometry is called the homogeneous model of 
Cartan geometries of type (G, H). 

The Maurer-Cartan equation noted in the end of 2.1 exactly says that the curvature 
of the homogeneous model vanishes identically. Indeed, the curvature exactly measures 
to what extent the Maurer-Cartan equation fails to hold. One of the nice features of 
Cartan geometries is that vanishing of the curvature characterizes the homogeneous 
model locally, i.e. any Cartan geometry of type (G, H) with vanishing curvature is 
locally isomorphic to (G —• G/H,UJMC), see [27, chapter 5]. More generally, the 
curvature (at least in principle) provides^ solution to the equivalence problem. This 
is one of the reasons why already associating to some geometric structure a canonical 
Cartan connection is a powerful result. For the main part of the theory of parabolic 
geometries however, the existence of a canonical Cartan connection is only the starting 
point. 

There are other interesting features of general Cartan geometries, for example: 

• For any Cartan geometry (p : Q —• M,u) of type (G,H), the automorphism 
group kut(Q,oj) is a Lie group of dimension < dim(G). The Lie algebra 
&ut(Q,oj) can be described completely, and analyzing its algebraic structure 
leads to interesting results, see [9]. 

• The homogeneous model (G —> G/H,UJMC) satisfies a Liouville type theorem. 
If U and V are connected open subsets of G/H then any isomorphism between 
the restrictions of the geometry to these open subsets uniquely extends to an 
automorphism of the homogeneous model. 

• There are various general tools available for Cartan geometries, for example 
the notions of distinguished curves and of normal coordinates. 

2.3. Cartan geometries determined by underlying structures. The results lis­
ted above become particularly powerful if a Cartan geometry is obtained as an equiv­
alent description of some underlying geometric structure. A very simple example is 
provided by Riemannian geometries, which correspond to the case that G is the Eu­
clidean group Euc(n) and H = 0(n). The Lie algebra g is isomorphic to f) ©Mn as 
an H-module. Therefore, a Cartan connection of type (G,H) on a principal 0(n)-
bundle Q —> M decomposes into an Rn-valued form 9 and a Fj-valued form 7 which 
both are H-equivariant. Then 9 defines a reduction of the linear frame bundle of M 
to the structure group 0(n), which is equivalent to a Riemannian metric on M. The 
form 7 defines a principal connection on Q which is equivalent to a metric connection 
on M. If 7 is torsion free, then it must be the Levi-Civita connection. Conversely, 
starting from a Riemannian manifold, one obtains a torsion free Cartan geometry by 
using the orthonormal frame bundle endowed with the soldering form and the Levi-
Civita connection. In that way, one obtains an equivalence between torsion free Cartan 
geometries of type (G, H) and n-dimensional Riemannian manifolds. 

The results discussed above then imply 

• The isometry group of any Riemannian manifold is a Lie group of dimension 
< ±dim(M)(dim(M) + l) . 
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• Any isometry between two connected open subsets of Euclidean space is the 
restriction of a uniquely determined Euclidean motion. 

• The concepts of geodesies and Riemann normal coordinates for Riemannian 
manifolds. 

The case of Riemannian metrics is rather easy, since the bundle Q can be directly 
obtained from the underlying structure. In other cases, one also has to construct this 
principal bundle, a process which is usually called prolongation. This also leads to 
additional features. Let us discuss this in the case of conformal structures, which is 
a model case for parabolic geometries: 

A conformal structure on a smooth manifold M is given by an equivalence class [g] 
of Riemannian metrics on M. Here two metrics g and g are considered as equivalent 
if and only if g = e2fg for some smooth function / on M. Equivalently, a conformal 
structure can be defined as a reduction of structure group of the frame bundle VM to 
the group CO(n) of linear conformal isometries of En . 

It is a classical result of E. Cartan, see [16] that for n = dim(M) > 3 conformal 
structures admit a canonical normal Cartan connection. Consider the semisimple Lie 
group G := SO(n + l, 1). This naturally acts on En + 2 and the action preserves the null 
cone. Fix a nonzero null vector v and let P c G be the stabilizer of the line EU. Then P 
is an example of a parabolic subgroup of the semisimple Lie group G. It turns out that 
P contains an Abelian normal subgroup P+ = En such that P/P+ =: G0 = CO(n). 

The relation of these groups to conformal geometry is the following: The group G 
acts transitively on the space of null lines in En+2 , which is easily seen to be isomorphic 
to Sn. Since by definition P is the stabilizer of one null line we get G/P = Sn and 
this identifies G with the group of conformal isometries of Sn and P with the group of 
conformal isometries fixing a point XQ E Sn. It turns out that the projection from P 
to G0 = CO(n) is given by passing from a conformal isometry fixing XQ to its tangent 
map in x0, see [17] for more details. 

Now consider a manifold M of dimension n endowed with a conformal structure [g]. 
The corresponding reduction of structure group is a G0-principal bundle p0 : QQ —> M 
endowed with a canonical differential form 9 called the soldering form. Cartan's result 
states that this bundle can be canonically extended to a principal bundle p : Q —> M 
with structure group P and the soldering form 8 can be extended to a Cartan connec­
tion u E 0}(Q, 0). If one requires {he Cartan connection u to satisfy a normalization 
condition, then it is uniquely determined. 

Conversely, given a principal P-bundle p : Q —> M endowed with a Cartan connec­
tion u E £11(Q,Q), one obtains a Go-principal bundle QQ := Q/P+ —» M and u induces 
a soldering form on that bundle, thus giving rise to a conformal structure on M. In 
the end one obtains an equivalence of categories between conformal structures and 
Cartan geometries of type (G, P). 

The additional feature provided by this is that one obtains new geometric objects. 
Viewing a conformal structure as a reduction to the structure group CO(n) of the linear 
frame bundle, one obtains a natural vector bundle associated to each representation 
of CO(n). Since CO(n) is a quotient of P, this gives rise to a representation of P and 
the resulting vector bundles can also be viewed as associated to the Cartan bundle 
Q. But the group P admits more general representations than those coming from G0, 
and these give rise to new natural vector bundles and thus new geometric objects. 
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A particularly interesting case is to consider restrictions to P of representations of G. 
This leads to the so-called tractor bundles, see [1, 10]. 

In a series of pioneering papers in the 1960's and 70's culminating in [29], N. Tanaka 
showed that for all semisimple Lie groups and parabolic subgroups normal Cartan 
geometries are determined by underlying structures. These results have been put 
into the more general context of filtered manifolds in the work of T. Morimoto (see 
e.g. [23]) and a new version of the result tailored to the parabolic case was given 
in [12]. Otherwise put, these results show that these underlying structures (which 
seemingly are very diverse) admit canonical Cartan connections. Our next aim is to 
give a uniform description of the underlying structures. 

2.4. Generalized flag manifolds. We first collect some background on the homoge­
neous models of parabolic geometries. We will use elementary definitions, which avoid 
structure theory of Lie algebras. 

Definition. Let 0 be a semisimple Lie algebra. A \k\-grading on 0 is a vector space 
decomposition 

0 = 0_ f c e • •. © 00 © • • • e Qk 

such that [&, 0j] C gt+j and such that the subalgebra 0_ := 0_fc©- • *©0-i is generated 
by 0-1. 

For given 0 there is a simple complete description of such gradings (up to isomor­
phism) in terms of structure theory. For complex 0, they are in bijective correspon­
dence with sets of simple roots of 0 and hence are conveniently denoted by Dynkin 
diagrams with crosses. For real 0 there is a similar description in terms of the Satake 
diagram. 

Let us make this more explicit for the case 0 = sl(n -f- 1,K) for K = E or C. Up 
to isomorphism, each |k|-grading is determined by a block decomposition of matrices: 
One decomposes R n + 1 into k -f-1 blocks of sizes i0l..., i^. The 0o consists of all block 
diagonal matrices, and for i > 0, the component gi (respectively 0_j) consists of those 
matrices, which only have nonzero entries in the ith blocks above (respectively below) 
the main diagonal. The corresponding Dynkin diagram is obtained as follows: Look 
at the matrix entries in the first diagonal above the main diagonal. The block in 
which they are contained either lies in 0O or in g\. Use a dot in the first and a cross 
in the second case and connect each entry with a line to its (one or two) neighbors. 
More explicitly, consider s((4,K) with blocks of sizes 1, 1, and 2. Then one obtains 
a |2|-grading of the form 

/ 00 01 02 02 \ 

0-1 00 01 01 

0-2 0-1 00 00 

\0-2 0-1 00 00/ 

and the corresponding Dynkin (respectively Satake) diagram with crosses is x x o. 
Putting gl := g{ © • • • © gk we obtain a filtration 0 = g~k D • • • D gk of 0 such that 

[0\ 0J] C 0Z+J. In particular, p := 0° is a subalgebra of g and p+ := 01 is a nilpotent 
ideal in p such that p = 0o©p+ is a semidirect sum. The subalgebras p obtained in that 
way are exactly the parabolic subalgebras of 0 used in representation theory. In the 
complex case, a subalgebra of 0 is parabolic if and only if it contains a maximal solvable 



TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIES 17 

subalgebra (i.e. a Borel subalgebra) of g. In the real case, parabolic subalgebras are 
defined via complexification. 

