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1989 ACTA UNIVERSITATIS CAROLINAE—MATHEMATICA ET PHYSICA VOL. 30. NO. 2 

Vitali Systems of Neighbouring Type 

LEIF MEJBRO 

Lyngby*) 

Received 15 March 1989 

A generalized Vitali theorem is proved for socalled neighbouring Vitali systems consisting 
of cubes. A Neighbouring Vitali system is characterized by the property that inside each cube 
one can find two separated, fairly large sets (both properties to be defined by means of the geometry 
and the Lebesgue measure in the following) from the Vitali system. The proof uses a bootstrap 
method, which cannot be applied in the simpler pointwise case. 

1. Introduction 

In [8] was proved a fairly simple sufficient condition for a Vitali covering result, 
when the underlying Vitali system consisted of cubes in RN and had some uniform 
structure. Keeping this uniform structure it was possible in [5] to prove Vitali 
theorems for more complicated sets. The idea was to establish a sufficient condition, 
which also took care of the geometry of the sets under consideration, and yet had 
a structure pretty close to the necessary condition derived in [8]. The result was, 
that for uniform systems, fairly large families of sets in RN (some of them may even 
have a boundary, which is a fractal set) almost behave like a Vitali system consisting 
only of cubes in R*, as long as the Lebesgue measure is considered. 

When dealing with cubes the working hypothesis was for a long time that the 
same result should hold for pointwise Vitali systems. This conjecture proved to be 
wrong as demonstrated by Talagrand's counterexample (published in [2]). Never­
theless a positive result could still be obtained by introducing a logarithmic factor in 
the sufficient condition. This was done in [2] for systems of cubes and generalized to 
other sets in [6] and [7]. It is almost obvious that the sets in [6] and [7] must satisfy 
a stronger geometrical condition that the sets in [5] explaining why we are using 
different names for the geometrical properties. Note, however, that also sets of con­
stant or variable complexity may have a fractal boundary, and yet we can obtain 
a Vitali theorem for such systems of sets. 
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In the search for pointwise Vitali systems for which the "uniform condition" 
(i.e. a sufficient condition of the same structure as for uniform Vitali systems) would 
suffice for a Vitali theorem, the/t eighbouring Vitali systems were introduced in [2]. 
Roughly speaking one assumes the existence of two fairly large sets from the family S 
in every open ball B(x9 r) instead of just one, where furthermore these two sets 
should be separated in some sense. This seemingly innocent extra geometrical con­
dition on the system became an enigma in the light of Talagrand's counterexample, 
and as long as one only considers systems of cubes it is not possible to understand 
why Vitali theorems for neighbouring systems are "stronger" than Vitali theorems 
for pointwise systems. The introduction of the generalizations in [6] and [7] now 
enables us to find this difference. This investigation will be performed in the following 
and the result is that the idea of separation is far stronger than first supposed. 

The difference between the proofs of the pointwise and the neighbouring Vitali 
theorems lies in the mass distribution process (cf. [2], and also [6] and [7]). In the 
pointwise case each of the chosen sets Kw, (selected by the optimistic procedure 
introduced by Banach [1], cf. also [2] or [6] for further details) is used as a gauge 
on roughly |log|Kw.|| levels, which causes the logarithmic factor in these papers. 
By assuming that we have two separated sets instead of just one in the neighbourhood 
of each x it was possible in [2] to use KUi as a gauge on a bounded number of levels, 
where this bound only depends on the separation number. In fact, we choose two 
separated sets (Kw., Knj), where \Kn.\ ^ |KWj.|. Then we use the pointwise mass distri­
bution process on Kni through m levels, say. The neighbouring condition ensures 
that Knj can be paired with another selected set Knk =t= Kni, so the process can be 
repeated on the pair (Kttj9 K„k). Such a mass distribution process of bootstrap type 
will only cause a constant factor m, and as this constant m only depends on the separa­
tion number, the introduction of the logarithmic factor is not necessary in the con­
dition for the Vitali theorem. 

