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On Generalizations of Dyadic Spaces 

M. TURZANSKI 
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The class of dyadic compact spaces (the continuous images of generalized Cantor 
discontinua) which is a natural generalization of the class of compact metric spaces 
and which is the smallest class containing the class of compact metric spaces closed 
with respect to cartesian products and continuous images was introduced by P. S. 
Alexandroff [1] in 1936. This class has a lot of nice properties and is the subject 
of many papers. 

In the 70-es a new aproach concerning the theory of dyadic spaces appeared. 
A. V. Arhangelskii in [2] introduced the class of dantian spaces and the class of thick 
spaces and put the question "is each dantian space dyadic?" It was proved later 
by L. B. Sapiro [9] that the answer is no. In 1970 S. Mrowka [7] introduced the 
class of polyadic spaces; the continuous images of the products of the one point 
compactifications of the discrete spaces, and in 1985 M. G. Bell [4] defined the class 
of centered spaces which generalized the class of polyadic spaces. In paper [6] 
W. Kulpa and M. Turzanski introduced the class of weakly dyadic spaces. The 
common feature of these generalizations is that many theorems which were originally 
proved for the class of dyadic spaces can be proved for them too. 

Another generalization of the class of metric compact spaces is the class of Corson-
compact spaces. 

The aim of this paper is to present some connections between diferent generaliza­
tions of compact metric spaces. 

The first part of our paper will present some conditions of weakly dyadic spaces 
and some examples which show that there exists a space which is weakly dyadic but 
not centered (this space will be also Corson-compact space). It will be shown that 
the space of closed subsets of the space D™2 is not weakly dyadic (a generalization 
of a dyadic theorem of Sapiro and a centered theorem of Bell). 

The second part will show that each Corson-compact space is weakly dyadic and 
from this will follow immediately that the weight of Corson-compact space is equal 
to the density. 

*) Uniwersytet Šlaski, Instytut Matematyki, ul. Bankowa 14, 40 007 Katowice, Poland 
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On the other hand each dantian space has calibre Kx and Corson-compact space 
with calibre Nj is separable, hence each dantian Corson-compact space is metrizable. 

In the third part of our paper an example of centered and dantian space of weight 
cox which is not polyadic will be constructed. The first who showed that there exists 
a space which is dantian and not dyadic was Sapiro [9] who proved that exp D™2 

is not dyadic, but is dantian as was shown by Arhangelskii [2]. Sapiro [10] later 
gave an example of space of weight a)x which is dantian but not dyadic. We do not 
know if this space is centered or not. Examples of dantian spaces of weight cot 

which are not dyadic play the important role because it was proved by Sirota [8] 
that exp D™1 is homeomorphic to D001. 

The dantian spaces have the Suslin property as was shown by Arhangelskii. 
R. Engelking proved that if polyadic space has the Suslin property then is dyadic. 
From this it follows that each dantian and polyadic space is dyadic. 

No example of weakly dyadic and dantian space which is not centered is known. 
Also, no example of centered Corson-compact space which is not polyadic is known. 

Let Tbe an infinite set. Denote a Cantor cube by 

DT:={p:p:T^ {0,1}}. 

For s c T, i: s -> {0, 1}, p e DT we shall use the following notation 

Hs:={feDT:f\s=i} 

Gs(p) :={feDT:f\s = p\s and p-\0) «= /" - (0)} 

One can observe that 

(I) Gs(p) c H's. 

Definition. A subset X c DT is said to be an co-set iff for each peX there exists 
and s c Fsuch that \s\ fg co and Gs(p) c X. 

Definitior. A space Yis said to be a weakly dyadic space if Yis a continuous image 
of a compact co-set in DT. 

M. G. Bell [4] has defined for any infinite collection T of sets, a space Cen (T) 
by the following way: 

Cen (T) := {S: S is centered subcollection of T} u {0} . 

If 5 e T, then 

s+ = {5eCen(T) : seS} 

s~ = {S e Cen (T): s £ S} 
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Use {s+: s e T} u {s : s e T} as a clopen subbase for a topology on Cen (T). 
The family Cen (T) as a topological space can be identified with a subspace 

Xc DT; 

X : = {f: f is a characteristic function of a centered subcollection of T} . 

The space X is a compact subspace of DT. Notice that for each p e X9 

G„(p) := {/€ DT: jT'fO) c /--(0)} c X . 