Given a (not necessarily connected) Lie group G with Lie algebra g, it turns out 
that the normalizer P := NQ(P) of p in G has Lie algebra p. This is the parabolic 
subgroup of G associated to the parabolic subalgebra p C g. It turns out that for 
g e P, the adjoint action Ad(g) : g —» g not only preserves the filtration component 
g° but all filtration components g\ Indeed, the whole filtration can be reconstructed 
algebraically from g° = p. Further, one defines a closed subgroup Go C P as the set 
of those g G P, whose adjoint action even preserves the grading of g. Then G0 is 
reductive and has Lie algebra go. One shows that exp defines a diffeomorphism from 
p+ onto a closed subgroup P+ C P and P is the semidirect product of G0 and P+. 

A generalized flag variety is a homogeneous space G/P for a semisimple Lie group 
G and a parabolic subgroup P C G. These homogeneous spaces are always compact 
and for complex G they are the only compact homogeneous spaces of G. In the 
complex case, G/P carries a Kahler metric. Generalized flag manifolds are among the 
most important examples of homogeneous spaces. They show up in many areas of 
mathematics. 

Parabolic geometries are Cartan geometries of type (G, P) for G and P as above. 
In 2.3 we have seen that for an appropriate choice of G and P, such a structure (satis­
fying an additional normalization condition) is equivalent to a conformal Riemannian 
structure. Under the conditions of regularity and normality, general parabolic geome­
tries are equivalent to a certain underlying structure. We will next describe how this 
underlying structure is obtained. 

2.5. The filtration of the tangent bundle. We first show how a parabolic geometry 
(p '• G —• M, u) of type (G,P) gives rise to a filtration of the tangent bundle TM. 
Define the adjoint tractor bundle AM of M as AM := G XPQ. (This is an important 
example of the concept of tractor bundles discussed in 2.3.) Then we have the P-
invariant filtration {g*} of g, which gives rise to a filtration 

AM = A~kM D A~k+1M D--D AkM 

of the adjoint tractor bundle by smooth subbundles. The Lie bracket on g induces a 
tensorial map { , } : AM x AM -> AM. In particular, each fiber of AM is a filtered 
Lie algebra isomorphic to g. 

The Cartan connection u leads to an identification TM = G Xpg/p, with the action 
coming from the adjoint action. The Killing form of g induces a duality between this 
P-module and p+ = g1, so T*M = Q xP p+ = AlM. Hence T*M is a bundle of 
nilpotent filtered Lie algebras. On the tangent bundle, there are similar but more 
subtle structures: Prom above, we see that TM = AM/A°M, and we obtain an 
induced filtration TM = T~kM D • • • D T~~lM of the tangent bundle by putting 
TM := AlM/A0M. The associated graded bundle is 

gr(TM) =- gr_fc(TM) 0 • • • 0 gr^(TM) , 

where gr^TM) = TM/Ti+lM. By construction, this implies that grf(TM) =G xP 

Ql/tf+1. By definition, the subgroup P+ C P acts trivially on this quotient. Hence the 
P-action factorizes over P/P+ = G0 and as a G0-module we have gVfl*4"1 = g*. 
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On the level of principal bundles, we observe that the subgroup P+ C P acts freely 
on G- Hence the quotient Go '•= G/P+ is a principal bundle over M with structure 
group P/P+ — G0. The Cartan connection LJ induces a bundle map from Go to the 
frame bundle of gr(TM) which defines a reduction of structure group. In particular, 
gri(TM) = Go xG0 Su which is a refined version of the identification of the representa­
tion spaces above. Putting the components together, we see that gr(TM) = Go XG0 0--
The Lie bracket on g_ is Go-invariant and hence gives rise to a tensorial map { , } on 
gr(TA/). Hence for each x G A/, the space gr(TxA/) is a nilpotent graded Lie algebra 
isomorphic to g_. 

2.6. Filtered manifolds and their symbol algebras. A crucial observation for the 
sequel is that under a weak condition, a filtration of the tangent bundle of a manifold 
gives rise to the structure of a nilpotent graded Lie algebra on the associated graded 
of each tangent space. 

A filtered manifold is a smooth manifold M together with a filtration TM = 
T~kM D -" D T~lM of the tangent bundle by smooth subbundles, which is compati­
ble with the Lie bracket of vector fields, i.e. such that for £ G T(TlA/) and rj G T(TjM) 
one always has [f.77] G T(Ti+jM). 

Let q : Ti+^M -> Ti+jM/Ti+j+lM = gri+j(TM) be the natural map, and consider 
the operator T(TM) x T(T'M) -> T(gri+j(TA/)) defined by (£77) i-> q([£,rj\). Since 
the indices of the filtration components are always negative, the bundles TlM and T^M 
are contained in T l+J+1A/, which implies that this operator is bilinear over smooth 
functions. Therefore, it is induced by a tensor TlA/ x TjM -> gvi+j(TM). If f G 
T(T i+1A/), then [£77] G r(T l+^+1A/) so the result of this tensor depends only on the 
classes of f in gr̂ (TAZ) and 7; G gr^TA/). Taking together the various components, 
we obtain a tensor C : gr(TA/) x gr(TAI) —> gr(TAZ) which is called the Levi bracket 
By construction, this makes each of the spaces gr(TxM) into a nilpotent graded Lie 
algebra, called the symbol algebra of the filtered manifold at the point x. Consider a 
local isomorphism between filtered manifolds, i.e. a local diffeomorphism / such that 
each of the maps Txf is an isomorphism of filtered vector spaces. Then each Txf 
induces and isomorphism between the associated graded spaces to the tangent spaces, 
which is easily seen to be an isomorphism of the symbol algebras. 

Therefore, the symbol algebra should be considered as the first order approximation 
of a filtered manifold in a point, similarly to the tangent space at a point of an ordinary 
manifold. The usual tangent space (viewed as an Abelian Lie algebra) is recovered in 
the case of the trivial filtration T~lM = TM. 

A priory, the isomorphism class of the symbol algebra may change from point to 
point, but the case that all symbol algebras are isomorphic to a fixed nilpotent graded 
Lie algebra a is of particular interest. In this case, there is a natural frame bundle 
for the vector bundle gr(TAZ) with structure group the group Autgr(a) of all auto­
morphisms of the Lie algebra a, which in addition preserve the grading. This is the 
replacement for the usual frame bundle of a smooth manifold, which is again recovered 
in the special case of the trivial filtration. 

2.7. Regularity and normality. Let (p : G —• M,u) be a parabolic geometry of 
type (G, P). Then we have the curvature K G fi2(<7,0) of u as introduced in 2.2. 
The defining properties of K easily imply that it is horizontal and P-equivariant, so 
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it defines a two-form K on M with values in the bundle Q xP g = AM. Hence the 
Cartan curvature can be viewed as a two form on M with values in the adjoint tractor 
bundle. 

The geometry (p : Q —> M, UJ) is called regular if and only if the curvature n has 
the property that n(TM,TjM) C Ai+j+lM for all i, j < 0. Otherwise put, regularity 
means that the curvature is concentrated in positive homogeneities. 

Recall that a Cartan geometry of type (G, P) is called torsion free, if its curvature 
K G £12(G,Q) actually has values in p c g. In the parabolic case, this can be nicely 
reformulated as n lying in the subspace Q2(M,A°M) c Q2(M,AM). From this de­
scription, it is evident that torsion free parabolic geometries are automatically regular, 
so regularity can be viewed as a condition avoiding particularly bad types of torsion. 
Note that the condition is vacuous for |l|-gradings. 

The geometric meaning of the regularity condition is easy to describe (and also easy 
to prove): 

Proposition. Let (p:Q —> M,UJ) be a parabolic geometry of type (G, P), let TlM be 
the induced filtration components in the tangent bundle, and let { , } be the tensorial 
Lie bracket on gr(TM) introduced in 2.5. 