The comments above describe to some extent the difference between the pointwise 
and the neighbouring Vitali systems, as long as Lebesgue measure or measures 
which are absolutely continuous with respect to Lebesgue measure are considered. 
For completeness it should be mentioned that some of the ideas developed in con­
nection with these general Vitali systems still can be extended to other measures 
in RN. So far Vitali theorems for general measures in R* have only been obtained 
in the wellknown classical case for systems of centered cubes or balls and for gen­
eralized uniform Vitali systems consisting of cubes, cf. [4]. The results indicate that 
the measure in general must play an unexpected geometrical role, which will make 
the generalizations extremely difficult. This does not mean that such generalizations 
are impossible, only that they very hard to obtain, though they may reveal an un­
expected geometrical aspect, if ever such an investigation is performed. 
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2. Definition of neighbouring Vitali systems 

Since we are mostly interested in the difference between the pointwise and the 
neighbouring systems we shall here only consider the Lebesgue measure and Vitali 
systems consisting of cubes in RN. The family of all such cubes is denoted by £1 in 
following. It should, however, be mentioned that the main result is immediately 
extended to measures which are absolutely continuous with respect to Lebesgue 
measure, as well as to Lebesgue's family Jf a of regular sets9 i.e. a e ]0,1] is a constant 
and tfa is the family of compact sets in RN

9 for which 

VKGJfa3Qe_2:K<= Q A |K| = a|Q|, 

where |A | as usual denotes the (outer) Lebesgue measure of the set A. (Cf. also [3]) 
These simple generalizations are left to the reader. 

Definition 2.1. By 0 N we shall understand the class of all continuous nonde-
creasing functions 0 : R+ -> ]0, £] , for which 

W \\i{VLv-=+™ foral1 ^M-
Jo |log (rO(r))| r 

A function 6 e &N is called a separation function. 
Every constant function 9(r) = c e ] 0 , ^] is a separation function. A nontrivial 

function from GN is 

(2) 0(r) = { l o g | l o g r | } - ^ 

for r sufficiently small and suitable otherwise. When (1) is applied on (2), we see 
that (2) is almost the "smallest" possible function in the class &N. 

Definition 2.2. Let <p :RN x [0, +oo[ -> [0, +oo[ be continuous and nondecreas-
ing in re [0, +oo[f0r every fixed xeRN. We say that <p is a O-function and we 
write <p e <J>N

9 if 
Vx e RN Vr ^ 0 : 0 ^ <p(x9 r) ^ (2r)N . 

We shall use the O-functions to estimate the measure of the sets under considera­
tion. The pointwise aspect comes in because we allow <p(x9 r) to depend on x e RN. 

Definition 2.3. Let <pe®N and 9e GN. By r^ty; 9] we shall understand the 
system of all pairs (A, S)9 where A s RN and S £ £1 satisfy the following con­
dition: 

For every x e A there exists a constant rx > 0, such that one to every r e ]0, r j 
can find two sets Ql9 Q2 e S fulfilling 

(3) Qt s B(x9 r), |Q.| > <p(x9 r) , i = 1, 2 , ^(Q,) - c(Q2)\\O0 = r 0(r) , 

where c(Q) denotes the centre of the cube Qe £tN and B(x, r) is the open cube of 
centre x and radius r. 
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The definitions of the functions in ФN and " imply that ^„ЬҺІV; ] ф 0. Note 
that we do not require in (3) that Qľ and Q2 are disjoint. If Qx n Q2 ф 0, then 
a simple geometrical consideration shows that 

rШ + r(Q2)ìir (r), 
hence 

m a x { / ( Q 1 ) , / ( ß 2 ) } è г ð ( г ) , 

where 2 r(Q) = /(ß) denotes the edge-length of the cube Q. 
Following F. Topsøe [9], a Vitali system "ґ is a class of pairs (A, Sŕ) with A .= R14 

and Sŕ a family of closed sets in RN satisfying 

VS l : Ҷ(A,Sŕ)єГ ҶB<^A:(B,Sŕ)єГ ; 

VS2: V(Л, Sŕ)єГ VF closed : (A[\F, { S є ^ : S n F = 0}) єГ . 

А family Sŕ0 of closed sets in RN is called a packing ofA^ RN, if the elements 
of Sŕ0 are mutually disjoint and 

| A \ ( J {S:Sє<70}\ = 0 . 