Thus, the set X is an co-set in the sense of our definition. 

Definition. A space Y is said to be centered if Y is a continuous image of a space 
Cen (T) for some family T. 

The following is a generalization of one of the most important theorems for dyadic 
spaces (it is still not known if the theorem is valid for centered spaces). 

Theorem [6]. Each compact G5 subset of a weakly dyadic space is a weakly dyadic 
space. 

For completness we would like to give an example of a weakly dyadic space 
which is not a centered space. 

Example [6]. Consider the Cantor cube Dc, where c = T°. Choose a subset Sac 
such that | c \ S | = co. Define 

H:={feDc:f|5 = 0}. 

It is clear that the set H is homeomorphic to the Cantor cube D(°9 so the cardinality 
of if is equal to c. Thus we can denumerate points from the set H by indexes from the 
setS; 

H = {x": a e S} . 
Now, let us define 

M := {fe Dc: 3a e S such that f(a) = 1 and f | c \ {a} = x" \ c \ {a}} . 

The subspace X : = H u M of the cube Dc is a closed subspace and satisfies the first 
axiom of countability i.e., x(X) = co. The weight of the space X is equal to continuum, 
because M c X is a discrete subspace and |M| = c. One can verify that the space X 
is weakly dyadic. On the other hand the space X cannot be centered because how it 
was proved in [4] if X is centered then wX = z(X). 

(II) If X is co-set, then for each cardinal number m the set Xm := {xeX: \{t e T: 
x(t) 4= 0}| ^ m} is the dense subset of X. 

Proof. Let Hv9 where v is finite be such a basic subset of the Cantor cube DT
9 

that Hv n X 4= 0. Let peHvr\X. From the definition of X it follows that there 
exists S c: T, |S| = co such that Gs(p) c X. Hence to X belongs a point q such that 
q\S\j v = p\S\j v and q(a) = 0 for a e T\ (S u ») and qeHvc\Xm. 
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(III) If X is a compact co-set, then 

(*) if M c Xm and \M\ ^ m, then clM c Xm and wc/M ^ m. 

Proof. Each point xeM has no more than m coordinates equal 1. Hence the set 
S = {tsT: there exists xeM such that x(t) = 1} has the cardinality not greater 
than tn. So M c Hl

TSS where i(T\ S) = 0. The set Hl
T^s is homeomorphic with 

D™rN5) = Ds. Hence clM c i / j ^ n X c Xw and wclM = m. 
(IV) If x(x, X) = m, then xeXm. 

Proof. Let ^ be a base in point x such that |J^| ^ m. For each U e @ let us take 
a point x-/ e U n Xm. We have \{xv: U e @}\ = m. Hence cl{xv: U e@) <= Xm and 
xe^i^x^: Ue@). 

Corollary 1. If X is separable, weakly dyadic space and satisfies the first axiom of 
countability i.e., x(%) = w> then X is metrizable. 

Corollary 2. If X is hereditarily separable, weakly dyadic space, then X is metrizable. 
Let us denote that conditions (II) and (III) are preserved under continuous functions. 

The condition (*) was used by Arhangelskii [2] for defining the class of thick spaces. 

Definition. A Hausdorff space X is called thick if for each cardinal number m 
there exists a dense subset Xm such that 

(*) if M cz Xm and \M\ ^ m, then clM a Xm and wclM ^ m. 
From (III) it folows that each weakly dyadic space is thick. 
As was proved by Arhangelski [2] continuous image, cartezian product and space 

of closed subsets of thick space is thick. 
In the paper [11] (see also Comfort [5]) was proved 
1. If X is thick, then wX = ssX. 
2. If X is thick and sX ^ x(X), then wX = x(X). 
3. If X is thick and x(X) = sX, then wX = sX. 

By sX we denote density of Z, by ssX heraditary density. This theorem are theorems 
of Esenin-Volpin type for dyadic spaces. 

Now we shall prove that the space of closed subset of space D^exp D®2) is not 
weakly dyadic but is thick. For this purpose we give first an example of space which 
satisfies the first axiom of countability, separable of weight co1 linearly ordered and 
zero-dimensional. Such a space as follows from corollary 1 is not weakly dyadic. 

Example 2. Let us take an interval [0,1) and a subset S of interval (0, 1] such 
that \S\ = G)! and S is dense in (0,1] and 1 e S. 