Then the geometry is regular if and only if the TlM make M into a filtered manifold 
such that the natural bracket on each symbol algebra coincides with { , }. In particular, 
each symbol algebra is isomorphic to g_. 

For regular geometries, the bundle Go —> M from 2.5 nicely ties into the concepts 
for filtered manifolds. The adjoint action of G0 on g_ is by Lie algebra automorphisms 
which preserve the grading (by definition of G0), so it defines a homomorphism G0 —> 
Autgr(g_). This homomorphism turns out to be infinitesimally injective provided that 
none of the simple ideal of g is contained in g0. This condition is very harmless, since 
simple ideals contained in g0 can be left out without problems, so we will assume 
throughout that it is satisfied. As we have noted in 2.6, the group Autgr(g_) is the 
natural structure group for the vector bundle gr(TM) since each symbol algebra is 
isomorphic to g_. The bundle Go can thus be interpreted as the filtered manifold 
version of a first order G0-structure. 

Now we have collected the two structures underlying a regular parabolic geometry 
of type (G, P) that we will need in the sequel: 

• A filtration {TlM} of the tangent bundle such that each symbol algebra is 
isomorphic to g__. 

• A reduction of structure group of the associated graded gr(TM) to the structure 
group G0 c Autgr(g_). 

Similarly to the soldering form used for classical first order structures, this reduction 
of structure group can be expressed by certain partially defined differential forms on 
the bundle Go. This leads to the description of underlying structures used in [12]. 
The collection of these two underlying structures is called a regular infinitesimal flag 
structure, see [13]. 

Fixing the underlying regular infinitesimal flag structure still leaves a lot of freedom 
for the Cartan connection a;, so we need an additional normalization condition: Recall 
the the cotangent bundle T*M can be naturally viewed as Q xP p+ = AlM. Hence 
it naturally is a bundle of nilpotent Lie algebras with the restriction of the algebraic 
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bracket { , } of AM. Now for I > 0 we define a tensorial operator d* : AeT*M®AM - • 
Ae~lT*M® AM by 

t 

9*(aiA • • • A at eg) s) := V\-l)*cYi A • • • A a, A • • • A a? ® {a*, 8} 
i=i 

+ yy^(-iy+j{ai,aj} A ai A ••• A ai A ••• A aj A ••• A a? ® s 

for ar G T*ilf and 5 G AM, where as usual the hats denote omission. This is the 
differential in the standard complex computing Lie algebra homology. In particular, 
d*od* = 0, and the quotients ker(9*)/ im(<9*) are the pointwise Lie algebra homologies 
of the Lie algebras T*M with coefficients in the modules AXM. 

The homology groups H*(p+, g) are naturally P-modules and it is easy to see that 
P+ acts trivially, so they are obtained by trivially extending the action of G0. Hence 
the above bundles ker(3*)/im(<9*) can be naturally viewed as either Q xPHt(p+, g) or 
QQ XGO Ht(p+, g). The latter interpretation shows that they can be directly interpreted 
in terms of the underlying structure. It is a crucial point in the theory that the 
Go-representations H^(p+,g) can be computed explicitly and algorithmically using 
Kostant's version of the Bott-Borel-Weil theorem, see [30]. (In that reference, as well 
as in large parts of the literature, cohomology groups rather than homology groups 
are used, but switching between the two points of view is easy.) 

A parabolic geometry (p : Q —• M,u) is called normal if and only if its curvature K 
has the property that d*(n) = 0. 

Theorem. Let (M, {TlM}) be a filtered manifold such that each symbol algebra is 
isomorphic to g_, and let QQ —» M be a reduction of gr(TM) to the structure group 
G0 C Autgr(g_). Then there is a regular normal parabolic geometry (p : Q —> M,u) 
inducing the given data. If H\(p+,g) is concentrated in non-positive homogeneous 
degrees, then the pair (Q, u) is unique up to isomorphism. 

Remark. (1) The condition on Hi(p+,g) can be easily turned into something much 
more concrete, see [30, 12]. If g is simple, then it excludes exactly two series of examples 
corresponding to the crossed Dynkin diagrams x—o o—o and x—o o=-<o . 
Except for the very degenerate case of the Dynkin diagram x (i.e. the Borel subalgebra 
in sl(2, K)), the corresponding regular normal parabolic geometries are still determined 
by some underlying structure. Geometrically, these give rise to classical projective 
structures and a contact version of projective structures. 
(2) One actually obtains an equivalence of categories between regular normal parabolic 
geometries and regular infinitesimal flag structures. 

2.8. Examples. By Theorem 2.7, a regular normal parabolic geometry on M of type 
(G, P) is for almost all choices of G and P equivalent to a filtration {TlM} of the 
tangent bundle such that each symbol algebra is isomorphic to g_ plus a reduction 
of the structure group of gr(TM) to the group GQ. In many situation, this simplifies 
further, and we will discuss this next. 

(1) |l|-gradings. Here we are in the situation g = g_i © g0 © gi and p = g0 © gi. 
The classification of such gradings is equivalent to the classification of Hermitian and 
pseudo-Hermitian symmetric spaces and therefore well known. Geometrically, the 
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main point is that the filtration {TlM} by definition consists of just one bundle. 
Moreover, the regularity condition is easily seen to be vacuous in this case. 

Hence if (G,P) corresponds to a |1 [-grading, then Theorem 2.7 says that normal 
parabolic geometries of type (G, P) are equivalent to classical first order Go-structures 
on M. Here Go is considered as a (covering of a) subgroup of GL(dim(M),K) via 
Ad : Go - G % i ) . 

The most important examples of these structures are conformal, almost quater-
nionic, and almost Grassmannian structures. The exceptional case corresponding to 
the Dynkin diagram x—o o—o corresponds to a |l|-grading. Here G0 = GF(g_i) 
so the underlying infinitesimal flag structure contains no information at all. Normal 
parabolic geometries of this type are equivalent to classical projective structures, which 
will be discussed in more detail in 3.2 below. 

(2) Structures determined by the filtration. We have seen in 2.7 that the adjoint 
action defines a homomorphism Go -» Autpr(g_). If this is an isomorphism, then 
Go is the full natural frame bundle of gr(TM) and there is no additional reduction of 
structure group. Hence in this case Theorem 2.7 shows that a regular normal parabolic 
geometry on M is equivalent to a filtration {TlM} such that each symbol algebra is 
isomorphic to g_. 

There is a simple way to obtain structures of this type: For any semisimple g, the 
group G :=- Aut(g) has Lie algebra g. It turns out (see [25]) that for this choice 
of G we obtain G0 = Aut§r(g_) provided that H\(p+,g) is concentrated in negative 
homogeneous degrees. Again this homological condition is easy to verify, and it turns 
out that it is often satisfied. The paper [30] contains a complete list of pairs (g,p) 
such that the condition is not satisfied. 

This class of examples contains the quaternionic contact structures introduced by 
0. Biquard, see [3, 4], generic distributions of rank 2 in dimension 5 (which were 
studied in Cartan's classic [15]), rank 3 in dimension 6, and rank 4 in dimension 7. 

(3) Parabolic contact structures. These correspond to |2|-gradings such that 
0_2 is one-dimensional and such that the bilinear form g_i x g_x —> g_2 defined by 
the bracket is non degenerate. The classification of such gradings is equivalent to the 
classification of quaternionic symmetric spaces and therefore well know. Gradings of 
this type exist only on simple Lie algebras and are unique up to isomorphism. With 
a few exceptions, they exist on all non-compact, non-complex simple Lie algebras. 

Since g„ by definition is a real Heisenberg algebra, a filtration TM -= T~2M D 
T~lM of TM such that each symbol algebra is isomorphic to g_ is exactly a contact 
structure T~lM C TM. Hence the filtration cannot be enough to determine the 
geometry and one needs the additional reduction to the structure group Go, which can 
be expressed as an additional structure on T~lM. 

This class contains non-degenerate partially integrable almost CR structures of hy-
persurface type, for which the additional structure on T~lM is an almost complex 
structure, as well as Lagrangean contact structures, where the additional structure is 
a decomposition of T~lM into the direct sum of two isotropic subbundles. Next, there 
is the example of Lie contact structures (see [26]), in which the additional structure 
is a decomposition of T~lM as the tensor product of two auxiliary bundles, one of 
which has rank 2 while the other one is endowed with a pseudo-euclidean metric of 
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some fixed signature. Finally, this class also contains the second exceptional structure 
mentioned in Remark 2.7 (2). In that case, regular normal parabolic geometries are 
equivalent to a contact analog of projective structures, see [20]. 