If Sŕ contains a packing Sŕ0 of A, we say that the pair (A, Sŕ) has the packing proŕ 
perty. 

А Vitali system тГ is said to have the Vita/i property, if every pair (A, SҐ^єiґ 
has the packing property. 

The following classical lemma can be traced back to H. Lebesgue [3]: 

Lemma 2.1. A Vitali system i r has the Vitali property, tf and only if there exists 
a positive constant c, such that whenever A is bounded and (A, ̂ ) є f one can 
select disjoint sets {Sn :nє J} ç Sŕ with 

\\]{Sn:nєJ}\^c\A\. 

The proof of the following theorem is identical with the proof of the corresponding 
theorem in e.g. [5]. 

Theorem 2.1. If ę є ФN and є ЄN, then УN

nЪҺ\ę\ 0] ÏS a Vitali system. It is called 
a neighbouring Vitali system in the sequel. 

The key to the Vitali theorem for the neighbouring systems is the following 
complicated geometrical lemma. 

Lemma 2.2. Let (A, Sŕ) є ^ ь ń [ ф ; 0], and assume that {Kn} «= S has been selected 
by BanacKs optimistic procedure as described in [6] and [7] with respect to (A,Sŕ). 
Let m0(r) є N be the uniquely determined integer given by 

(4) | (r) й 2- m o ( r ) < \ (r) , rєR+. 

Let x є A and r є ]0, r j , where rx is the constant given by (3). Then at least one 
of the following two condition is fulfilled: 
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a) There exists an rc e N, such that 

K„ n B(x9 r) * 0 A |K„| = 2"("+1){r 0(r)}" . 

b) There exist nl9n2e^\9n1 4= H2, such fhaf 

KWf n B(x, r) * 0 A \Kn\ = Ap(x, r) , for i = 1, 2 , 

whereat least one of two setsKni andKni is disjoint from the open cubeB(x9 2^m^r)r\ 

Proof. Let xe A and r e ]0 , r j be given, and suppose that the lemma does not 
hold. It suffices to assume that whenever Kn n B(x9 r) + 0 and |KB| ^ i<p(x9 r)9 then 

(5) Kn n B(x9 2"mo(r)r) * 0 A \Kn\ < 2"("+1){r 0(r)}" . 

Using (3) we can find Qi9 Q2e£f9 such that 

Q fsB(x,r) , |ei|=S9(x,r), i = 1, 2, ^(QO - c(e2)|U = rfl(r) . 

Using a result from [6] we can find K„L and KM2 from the sequence {Kn}9 such that 

\Qt\£2\K.t\A0*QtnKat<=KntnB(xfr) for f = 1, 2 . 

By assumption, (5) holds for Kni9 i = 1, 2, so 

(6) | f i l | <. 2I.K.J < 2 . 2-<-»{r 9(r)}» = {̂  0(r)}" . 

Since Q{ is a cube, it follows from (6) that l(Q() ^ r 0(r)j29 and as both <2X and Q2 

by assumption intersect B(x, 2"mo(r)r), we get the following estimate 

r 0(r) £ flcfe.) - c ^ l . < 1 /(fi.) + l(B(x, 2—<'>)) + 1 / (g3) <; 

^ f ^ M + 2.2--<')r + l . l 0 ( r ) < ^0(r) + ^0(r) + I e(r) = rt (r) , 

and we have obtained a contradiction. 
We conclude that we can find Kn9 such that Kn n B(x9 r) =f= 0 and either 

(7) K„ n B(x, 2"W0(r)r) = 0 or |K„| = 2"("+1){r 9(r)}N . 