(4) As an example of general parabolic geometries, we discuss generalized path geome­
tries. These correspond to the |2|-grading on sl(n + 2,R) corresponding to the first 
and second simple root. In block form, this decomposition has the form 

00 вř 02 
3-1 øo Øf 
3-2 9*. 00 

where the blocks are of size 1,1, and n. "We have met this grading for n = 2 in 2.4. 
For later use, we have indicated decomposition of g±i into a one-dimensional part 
g±x and an n-dimensional part g^ . Evidently, this decomposition is invariant under 
the adjoint action of go- For an appropriate choice of G, the subgroup Go consists 
of all automorphisms of the graded Lie algebra g_ which in addition preserve the 
decomposition g_i = g£x 0 %\. 

From this description, we can directly read off the geometric meaning of a regular 
infinitesimal flag structure of type (G, P) on a smooth manifold M of dimension 2n-F 1: 
One has two transversal subbundles L, R C TM of rank 1 and n, respectively, such 
that for £, 77 G r(It) we have [f, rj\ G T(L 0 R) while the Lie bracket induces an 
isomorphism L®R-> TM/(L © R). 

Examples of such structures come from path geometries. Let IV be a manifold of 
dimension n + 1 and consider the projectivized tangent bundle M := VTN, the space 
of lines through the origin in TIV. Take R to be the vertical bundle of the projection 
VTN —• IV. Since M is a projectivized tangent bundle, there is a tautological subbun-
dle H C TM of rank n + 1. The fiber of H in a point consists of those tangent vectors 
whose image in TIV lies in the line determined by the point. Hence R is contained in H 
and a path geometry on IV is given by the choice of a line subbundle L C H such that 
H = L 0 It. A path geometry on Ar is equivalent to a family of unparametrized curves 
in IV, with exactly one curve through each point in each direction. In particular, a 
system of second order ODE's on a manifold Y can be equivalently described as a path 
geometry on Y x R by considering the unparametrized curves describing the graphs 
of solutions, see [21, 19]. 

For n 7-- 2, the data (M, L, It) corresponding to a regular infinitesimal flag structure 
as above are locally isomorphic to a path geometry. Namely, for n ^ 2 the subbundle 
It C TM turns out to be automatically integrable, and one defines N to be a local 
leaf space for the corresponding foliation. Then for an open subset U C M, there is a 
surjective submersion ^ : U —• N such that ker(Tc7/>) = Rx for all x G U. Under Tx̂ j, 
the line Lx gives rise to a line in T^X)N, hence defining a lift \j) : U —• VTN. Possibly 
shrinking t7, T/> is an open embedding. By construction, T0 maps It to the vertical 
subbundle and L 0 It to the tautological subbundle. 

2.9. Harmonic curvature. There is a last element of the general theory of parabolic 
geometries that we have to discuss. The Cartan curvature K G Q2(M,AM) as defined 
in 2.2 and 2.7 is a fairly complicated object. In particular, to understand it geomet­
rically, one needs the adjoint tractor bundle, which is an equivalent encoding of the 
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principal Cartan bundle. An important feature of regular normal parabolic geometries 
is that one may pass to the harmonic curvature KH, which is much easier to handle, 
but as powerful as K. 

In 2.7 we have defined the operators d* : AeT*M ® AM -* A£~lT*M ® AM and 
noted that d*od* = 0. For a normal geometry the curvature K by definition is a section 
of the subbundle ker(<9*) C A2T*M <g) AM. Hence we can project it to a section KH 

of the quotient ker(9*)/im(<9*). As we have noted in 2.7, this quotient bundle can be 
identified with Go XG0 #2 (P -H9) , SO it admits a direct interpretation in terms of the 
underlying structure and is algorithmically computable. 

We have also seen that H2(p+,g) splits into a direct sum of G0-irreducible com­
ponents. Correspondingly, we obtain a splitting of KH into fundamental curvature 
quantities. There are several general tools to describe (parts of) KH in terms of the 
underlying structure. 

The following result shows that KH still is a complete obstruction to local flatness, 
and indeed, it contains the full information about K. 

Theorem. Let (p : G -> M,u) be a regular normal parabolic geometry of type (G, P) 
with curvature K and harmonic curvature KH. 
(1) (Tanaka) If KH vanishes identically, then K vanishes identically. 
(2) (Calderbank-Diemer) There is a natural linear differential operator L such that 
L(KH) = K. 

The first part is a rather easy application of the Bianchi-identity for Cartan connec­
tions. The second part is much more difficult. It follows from the general machinery 
of BGG-sequences, see [14, 6]. 

3. CORRESPONDENCE SPACES AND TWISTOR SPACES 

Now we switch to the discussion of constructions relating parabolic geometries of 
different type. We start with the constructions of correspondence spaces and twistor 
spaces, which is related to different parabolic subgroups of the same group G. The 
basic reference for this chapter is [7]. 

3.1. Correspondence spaces. Consider a semisimple Lie group G with nested par­
abolic subgroups Q C P C G. For the homogeneous models, we have the simple 
observation that G/Q naturally fibers over G/P. Moreover, we can interpret G/Q as 
G xP (P/Q), so this is the total space of a natural fiber bundle over G/P. It turns 
out that the fiber P/Q can be equivalently viewed as the quotient of the semisimple 
part of G0 C P by its intersection with Q. This intersection turns out to be parabolic, 
so P/Q again is a generalized flag manifold. The situations covered by this construc­
tions are easy to describe in the Dynkin (or Satake) diagram notation: The diagram 
corresponding to q is obtained from the one corresponding to p by changing dots into 
crosses. The fiber P/Q can then be directly read off the two diagrams, see [2]. 

Carrying this over to curved Cartan geometries is easy. Given a geometry (p : G -» 
N,u) of type (G, P) the subgroup Q C P acts freely on G> Hence the correspondence 
space CN := G/Q is a smooth manifold, and the obvious map G —> CN is a Q-principal 
bundle. Moreover, CN = G x P (P/Q), so n : CN -> N is a natural fiber bundle with 
fiber a generalized flag manifold. In particular, this fiber is always compact. By 
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definition, u G nl(G,s) can also be viewed as a Cartan connection on the principal 
Q-bundle Q - • CN. 

The next obvious question is whether this construction is compatible with regularity 
and normality. At this point, the uniform algebraic construction of the normalization 
condition pays off: 

Proposition. If (Q —> IV, u) is a normal parabolic geometry of type (G,P) then the 
parabolic geometry (Q —• CIV, u) of type (G, Q) is normal, too. 

As we shall see in an example below, regularity is not preserved by the construction 
in general. However, finding conditions which are equivalent to regularity is usually 
very easy. 

3.2. Example. Let Q C G := SL(n + 2,R) be the parabolic subgroup corresponding 
to generalized path geometries as in Example (4) of 2.8. Then Q is the stabilizer of the 
flag consisting of the line spanned by the first vector sitting inside the plane spanned 
by the first two vectors of the standard basis of Rn+2. Hence we can write it as the 
intersection P\ H P2 for parabolics P\ and P2 (the stabilizers of the line respectively 
the plane). Let us start by analyzing the nested parabolics Q C P\ C G. 

Parabolic geometries of type (G, P\) correspond to classical projective structures on 
(n+ l)-dimensional manifolds, see Example (1) of 2.8. Such a structure on a manifold 
Z is given by the choice of a projective equivalence class [V] of torsion free linear 
connections on TZ. Two linear connections V and V on TZ are called protectively 
equivalent if there is a one form T G Vtl(Z) such that 

V<i7 = V€r7 + T(0». + T(!,)e 

for all vector fields f, rj G X(Z). Evidently, projectively equivalent connections have the 
same torsion. Alternatively, projective equivalence can be characterized as having the 
same torsion and the same geodesies up to parametrization. The harmonic curvature 
for this geometry is the projective Weyl curvature, i.e. the totally tracefree part of the 
curvature of any connection in the class. 

Since a; is a Cartan connection on Q —• Z, we have TZ = Q xPl (g/pi). One easily 
verifies that Q C P\ can be described as the stabilizer of a line in g/pi. Since P\ 
acts transitively on the projective space V(g/p\), see that P/Q = V(g/p\). Hence 
CZ = Q xPl P/Q can be naturally identified with the projectivized tangent bundle 
VTZ. Since projective structures are torsion free, the curvature K of u has values in 
pi, which immediately implies that u is regular as a Cartan connection on Q —• CZ. 
From Example (4) of 2.8 we conclude that (Q —• CZ, u) can be interpreted as a path 
geometry on Z. One verifies that the paths described in that way are exactly the 
unparametrized geodesies of the connections from the projective class. 

Let us now switch to the nested parabolic subgroups Q C P2 C G. A normal 
parabolic geometry (Q —• IV, u) of type (G,P2) exists only for dim(IV) = 2n and is 
equivalent to an almost Grassmannian structure. Essentially, such a geometry is given 
by two auxiliary vector bundles E and F over IV of rank 2 and n, respectively, and 
an isomorphism E % F —• TN. The subgroup Q C P2 can be characterized as the 
stabilizer of a line in the representation inducing E, which similarly as above implies 
that CN can be identified with the projectivization VE of E —• N. 
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Here u is not regular as a Cartan connection on Q —» CN in general. Regularity 
turns out to be equivalent to the fact that the structure on IV is Grassmannian rather 
than almost Grassmannian. This can be characterized by vanishing of a certain torsion 
or equivalently by the fact that there is a torsion free connection compatible with the 
structure. If this is satisfied, then we obtain a generalized path geometry on VE. The 
subbundle L which is one of the ingredients of that structure is simply the vertical 
bundle of VE —> IV. In particular, the manifold IV can be viewed the space of all paths 
of the induced path geometry. The subbundle L@ R C TCN is again a tautological 
subbundle. The splitting of this tautological subbundle as L © It comes from the 
torsion free connections compatible with the Grassmannian structure. 

Suppose that n > 2 (the case n = 2 will be discussed later). Then starting from 
a Grassmannian structure on IV, we obtain a generalized path geometry on CN := VE. 
We know that the resulting subbundle R C TCN is involutive, so for sufficiently small 
open subsets U C CIV we can form a local leaf space ij) : U —• Z. With a bit more 
work, one shows that one may take U = 7r"1(V), for sufficiently small and convex 
open subsets V C 1V, where tr : CN —• 1V is the natural projection. One then obtains 
a correspondence 

zJLn-'W-^V, 
which is the basis for twistor theory for Grassmannian structures. 

3.3. Characterizing correspondence spaces. A central feature of the general the­
ory of correspondence spaces is that one can completely characterize parabolic geome­
tries which are locally isomorphic to correspondence spaces. This characterization is 
uniform for all the structures. 

Let us return to the general setting of nested parabolics P C Q C G. The question 
we want to address is when a regular normal parabolic geometry (p : Q —• M, u) of type 
(G, Q) is locally isomorphic to the correspondence space CN for a parabolic geometry 
of type (G, P). There is a fairly obvious necessary condition: The subspace p/q C g/q 
is Q-invariant, thus giving rise to a subbundle V C TM. For a correspondence space 
CIV, this subbundle is the vertical subbundle of the natural projection CIV —• IV. Since 
the Cartan connections for IV and CIV are the same, so are their curvatures. Since 
vectors from V are vertical from the point of view of IV, they must hook trivially into 
the Cartan curvature of CIV. 

It turns out that this condition is also sufficient: 

Theorem. Let (p : Q —• Myu) be a parabolic geometry of type (G,Q) with Cartan 
curvature K, and let V C TM be the distribution corresponding to p/q C g/q. Then 
M admits an open covering {Ui} such that the restriction of (Q —• M,o;) to each Ui 
is isomorphic to the correspondence space of some parabolic geometry of type (G, P) if 
and only ifi^K = 0 for all £ G V. 

The proof of this theorem is not specifically "parabolic" and uses only principal 
bundle geometry. One first shows that the curvature condition in the theorem implies 
that the distribution V C TM is involutive. Hence V gives rise to a foliation of M, 
and one considers a local leaf space for this foliation, i.e. an open subset U C M 
together with a surjective submersion -0 : U -» IV such that kei(Txip) = Vx for all 
x e U. For sufficiently small U, one next constructs a diffeomorphism from an open 



26 ANDREAS CAP 

subset of p~l(U) C Q onto an open subset of the trivial principal bundle IV x P —> IV, 
which satisfies a certain equivariancy condition. This diffeomorphism is then used to 
carry over u to this open subset of IV x P, and one proves that the resulting form 
uniquely extends to all of IV x P by equivariancy. It is easy to see that this not only 
gives a parabolic geometry of type (G, P) on IV but also an isomorphism (of parabolic 
geometries) between U and an open subset of CN. 

While this result is very satisfactory from a conceptual point of view, it is difficult 
to apply in concrete cases, since the Cartan curvature is a complicated object. From 
part (2) of Theorem 2.9 we know that for regular normal geometries there is a nat­
ural differential operator L which computes the Cartan curvature from the harmonic 
curvature r^I/, which is much easier to.handle. This operator is constructed using 
the machinery of BGG sequences and the construction is explicit enough to lead to 
relations between algebraic properties of K and K,H-

Proposition. Let (Q —• M, u) be a regular normal parabolic geometry of type (G, Q) 
with Cartan curvature K and harmonic curvature K,H> and let V C TM be as above. If 
i^H = 0 for all £ G V, then i^n = 0 for all £ G V. 

Combining this result with the theorem above, one obtains a very efficient local char­
acterization of correspondence spaces. From another point of view, these are equivalent 
conditions for the existence of natural geometric structures on twistor spaces. It has 
to be pointed out here that usually the structure of the harmonic curvature can be 
understood without detailed knowledge of the canonical Cartan connection. 

3.4. Example. Let us interpret the results on local characterization of correspondence 
spaces in the example discussed in 3.2. So we start with a generalized path geometry 
(M, L, R) and the associated regular normal parabolic geometry (p : Q —> M,u) of 
type (G,Q). For n > 2 (which we will still assume throughout this subsection), the 
harmonic curvature KH splits into two irreducible components: 

T : L A TM/(L 0 R) -> R Torsion 

p : R A TM/(L © R) -> R* ® R Curvature 

The types of these components can be deduced from the structure of the homology 
group H2(q+,0)> which can be determined algorithmically using Kostant's version of 
the Bott-Borel-Weil theorem. There are general procedures how to obtain explicit 
formulae for the two components, say in terms of a local non-vanishing section of L. 

Let us first consider the characterization of correspondence spaces coming from the 
inclusion Q C P\ C G. From 3.2 we know that these are exactly the path geometries 
associated to the unparametrized geodesies of a projective class of connections. The 
distribution V corresponding to pi/q C g/q evidently is the subbundle R C TM. The 
results from 3.3 now show that M is locally isomorphic to a correspondence spaces if 
and only if p vanishes identically 

As we have noted in 2.8, the subbundle R C TM is involutive (since n > 2). For 
a local leaf space ip : U —* Z of the corresponding foliation, the subset U then is 
naturally diffeomorphic to an open subset in the projectivized tangent bundle VTZ. 
Then our result shows that the generalized path geometry on M induces a projective 
structure on Z if and only if p vanishes identically If this is the case, then the torsion 
T is directly related to the projective Weyl curvature of the induced structures on the 
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local leaf spaces. In particular, the path geometry on M is locally flat if and only if 
the induced projective structures on all local leaf spaces are locally projectively flat. 

Another interesting application of this criterion is to the path geometry associated 
to a system of second order ODE's as described in 3.2. This reproduces a result of 
[19]: 

Theorem. A system of second order ODE's is locally equivalent to a geodesic equation 
if and only if the curvature p of the associated path geometry vanishes identically. 

Now we switch to the characterization of correspondence spaces with respect to 
the inclusion Q C F2 C G. The distribution V corresponding to p2/q C 0/q is the 
subbundle L C TM. This is always involutive and local leaf spaces for the associated 
foliation locally parametrize the paths of the path geometry. Hence here the main 
interpretation of the characterization result is a criterion when a generalized path 
geometry locally descends to a Grassmannian structure on the space of all paths. 
From 3.3 we see that this is the case if and only if T = 0, which is equivalent to the 
generalized path geometry being torsion free. 

Again there is an interesting application to the theory of systems of second order 
ODE's: One defines such a system to be torsion free if and only if the associated 
path geometry is torsion free. For such a systems we obtain an induced Grassmannian 
structure on the space of solutions of the system. The curvature of this Grassmannian 
structure can be constructed from the curvature p of the path geometry. Of course, 
this curvature descends to the space of solutions and hence is constant along each 
solution. Using this, D. Grossman proved in [21] the following result. 

Theorem. For generic torsion free systems of second order ODE's, the curvature of 
the associated path geometry can be used to solve the system explicitly. 