Suppose that a) does not hold. Since the last alternative in (7) is not fulfilled, at least 
one of the sets Kni9 Kn2, nt #= n29 can be chosen, such that 

Kw,nB(x,r)-#0, \Kn\ ^ ^ <p(x9 r) 9 K„t n B(x9 2"mo(r)r) = 0 , 

proving b). • 
In the terminology of [6] and [7] the function m0(r) defined by (4) will be our 

variable distribution number to be used in the following .When 9 e ON is a constant, 
then m0 is also a constant, and we obtain the neighbouring Vitali theorem in [2] as 
a special case of Theorem 3.1 in the next section. 
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3. A Vitali theorem for neighbouring Vitali systems 

By modifying the proofs in [6] and [7] we are now able to prove the main theorem: 

Theorem 3.1. Let (peQ>N and 6e&N
9 and assume that there exist a constant 

C > 0 and, for every x e R ,̂ another constant rx > 0, such that for every r e ]0, r j , 

|log(r0(r))| 

If for every R > 0 and almost every x e Rw, 

(g\ r ^(x>r) dr - +00 
(9) JoMr)|^-+00' 
then irnhn\<p\ 0] has the Vitali property, i.e. for every pair (A9 £f) e ^ w [ ^ ; 9] one 
can find a disjointed subfamily {Sn} ^ £P9 such that 

\A\\JS.\ = 0. 

n 

Remark. It follows from [6] that Theorem 3.1 is only interesting, when 

rR <p(x9 r) dr Í < +00 
| 0 | log<Kx,r) |r"+ 1 

for every x e A, where \A\ > 0. When r is sufficiently small, it follows from (8) that 

(log <p(x, r)\ _: log C + log |log (r 6(r))\ + N log (-\ + JV|log 9(r)\ > [log 0(r)| , 

proving that 

CR <p(x, r) __r_ CR <p(x, r) dr 

J o | l o g 9 ( x ) r ) | r " + 1 - J o | l o g 0 ( r ) | r N + 1 

for R sufficiently small, where the equality sign only holds, when both integrals 
are +oo. Hence we may find neighbouring Vitali systems for which [6] does not 
give a Vitali theorem, while (8) and (9) hold, and in this special case Theorem 3.1 
above is an extension of the previous known results. 

Proof. The first steps in the proof are identical with the first steps in the proof 
of the corresponding theorem in [6]. The proof is reduced to the case, where A £ 
— ]0> 1[N> where rx ^ r0 = \ in (3) and (8) for every xe A. This simplification uses 
a property of the outer Lebesgue measure. By removing a nullset, if necessary, we 
may futhermore assume that (9) holds for every xe A. As in [6] we may assume that 

(10) l(Q) ^ \ and Q s ]0, 1[N for every Q e ^ . 

By these reductions we see that it suffices to prove the theorem, when A £ ]0, 1[* 
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and the cubes in Sf satisfy (10), and when for every xe A and every r e ]0, £] there 
exist Ql9 Q2 e Sf, such that 

(11) Q{ s B(x, r), |Q.| > <?(*, r) , i = 1, 2 , A K & ) " ' (Ca)! . ^ r 0(r) , 

and when there exists a constant C > 0, such that for every x e A and every r e [0, £] 

(12) | , ( r ^ M ^ C ^ r ) -
|log(r0(r))| 

If 0(r) -+ 0 for r -» 0, then we can find m' e N, such that 

(13) - log 2 . 8-* > 2 . 4-<*+1> J3 + N ^ 2 " ' ) ! } " 1 for k 7> m', V ' 4 1 log 2 J 
and 
(14) iV|log(2-*0(2-*))|> 

> i{(iV + 1) log 2 + JV|log (2~* 0(2"*))|} for k Z m'. 

These two estimates will be used at the very end of proof. 
If 0 is constant, replace if necessary 0 by a smaller constant, such that (13) and (14) 

hold. This replacement will not affect the conditions (9), (11) and (12). 
For every fixed x e A the function <p(x, r)/|log 0(r)| is nondecreasing in r, so it 

follows from [6] that (2) holds for every x e A, if and only if 

+y2nN <p(x,2 ") + 0 0 forevery x e A , 
„to |log0(2-")| 

Define for m e N, m ^ m', 

Since the series above is divergent for every x e A, we may using a property of the 
outer Lebesgue measure choose meN, such that \Am\ > i\A\. This simple trick 
reduces the proof to the case, where A is given by (15), which we shall do in the 
sequel. Hence, we finally assume that 

(16) Y2kN. r! ^ X >
/
2 " ? , / 7 ^ 4 " + 1 for every xeA. 