3.5. The case n = 2. Let us briefly discuss how the examples related to generalized 
path geometries discussed in 2.9, 3.2, and 3.4 change in the case n = 2. The ingredients 
are projective structures on three manifolds, generalized path geometries in dimension 
five, and four dimensional almost Grassmannian structures. The main point is that an 
almost Grassmannian structure in dimension four is equivalent to a conformal pseudo-
Riemannian spin structure of split signature (2,2). The auxiliary bundles E and F 
whose tensor product is isomorphic to the tangent bundle both have rank two. They 
are exactly the two spinor bundles. 

The structure of harmonic curvatures for n = 2 is also different from the case n > 2. 
For almost Grassmannian structures the more symmetric situation leads to the fact 
that there are two curvatures rather than one curvature and one torsion. These two 
components are exactly the self dual and the anti self dual part of the Weyl curvature 
of the corresponding conformal structure. 

On the level of path geometries, a third irreducible component in the harmonic 
curvature shows up. This component is represented by a torsion r : A2R —• L, 
which is the obstruction to involutivity of the subbundle R. (For n > 2, there also is 
a corresponding component in the homology H2(q+,0), but this sits in homogeneity 
zero. By regularity, this component cannot contribute to the harmonic curvature.) 

Starting from a conformal four manifold, the correspondence space is a projectivized 
spinor bundle, which inherits a generalized path geometry. The torsion r on this space 
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corresponds exactly to the self dual part of the Weyl curvature downstairs. Vanishing 
of this part, i.e. anti self duality, is equivalent to existence of local leaf spaces for the 
bundle R on the correspondence space. This is the basis for twistor theory for anti 
self dual four manifolds in split signature. The Riemannian version of twistor theory 
can be either obtained from the complex version of this construction or by an analog 
of the correspondence space construction (for a subgroup which is not parabolic). 

4. ANALOGS OF THE FEFFERMAN CONSTRUCTION 

We now switch to a second general construction relating parabolic geometries of 
different types. The basic example for this is Fefferman's construction which relates 
CR structures to conformal structures. This construction is of different nature to the 
ones discussed in section 3 since it involves two different semisimple groups. More 
details on the contents of this section can be found in [8] and [11]. 

4.L The Fefferman construction. We start by reviewing Fefferman's original con­
struction from [18] and its interpretation in terms of Cartan geometries. He started 
from a strictly pseudoconvex domain ft C C n + 1 with smooth boundary M := <9ft. 
This boundary naturally inherits a CR structure (see below). Studying the Bergman 
kernel of ft, Fefferman was led to consider the ambient metric: Put C* := C\ {0} and 
consider M# = M x C* and ft# = ft x C*. A defining function r for M induces a 
defining function r# for M#. Since M is strictly pseudoconvex, r# can be used as the 
potential for a pseudo-Kahler metric g# of signature (n+1,1). Fefferman showed that 
one may always chose r to be an approximate solution of a Monge-Ampere equation 
and doing this a certain jet of g# along M# is invariant under biholomorphisms of ft. 
Otherwise put, this jet is a CR invariant of M. 

Hence it is a natural idea to look at the restriction of g# to M#. This turns out 
to be degenerate but only in the real directions within the vertical subspaces of the 
projection M# —* M. To get rid of these directions, one passes to the space M = 
M x (C*/]R*) = M x Sl. Using a section of the evident projection M# —> M, one 
can pull back g# to a non-degenerate Lorentz metric on M. Changing the sections 
leads to a conformal change of the metric, so one obtains a well defined conformal 
class of metrics of signature (2n +1,1) on M. This conformal class is invariant under 
biholomorphisms of ft and hence depends only on the CR structure of M. 

CR structures fit into the general concept of parabolic geometries as the parabolic 
contact structures associated to g = su(p + l,q + 1). In fact, one obtains a more 
general concept: A partially integrable almost CR structure on a smooth manifold M 
of dimension 2n + 1 is a contact structure H C TM together with an almost complex 
structure J : H —> H such that the Levi bracket C (see 2.6) satisfies C(J£, Jrj) = 
C(^rj) for all £,77. Under this assumption, C is the imaginary part of a Hermitian 
form (with values in the real line bundle TM/H), the Levi form, which has a signature 
(p, q). Since there is an ambiguity of sign, we require p > q to have the signature well 
defined. 

The compatibility of C and J, which is usually referred to as partial integrability, can 
also be nicely formulated in terms of complexifications. The almost complex structure 
J leads to a splitting of H ® C C TM <g> C into the direct sum of the holomorphic part 
i/1 , 0 and the anti holomorphic part H0'1, which are conjugate to each other. Partial 
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integrability is equivalent to the fact that the Lie bracket of two sections of H0'1 is a 
section of H ® C. An almost CR structure is called integrable or a CR structure if the 
subbundle H°'lM C TM ® C is involutive, so the Lie bracket of two sections of H0,1 

even is a section of H0'1. 
Partially integrable almost CR structures of signature (p, q) are then equivalent to 

regular normal parabolic geometries associated to the group PSU(p + l,q + 1). For 
many applications it is better to extend the group to G := SU(p + l,q + 1). Let 
P be the stabilizer of an isotropic complex line t in V := Cp+9+2. Then a regular 
normal parabolic geometry of type (G, P) on a manifold M is equivalent to a partially 
integrable almost CR structure of signature (p,q) plus a choice of a complex line 
bundle, which is an (n + 2)nd root of the so-called canonical bundle. While such a 
choice need not exist in general, it is always possible locally. The integrability condition 
turns out to be equivalent to torsion freeness of the associated parabolic geometry. 

If M is the boundary of a strictly pseudoconvex domain Q C Cn+1, then one defines 
HXM as the maximal complex subspace of TXM C TxCn+1. This evidently has an 
almost complex structure and it defines a contact structure by strict pseudoconvexity. 
The latter condition also implies that the signature is (n,0). Looking at the complex­
ified tangent bundle, we see that H°>lM = (TM ® C) fl T°*lCn+l. Since Cn+1 is a 
complex manifold, the subbundle T0ylCn+l C TCn+1 ® C is involutive, so we obtain a 
CR structure on M. Triviality of the tangent bundle of Cn + 1 implies that the canoni­
cal bundle of M is canonically trivial, so there is no problem in choosing an (n + 2)nd 
root. 

Now it is easy to obtain the Fefferman construction for the homogeneous model: The 
real part of the Hermitian form on V defines an inner product of signature (2p+2,2^+2) 
on the underlying real vector space VR. Since elements of G preserve this real part, we 
obtain an injection G «-> SO(2p + 2,2q + 2). Analyzing the induced homomorphism 
between the fundamental groups one even shows that this naturally lifts to an inclusion 
into the spin group G := Spin(2p + 2,2q + 2). Choose a real line £R in the isotropic 
complex line t and let P C G be the stabilizer of £R. The intersection Q := GDP is the 
stabilizer of £R in G, so it is evidently contained in P and P/Q = RP1 . Elementary 
linear algebra shows that G acts transitively on the space of real null lines in VR. 
Hence the inclusion G c-> G induces a diffeomorphism G/Q —> G/P. The latter space 
is well known to be the homogeneous model of conformal spin structures of signature 
(2p + 1,2q + 1). Hence we obtain such a structure (which by construction is invariant 
under the action of G) on G/Q which is the total space of a circle bundle over G/P. 

Passing to curved geometries is easy: Looking at the tangent spaces at the base 
points, the diffeomorphism G/Q —• G/P induces a linear isomorphism g/q —• g/p 
which is equivariant over the inclusion Q <--> P. Here q = g n p is the Lie algebra of Q. 
In particular, we obtain a conformal class of inner products of signature (2p+1,2q +1) 
on g/(g n p) which is invariant under the natural action of Q. Given a partially 
integrable almost CR structure (A/,H, J), let (Q -> M,u) be the associated regular 
normal parabolic geometry. The subgroup Q C P acts freely on Qy so the Fefferman 
space M := Q/Q is a smooth manifold and the total space of the natural fiber bundle 
Q XP P/Q over M. On the other hand, the evident projection Q —> M is a principal 
Q-bundle and u e Qx(Q,p) defines a Cartan connection on that bundle. In particular, 
TM = Q XQ g/q so the Q-invariant class of inner products on g/q gives rise to a 
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conformal structure on A/, which by construction depends only on the CR structure 
on M. 

It is easy to give a more explicit description of M. Namely, one shows that M can be 
naturally identified with the space of real lines in a natural complex line bundle, which 
is closely related to the chosen root of the canonical bundle. One can also construct 
explicitly a metric from the conformal class in terms of a choice of contact form on 
M (usually called a pseudo Hermitian structure) and the associated Weyl connection 
(see [13]) on a complex line bundle. 