K J ftfi' 3 + {|log0(2-fc)|/log2} 
Let {Kn} be selected by the optimistic procedure. By Lemma 2.1 it suffices to prove 
the existence of a constant c > 0, only depending on the dimension, and a finite 
subclass {Kni} of {Kn}, such that 

(17) I K\ * c\A\. 
1 = 1 

We shall assume that {K„} has been enumerated according to nonincreasing measure. 
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If |K! I > c, then (17) becomes trivial, because A .= ]0, 1[N. Thus assume in the 
following that |KW| < c for every neN. 

Let jVp9 p 6 N, be the dyadic division of [0, 1]* into meshes of edge-length 2"p
9 

continued to the whole of R*. 
Each Kn is a cube by definition, so define kn e N by 

(18) 2"*"-1
 = l(Kn) <2~kn . 

For later purposes we note that it follows from (18) that 

(19) _ > - ™ * l . 
K |iog|*qi 

Choose 2N meshes from Jfkn9 the union of which is a cube denoted by Q£n, such that 

K,<=Ql and jc(Ktt) - c(Q,"J|U = 2~k"-i . 
Then 

(20) | K B | ^ 2 - ^ + 1 ) " = 2-^|Q,»n| 

and 
Kn c B(x, 21"*") for every xeQn

kn. 

Then choose 2* meshes from Jfk^~l9 the union of which is a cube Q*n_i, such that 

Ql^Ql-, and \c(Ktt) - c(Ql_1)\a) ^2~^-^-1 . 
Then 

| ^ | = 2-^.2-2N|Q"„_i| 
and 

KB c:B(x,21-^ + 2~kn) = B(x, 3.2"*") for x e Q ^ . 

It is very important for the proof that Kn n B(x, 2_kn) # 0 implies x e Q£n_i and 
that Kn n B(x, 2~(*n~'1)) H= 0 implies x 6 2Q£n_1. 

By proceeding this way we define a finite sequence 

(K„C)Ql<=Ql.1<=...c:Q'2<=Q''1 

associated with each Kn, such that 

I|c(lQ - c(Ql)\\a> = 2"*"1 , k = 1, 2,. . . . fc„ , 
and whence 

K„ c: B(x, 3.2"*-1) for k = 1, 2,.. . , fc„ - 1 and xeQ£n , 

where each cube Qn
k is composed of 2^ meshes from Jfk. We have furthermore, that 

K„ n B(x, 2"fc) =t= 0 implies x e 2Q\. Note that Qn
k no longer can be assumed to be 

contained in [0, 1]N. 
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In order to obtain a screening effect we define K£ = 2Qn
k as the cube consisting 

of 4N meshes from Jfk with Qn
k as the central subcube. 

The meshes in Rn
k from Jr

k are denoted by JkJ, where j = 1,..., 4*, and where 
the enumeration with respect toj follows a fixed pattern for all K£. The only restriction 
is that the centre c(Kn) must belong to the meshes of the same index j as fc varies, 
which will almost fix the rest of the enumeration, if a fixed pattern is followed. 

We shall especially consider the meshes 

(21) {QeJTm+1 | An int Q * 0} = {Ts \ s = 1, ...,L} , 

where m e N is the same constant as in the upper bound of the sum (16). In each 
mesh 7̂  we choose a control point xs e A n int Ts, and the set of all control points 
is denoted by 

P = {x s |s = 1,. . . ,L}. 

According to Lemma 2.2 we have two alternatives for fce{l, 2,.. . , m + 1} and 
xseP. Either 

a) there exists a n n e N , such that 

(22) KnnB(xs,2~k)*0 and \Kn\ = I{± 0(2"*)}" 2"Nk, 

b) or one can find nu n2 eN,n1 =¥ n2, such that for i = 1, 2, 

(23) Kw.nB(xs,2-*)4=0 and |KW.| = \cp(xs, 2~k) , 

where B(xs, 2"k"m^2''^) is disjoint from at least one of the sets Kni and K„2. 
According to (4), the constant m0(2~~k) is given by 

log2 °V ; - log2 

For later use we denote the selected sets Kn above, for a given fc and a given xs, 
by Sk

sl and S*2. Note that Sk
sl = 5s

fe
2 in case a), while Sk

sl n Sk
s2 = 0 in case b). 

For every x .ePwe can find a finite number of pairs (Ssl, 5s2), fc = 1,.... m + 1, 
of compact sets from our chosen sequence {Kn}. As P = {xs | s = 1,..., L} is finite, 
we have altogether chosen a finite number of sets 

(25) 9>" = {Sk
si | k = 1,..., m + 1; s = 1,..., L; i = 1, 2} , 

where the same set may occur several times. In some sense the system (25) describes 
the geometry. We shall add some extra sets to S?". Let xs e P, and let fc e {1,. . . , m + 1} 
be an index, such that we are in alternative b). Then only a finite number of the 
disjoint sets {Kn} can satisfy 

KBnB(xs,2-k)=|=0 and [K„| = \cp(xs, 2~k) , 

cf. (23). Add every such Kn, which have not already been included in Sf". In this way 
we obtain our finite system £f' = {KB1,K „̂2, ...,KWp}. 
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For each Kn e SP" we have defined a set R%n, which we for short shall denote by yn 

If we define 

r = [ 0 , l f n\J{ya\Kne<?"}, 

we obtain by (20) for Kn e ST", 

\Kn\ = 2-»fGE,| = 2""K| = 2-»|y.|, 
so 

i\Kn\^\\){Kn\Kne£f"}\>%-»\Y\. 
1 = 1 

In the last part of the proof we prove that also 

(26) £|iy = IAsr|. 
t = i 

Assume for the time being that (26) holds. Then 

\A\^\Asr\ + \r\!Z(l + 8»)i\Kni\, 

and (17) follows with c = (1 + S*)"1, so the theorem follows from Lemma 2.1. 
Hence only (26) remains to be proved. 

Now A \ T is disjoint from every K„ e SP'\ so the idea is instead to consider the sets 
from SP' 2 SP" as a pool of gauges which can be divided and given to selected meshes 
as we please, as long as we at most use each subgauge once. If this can be done is 
such a way that the sum of all gauges over each particular subcube Qs^Vm+u 

which is contained in [0, 1]* \ T and which contains at least one point from A in its 
interior, exceeds |g|, then (26) follows. 

Let D = max {kl9..., kp, m + 1}. Then the closure of [0,1]JV\T is composed 
of meshes from JVD, 

cl([0,lf \ r ) = n Q i , QDe^D. 
1=1 

Assume that the QD have been enumerated, such that for some q ^ q' and some 
nullset Q, 

(27) A \ V c Q u |J QD and A n int QD + 0 for j = 1, ..., q . 
1=i 

To every QD in (20) we can find Ts defined by (21), such that QD c Ts. For the control 
point xs G Ts we have 

max {J*. - y\\„ | y e QQ ^ l(Ts) = .2""- 1 . 

We have finally come to the description of the mass distribution process, which is 
fairly difficult here, because we shall connect two different mass distribution processes. 
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For each Kn&&" we have defined 4* strings J], given by 

SJ
, = {rkJ\k=l,...,kn}, ; = i , . . . , 4 w . 

We shall use i|K„| in two different ways as a gauge on the total of all these strings. 
In both cases we give each string the subgauge \ 4"N|K„[, but the distribution on the 
levels in the string will be different in the two cases. 

We first describe the most difficult one of these two mass distribution processes. 
Let x, e P be a control points, and let Is g: {1, 2,. . . , m + 1} be the set of the indices fc, 
for which we are in alternative b). If Kn has been attached to some index from Is9 

let fc* be the smallest of these indices. We shall in this distribution process consider 
such sets Kne&". When fc* has been found, define the distribution number m* 
associated with Kn by (24), i.e. m* e N and 

H N r i L ^ ^ , Ne(2-**)1 
log 2 log 2 

In this way we select a subsystem {Kni*, ...,K„r*} with corresponding level numbers 
{fc*,..., fc*} and distribution numbers {m*,..., m*}, where 

{n*9..., n*} c {nl9..., np} and n* < ... < n* . 