4.2. Cartan geometry interpretation. The construction of the 'canonical confor­
mal class on M from above can be easily reformulated in terms of Cartan geometries. 
As we know from 4.1, we have the Q-principal bundle G —* M and we can view the 
canonical CR Cartan connection a; as a Cartan connection on that bundle. Now via 
the inclusion Q <̂-> P, we can extend the structure group of this bundle. Define a 
principal P-bundle G := G *Q P —> M. Mapping u £ G to the class of (u,e) in G 
defines an injective smooth map j : G —• G which is equivariant over the inclusion 
Q <-» P. It is easy to show that there is a unique Cartan connection Q £ &>l(G, g) such 
that UJ\TJ(TQ) — w (viewing g as a Lie subalgebra of g). 

As a Cartan connection on a principal P-bundle u is automatically regular and 
hence it induces a conformal spin structure on the base M. From the construction it 
is evident this this leads to the conformal structure described in 4.1. 

Now one might expect that u is the normal Cartan connection associated to this 
conformal spin structure, but this is not true in general: 

Theorem. Let (A/, H, J) be a partially integrable almost CR structure with Fefferman 
space M. Then the Cartan connection u on the extended principal bundle Q —> M is 
normal if and only if the almost CR structure is integrable. 

The necessity of integrability follows rather easily from the fact that normal con­
formal Cartan connections are automatically torsion free. The proof of sufficiency of 
this condition is much more subtle. The result does not follow from algebraically com­
paring the normalization conditions for the two geometries in question but one has to 
prove additional properties of the curvature of a torsion free geometry. In that respect, 
the situation is very different from the case of correspondence spaces discussed in the 
last section. 

For some applications of the Fefferman construction, the question of normality of u 
is not relevant. For example, conformal invariants of the Fefferman space are always 
invariants of the underlying partially integrable almost CR structure. However, we 
will show below that normality of u leads to many other and deeper results. 

If the structure on M is not integrable, then the canonical Cartan connection for 
the conformal spin structure on M can be obtained by normalizing u. The difference 
of CJ from the normal Cartan connection is given by a one form on M with values in 
the conformal adjoint tractor bundle G xp 0. One may try to imitate some of the 
developments described below taking into account the change caused by this form. To 
my knowledge, this has not been explored up to now. 

4.3. Applications of normality to CR geometry. We want to discuss a few results 
which are based on normality of the Cartan connection CJ in the case of a CR structure. 
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The first of these was the main application in Fefferman's original article [18] as well 
as in the first version for abstract CR structures in [5]. 

• Cherri-Moser chains are the projections to M of null geodesies in M. 
Chern-Moser chains in M can be obtained as the projections of flow lines of vector 

fields on Q which are mapped to certain constant functions by UJ. Likewise, conformal 
circles on M are the projections of flow lines of vector fields on Q which are mapped to 
certain constant functions by u. For initial directions which are null, conformal circles 
are just null geodesies which, as unparametrized curves, are conformally invariant. 
The initial direction of a chain is always transversal to the contact subbundle, and 
such a direction always admits a lift to a null direction in M. Then the result easily 
follows from the fact that u is obtained from u by equivariant extension. 

• Relations between CR tractor calculus on M and conformal tractor calculus on M. 
Standard tractors are probably the nicest way to relate a CR manifold to its Feffer-

man space. The CR standard tractor bundle T of M is by definition the associated 
bundle Q xP V, where V denotes the standard representation of G. By construction, 
this is a rank n + 2 complex vector bundle endowed with Hermitian inner product h 
of signature (p+ l,q + 1), and a complex line subbundle T1 C T which is isotropic 
for h. This subbundle corresponds to the complex line in V which is stabilized by P. 
The canonical Cartan connection u on Q induces a Hermitian linear connection on T, 
called the normal standard tractor connection. 

Likewise, the conformal standard tractor bundle f of the Fefferman space M is the 
bundle Q XpV. This is a real bundle of rank 2n + 4 endowed with a Euclidean bundle 
metric h of signature (2p + 2,2(7 + 2) and an a real line subbundle f1 which is isotropic 
for h. The Cartan connection u induces the normal standard tractor connection on 
f. 

The relation between the Cartan bundles and the Cartan connections discussed 
above can be interpreted as the fact that f (including the additional structures) can 
also be obtained as Q xGnp V and the normal tractor connection on f is induced by 
u, viewed as a Cartan connection on Q —> M. 

Both for conformal and for CR structures, the standard tractor bundle and the 
standard tractor connection lead to an efficient calculus. Hence we obtain a close 
relation between CR tractor calculus on a CR manifold and conformal tractor calculus 
on its Fefferman space. 

• Conformally invariant differential operators on M descend to families of CR invari­
ant differential operators on M. 

The relations between the standard tractor bundles of M and M can be extended to 
other bundles, for example other tractor bundles and density bundles. One can then 
interpret sections of some bundle over M as a subset of sections of some other bundle 
over A/, which usually are characterized as solutions of some differential equation. It 
often happens that this works for a whole family of bundles over M (with different 
weights) and the same bundle on M. Based on the relations between tractor calculi 
discussed above, one shows that in several cases conformally invariant differential op­
erators preserve the subspaces of "downstairs" sections and hence descend to (families 
of) CR invariant differential operators. 
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• Interpretation of solutions of certain CR invariant differential equations. 
The solutions of certain CR invariant differential equations admit a natural inter­

pretation in terms of the conformal geometry of the Fefferman space. An example 
for this will be given in the discussion of conformal isometries of the Fefferman space 
below. 

4.4. Conformal geometry of Fefferman spaces. The second interesting line of 
applications is towards Fefferman spaces as an interesting subclass of conformal struc­
tures. 

• Fefferman spaces have a parallel orthogonal complex structure on the standard tractor 
bundle and are locally characterized by that. 

We have seen above that for the Fefferman space M of a CR manifold M, the 
conformal standard tractor bundle can be interpreted as T = Q xGnp V, and the 
tractor connection on that bundle is induced by the CR Cartan connection LU. Since 
V is a complex vector space, we obtain an almost complex structure J on T, which is 
orthogonal (or equivalently skew symmetric) with respect to the tractor metric, and 
parallel for the connection on L(T, T) induced by the standard tractor connection. 

This can be interpreted as the fact that the holonomy of the standard tractor con­
nection is contained in SU(p+1, q+1) C SO(2p+2,2q + 2). Conversely, one can show 
that a conformal structure of signature (2p + 2,2q + 2) which admits such a holonomy 
reduction, is locally conformally isometric to a Fefferman space. This shows that the 
role of Fefferman spaces among general conformal structures is similar to the role of 
Calabi-Yau manifolds among general Riemannian manifolds. 

• Fefferman spaces admit nontrivial Twistor spinors and conformal Killing forms of 
all odd degrees. 

Several conformally invariant differential equations which are overdetermined (and 
thus do not have solutions in general) always admit nontrivial solutions on Fefferman 
spaces. The simplest example of this situation is that one constructs a nowhere van­
ishing conformal Killing field j on M, which spans the vertical subbundle of M —» M. 
The most conceptual interpretation of this is via the almost complex structure J on 
the standard tractor bundle T —> M. Since this is skew symmetric with respect to the 
tractor metric, it can be interpreted as a parallel section of the adjoint tractor bundle 
A = Q Xp g. It is well known that there is a natural projection I I : A —• TM and the 
image of a parallel section under this projection is automatically a conformal Killing 
field (which in addition hooks trivially into the Cartan curvature). 

Viewing A as A2T, we can form the k-fold wedge product of J with itself, which 
defines a nonzero parallel section of the tractor bundle A2/cT. This bundle naturally 
projects onto the bundle A2k~lT*M (twisted by an appropriate density bundle) and 
the image of a parallel section is a conformal Killing form (with additional properties), 
see [22]. These conformal Killing forms can be explicitly expressed in terms of the 
conformal Killing field j from above. In contrast to the simple algebraic formula on 
the tractor level, these expressions involve covariant derivatives of j . 

We have noted in 4.1, the Fefferman space M carries a natural spin structure. In 
particular, we can consider the tractor bundle S —• M corresponding to the spin repre­
sentation of G = Spin(2p + 2,2q + 2). Now it is well known that as a representation of 
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the subgroup G = SU(p + 1, q -F 1) this spin representation decomposes and in partic­
ular contains a two dimensional trivial subrepresentation. Using the relation between 
the tractor calculi discussed above, one shows that this leads to a decomposition of 
the spin tractor bundle S —> M, and in particular one obtains a two parameter family 
of parallel sections of that bundle. The bundle S comes with a canonical projection 
to the spinor bundle of M, which maps parallel sections to twistor spinors. Hence any 
Fefferman space admits a two parameter family of twistor spinors. 