Let us look at the 4* strings J]1*, j = 1, ..., 4N, associated with the largest of these 
cubes KBl*. Each of these have received the gauge i . 4iV|Kn,*|. Divide this gauge 
into m* subgauges, each of the size (2m*)"1 4"N|KWl*|, and give them to 

jTii* rni* rfii* 
Jki*j9 Jkl*+lJ> • ' •> «/fc1* + m i * _ l J , 

while we still let {Jn
k^+mi*j, •••, Jnl*j} be associated with KBl*, though these sets 

have not yet recieved a gauge. 
Then turn to the 4* strings jy*9 j = 1,..., 4N

9 associated with K„2*. In this case 
the subgauges have the size (2m*)"1 4"N|KB2*|. 

If a string yn2* does not contain elements from any of the strings Jn^A\ i = 1,..., 4*, 
the mass distribution process is carried out as above. 

If, however, some Jn
k
2j = Jl\i9 where fc e {fc*,..., fc* + m* — 1}, we let the largest 

of the subgauges (2m*)"1 4~N\Kni.\ and (im*)'1 4~N\Kn2.\ win. If e.g. (m*)"1 . 
. 4-»|KB2*| > (2m*)"1 4-»|Kai*|, we let (2ml)"1 4" |̂KM2*| replace (2m?)"1 4"^|KBl*| 
on Jl2* = Jn

k\*i9 and we let the displaced subgauge (2m*) x 4 ^[K^*! represent the 
first vacant element Jkl*+mui

 i n ^ e str-nS associated with Kni. from the string 
number i. 

If instead (2m*)_1 4"N|KW2*| ^ (2ml)"1 4~N\Kni.\9 we jump over all elements in 
the string */J2*, which already have received a subgauge from KBl* and continue to 
fill in the vacant places in the string, as long as we have got subgauges. 

In this way we proceed, until all subgauges from KB2* have been placed, and 
possibly some of the subgauges from Kni. have been pushed further down their 
strings. 
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It is obvious that it would be an overwhelming task to index this process, as an 
addition of a subgauge from a Kni* may cause an avalanche of shifts in the gauges 
from the sets Kn, which already have been through this process. Instead we note 
that each member of a string, which has been participating in this process, at least 
receives a subgauge of a size, which it deserves. We can finish the proof, if all members 
of all strings participate in this process. 

Continue successively on Kn3*, ...,KWr* as described above, and we have finished 
the description of the first mass distribution process. 

At this step of the proof we note that condition b) ensures that if some Kfl.* occurs 
in more than m* levels, then the second member of the pair in (23) is big enough to 
take over the mass distribution process, seen from the control point xs e P. We may 
also have added some extra sets in the definition of Sf\ but this will only improve on 
the situation. As long as the members of the pairs (Ssl, Sk

2) are distinct, no "holes" 
can occur in the distribution process, because at least one member of the pair is 
replaced by a new set from Sf" within m0(2~fc) steps. Thus seen from any xseP 
we at least get the right gauge at each level, whenever we only have distinct members 
in the pairs (Sk

sUSk
s2). 

The second possibility occurs when 5^ = S*2 for some xs e P. When 6 is constant, 
this can be ruled out, and we get the simple argument from [2]. In general we must 
deal with this case also, and it is for this reason that we have saved i\Kn\ for another 
distribution process. Here we shall use the logarithmic distribution process as 
described in [6]. The present situation is however simpler, because all the elements 
are cubes, and because the targets, namely the 4^ strings attached to each Kn, are 
given already, so we need not here refer to [6]. 

Let Kn e £f'. Each associated string J], j = 1,..., 4N, is given the gauge \ . 4~JV|Ĵ .„| 
as before. By (18) we are given kn levels, so each element of each string receives the 
gauge (2kII)-14^|Kn |. 

Finally, consider xs e P. For k e {1, 2,.. . , m -i- 1} we have found (Sk
sl, S

k
s2), such 

that 
Sk

inB(xs,2~k) + 0, i = l , 2 , 

so Ts receives gauges from all levels by the two procedures described above. We 
calculate the contributions according to whether an index k gives rise to alternative a) 
or alternative b). Furthermore, we shall only work with densities, so we shall divide 
the gauge by \Jlj\ = 2~kN, which will give us the density from level fc. 

Assume that k e {1, 2,. . . , m + 1} gives rise to alternative a), cf. (22). Then Ts 

receives from level k at least the gauge density 

{\JIJ\2IC4T1 | -q = (2/c„)-M-w2^i{i 6(2-")}" 2~"> = 

. =(4kn)-
is-Ne(2-")N. 

From (12) we get for r = 2~k, 

9(2~k)N ^ C 2™|log (2~k e(2~k))\ <p(x, 2~k) , 
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from which we deduce, using (19), 

8 -*0(2 -y > !Vlog2.8-*C.2**llog(2-*0(2-*))| , k) 

4k„ = 4|tog|_.| ' * ' >' 

From (22) we get 
1 > |K„| ^ 2-<"+1> {2"* 0(2"*)}", 

whence 
|log| JS_.II __ (N + 1) log 2 + N|log (2-* 0(2"*))|. 

Hence the contribution to the density from level k is at least 

N\o%2 8-"C.2**|log(2-*fl(2-*))l , k) _ 
4 (JV + 1) log 2 + tf|log (2-* 0(2"*))| ' n ' ' 

[4 g J \(N + 1) log 2 + JV|log (2-* 0(2-*))|[ ^ ' 

If furthermore fc _ m\ it follows from (13) and (14) that this contribution is at least 

A-(N+l)jNk 

(28) . <p(x, 2"*) , 
1 } 3 + {|log0(2-*)|/log2} n ' h 

which is an estimate of the gauge density coming from level k in alternative a). 
If k belongs to alternative b), cf. (23), then Ts receives at least the gauge density 

{2m0(2-*)4"|j»J}-1 |_J ;> 2»*{2m0(2-*)4-iV -M*.-"*) _ 
^ 4-(»+V2Nk<p(x,2-k) 
= 3 + {|log0(2-*)|/log2}' 

where we have used (24). This contribution is therefore at least of the same amount 
as (28), so adding the density contributions from all levels k = m',..., m, we get 
at least the following density over Ts9 

4-(N+D y 2 <p(x, 2 ) ^ 4 _ ( N + 1 ) 4 N + 1 _ j 

*=i'3 + {|log0(2-fc)|/log2} " 

where we in the estimate have used (16). Since this mass distribution can be carried 
out simultaneously over all the relevant Ts (and even with excess mass), we conclude 
that 

t\Kni\^\Asr\9 
i=l 

so we have proved (26) and hence the theorem. • 
When 0 e 0* is a constant, (8) is only fulfilled, when <p(x, r) ^ c-r^/jlog r|, so 

Theorem 3.1 does not contain the neighbouring theorem from [2]. It is however 
easy to obtain the following corollary, which trivially contains this earlier result. 
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Corollary 3.1. Assume that de®N satisfies the slightly stronger condition for 
R>0, 

If <pe®N fulfils 

* { (r)}N 1 dr _ 

0|log(r (r))| >gØ(r)| r 

<p(x, r) dr í o|log0(r)|V+1 + œ 

for every R e R+ and almost every x e RN, then irN
hn\<p\ &] has the Vitali property. 

Proof. We only replace <p(x, r) by 

y^x, r) = min Шx, r), l

 f ' ,\\í 
{ log(r (r))J 

Then <p_ satisfies the assumptions of Theorem 3.1, so i^n^cpu A] has the Vitali 
property. As cp_(x, r) __\ <p(x, r), the same is true for i^nbhl/Pl &]> D 

Obviously every constant 0 e &N satisfies (29), so the neighbouring theorem from 
[2] is contained in Corollary 3.1 above. Note also that 9 e &N given by (2) satisfies 
(29). If 

fl.(r) = {log [log r\ . (log log |log r\f}-^N 

for r > 0 sufficiently small and suitable otherwise, then 9X e <dN for a ^ 1, while 
(29) only holds for a g 0. 

Vitali theorems like Theorem 3.1 above immediately gives a weak differentiation 
theorem, when the result is combined with the main result in [10]. Also they are 
well fitted to give a description of some classes of nullsets. For these applications 
the reader is refered to e.g. [2] and [10]. 
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