• Decomposition of conformal Killing fields. 
By naturality of the construction of the Fefferman space, any CR automorphism of 

M lifts to a conformal isometry of M. Likewise, an infinitesimal automorphism of M 
induces a conformal Killing field on M . As the example of the homogeneous model 
shows, there may be other conformal Killing fields on M. It turns out that one can 
completely describe the space of all conformal Killing fields on M in terms of the CR 
geometry of M. 

Infinitesimal automorphisms of parabolic geometries can be described in general in 
terms of sections of the adjoint tractor bundle. For the case of conformal structures, 
this means that any conformal Killing field is the image of a uniquely determined 
section of the adjoint tractor bundle A which satisfies a certain conformally invariant 
differential equation. 

As a representation of G = ST/(V), the Lie algebra g = so(V) is not irreducible, 
but decomposes as su(V) © R © A^V. Here the first two summands correspond to 
complex linear maps, while the last one corresponds to conjugate linear maps, and the 
trivial summand consists of purely imaginary multiples of the identity. This induces 
an analogous splitting of the conformal adjoint tractor bundle A —• M. 

We can use this splitting to decompose any section of A into a sum of three terms. 
Via tractor calculus one shows that for a section corresponding to a conformal Killing 
field, each of the three parts satisfies the infinitesimal automorphism equation. Thus 
one concludes that any conformal Killing fields £ G X(M) decomposes uniquely into 
a sum £i + £2 + £3 of conformal Killing fields. One further shows that £1 descends to 
an infinitesimal automorphism of the underlying CR manifold M and £2 1s a constant 
multiple of j . The summand £3 descends to a section of A^T —» M which solves 
a certain CR invariant differential equation. Likewise, appropriate solutions of this 
equation give rise to conformal Killing fields on M. 

4.5. Analogs of the Fefferman construction. From the discussion in 4.1 it is 
pretty evident what is needed to obtain an analog of the Fefferman construction: One 
starts with an inclusion G c-^ G of semisimple Lie groups and chooses a parabolic 
subgroup P c G such that the G orbit of eP in G/P is open. Finally, one needs a 
parabolic subgroup P cG which contains GC\P. 
_ Suppose that (p : G —» M,CJ) is a parabolic geometry of type (G,P). The define 

M := G/(G n P), which is a smooth manifold and the total space of the natural fiber 
bundle G x P P/(G D P) -> M. To obtain an explicit description of M, it suffices 
to give a good description of the subgroup G n P C P. As before, one can view 
G —> M as a principal bundle with structure group GflP and u E til(G, g) as a Cartan 
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connection on this bundle. In particular, this identifies TM with the associated bundle 
0XGhP0/(flnp). 

Since the G-orbit of eP in G/P is open, the inclusion g ^+ g induces a linear 
isomorphism g/(g n p) —• g/p. Clearly, this isomorphism is equivariant under the 
inclusion G n P <—• P. Hence we can carry over P-invariant objects related to g/p to 
(GnP)-invariant objects related to g/(gnp) and hence to natural geometric objects on 
M. In most examples discussed below, this already suffices to obtain the underlying 
structure of a regular normal parabolic geometry of type (G,P) on M. In more 
complicated situations one in addition has to check that the map A2(g/p) —> g induced 
by the curvature of u is regular, but this usually is very easy. 

It is a much more difficult problem to check whether u induces the regular normal 
Cartan connection associated to this underlying structure. As in the classical case, 
one can form the extended bundle G '•= Q XGDP A an<^ there is a unique Cartan 
connection u on that bundle which restricts to u on TQ C TQ. To obtain an analog 
of Theorem 4.2 and applications similar to the ones described in 4.3 and 4.4, one has 
to find conditions for u being normal. To my knowledge, this has not been done for 
all the examples described below but for many of them there are hints coming from 
independent works on these structures. 

Examples. 

(1) Closest to the classical Fefferman construction, one may consider the group G := 
Sp(p + 1, q + 1) associated to a quaternionic Hermitian form of signature (p + 1, q + 1) 
on Hp+9+2. Viewing this space as C2p+2<?+4 gives rise to an inclusion Sp(p + l,q + 
1) c_> G := SU(2p + 2,2q + 2). Taking P C G and P C G the stabilizer of a 
quaternionic respectively a complex null line, one obtains G n P C P and P / (GnP) = 
CP1. Parabolic geomefries of type (G, P) fall into the class discussed in Example (2) 
of 2.8, i.e. the structures which are (essentially) determined by a filtration of the 
tangent bundle. The modeling Lie algebra g_ is a quaternionic Heisenberg algebra of 
signature (p, q). This means that g_i = Hp+<7 and g_2 = 9(H), the space of purely 
imaginary quaternions, in such that way that the bracket is by the imaginary part 
of a quaternionic Hermitian form of signature (p, q). For q = 0, one obtains the 
quaternionic contact structures introduced by Olivier Biquard, see [3, 4]. 

Hence we see that, up to some discrete data (related to the fact that we use the group 
Sp rather than PSp) our construction starts with a quaternionic contact structure of 
signature (p, q) on some manifold M. The Fefferman space M is then the total space 
of a natural fiber bundle over M with fiber CP1 = S2, and on M we naturally obtain 
a partially integrable almost CR structure of signature (2p+1,2q-h 1). This should be 
closely related to O. Biquard's construction of a twistor space for quaternionic contact 
structures. 

(2) Consider a vector space V endowed with an inner product of signature (p+1, q+2). 
Fixing a line t on which the inner product is negative definite, the inclusion t1 <--> V 
gives rise to an inclusion G := SO(p + 1, q + 1) «--• SO(p + 1, q + 2) =: G. Choose a 
null plane W which is transversal to tL and let P C G be the stabilizer of W. Then 
W n t 1 is a null line, and its stabilizer P evidently contains G n P . One verifies that 
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the G-orbit of eP in G/P consists of those null planes in V which are transversal to 
t1, so in this case G/(G fl P) is a proper open subset of G/P. 

Normal parabolic geometries of type (G, P) are just conformal structures of signa­
ture (p,q). Given such a structure on M one shows that the Fefferman space M can 
be identified with the open subset V+(T*M) of the projectivized cotangent bundle 
of M consisting of all lines in T*M on which the conformal inner product is positive 
definite. In particular, for q = 0, we obtain the full projectivized cotangent bundle. 
Of course, in any case M carries a canonical contact structure and the analog of the 
Fefferman construction refines this to a Lie contact structure. This generalizes and 
explains the results of [26]. 

(3) Consider the inclusion of G := Sp(2n,R) into G := SL(2n,R) by the standard 
representation. Parabolic subgroups of G correspond to isotropic flags in the symplec-
tic vector space E2n, which parabolic subgroups in G correspond to arbitrary flags. 
Hence there is only one choice for a parabolic subgroup P C G such that the G-orbit 
of eP in G/P is open. Namely, one has to use the stabilizer of a line, since for lines 
being isotropic is a vacuous condition. In this case P := G fl P is itself parabolic in G. 

Hence we conclude that the analog of the Fefferman construction this time starts 
from a geometry of type (G, P) on M and produces the underlying structure of a 
geometry of type (G, P) on the same space M. Geometries of type (G, P) are a 
contact analog of projective structures, and our construction extends such a structure 
to a classical projective structure. This has been directly obtained in [20], where more 
details about such structures can be found. 

(4) To finish, we discuss an exotic example which however has a long history. Let G 
be the split real form of the exceptional Lie group G<i. It is well known that G<i has a 7 
dimensional representation, and for the split form there is an invariant inner product 
of signature (3,4) on this representation. Hence this gives rise to an inclusion of G 
into G := 50(3,4). The stabilizer P c G o f a line through a highest weight vector in 
this representation is one of the two maximal parabolic subgroups of G. This line is 
easily seen to be isotropic, so as in (3) we obtain P = G fl P, where P is the stabilizer 
of the highest weight line in G. 

Geometries of type (G, P) are exactly the generic rank two distributions in dimension 
five which are studied in Cartan's famous "five variables paper" [15]. Given such a 
distribution on M, the analog of the Fefferman construction produces a canonical 
conformal class of split signature (2,3) on M. Such a canonical conformal class was 
recently discovered by P. Nurowski using Cartan's method of equivalence, see [24]. 
Since in Nurowski's construction one obtains the same normal Cart an connection for 
both geometries, it is very likely that the structure described here coincides with his. 
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