Let W= [0,1) x {0}uS x {1}. 
In If we take a topology generated by the lexicografic order. The topology on W is 
generated by the base 03 consisting of the following sets 

U = l(a,0),(b,0))u((a,l),(b,l)) 

V = ((a,0),(b,0))u((a,l),(b,l)] where a,beS. 
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The base J* has cardinality co^ The space IV is compact, linearly ordered, separable 
and zero-dimensional space of weight cov Hence IV is not weakly dyadic. 

Lemma. If X is linearly ordered compact zero-dimensional space, then X is a retract 
of exp X. 

M. G. Bell [3] proved that. 

Theorem. Let $f be a subbase consisting of closed subsets of the space X closed 
with respect to finite intersection and let X map onto exp Dx+. If Y is a compact 
zero-dimensional space and wY S x, then there exists SeSf such that S has a con­
tinuous function onto exp 7. 

The following is a generalization of a dyadic theorem of Sapiro and of a centered 
theorem of Bell. 

Theorem 1. Exp DW2 is not weakly dyadic. 

Proof. Suppose that there exists weakly dyadic space X such that exp D™2 is a con­
tinuous image of X. By Bell's theorem there exists Se£f such that S has a continuous 
function onto exp IV, where IV is the space from example 2. Since closed G5 subset 
of weakly dyadic space is weakly dyadic, hence S is weakly dyadic and exp W too. 
But space IV which is not weakly dyadic is a retract of exp W, a contradiction. 

§2 

Definition. A compact space X is called Corson-compact if there are a set F and 
a homeomorphic embeding of X into the co+ — I product of Rr based at 0, i.e., into 

l(Rr) = {x e Rr: \{y e F: xy * 0}| = co] . 

Theorem 2. If X is a Corson-compact space, then X is a weakly dyadic space. 

Proof. Let us consider the set C of all real numbers of the segment [—1, 1] 
that have a tryadic expansion in which the digit 1 and — 1 do not occur, i.e., the 
set of all numbers of the form 

x = y —f where xte ( - 1 , 0 , 1 ) for i = 1,2, . . . . 
t=i 3 1 

The formula 

x 
(x) = y —• defines a continuous function 

І = I 2 

from C onto interval [ — 1, 1]. Denote by K = C n ( — 1,1). Let us consider the 
product Kr and (—1, l ) r . The product (— 1, l ) r is homeomorphic to .Rr. 
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Let F:Kr-+ ( - 1 , l ) r be given by F(x) = {f(xa)} where x = {*.}. Since 
/ " 1 ( — 1,1) = K and / is perfect map, hence / 1 K is perfect, and F as a product of 
perfect maps is perfect too. 

Let us consider .T(Kr) and r ( ( - l , l ) r) based at 0. Since / - 1 ( 0 ) = 0 hence 
F(l(Kr)) = -"((—1, l ) r) . Let X be a Corson-compact space. Hence there exist 
a set F and a homeomorphic embeding of X into -~((— 1, l ) r) . Since F is perfect, 
hence F_1(X) is compact subspace of Z(Kr). From this it follows that F_1(X) is 
the compact co-set, and hence X is weakly dyadic. 

Corollary. If X is a Corson-compact space, then wX = sX. 

Proof. Since X is a Corson-compact space, hence X is weakly dyadic. From this 
it follows that there exists a compact co-set Y in Dr such that Y is also the Corson-
compact space and Ym = Y for each cardinal number m = co and X is continuous 
image of Y. From this it follows that wX = sX. 

Remark. The space from example 1 is the Corson-compact space. Hence there 
exists a Corson-compact weakly dyadic space which is not centered. 

§3 

The dantian spaces have the Suslin property as was shown by Arhangelskii. 
R. Engelking proved that if a polyadic space has the Suslin property, then is dyadic. 
From this it follows that each dantian and polyadic space is dyadic. 

We shall give an example of space which is dantian and centered but not polyadic. 
Let X be a compact zero-dimensional space. Let Sf be a family consisting of all 

closed and open subsets of X. 
Put Cen (X) = {T: Tis a centered subcolection of Sf} u {0}. 

Fact. If X is a compact zero-dimensional space and sX = m, then s(Cen (X)) = m. 

Proof. Let S be a dense subset of X such that \S\ = sX. For each xe S denote 
by 5% = {Ue^: xeU}. 

Let 3tx = {Tcz Sfx: \STX\T\ < co}. Let us consider the set 0t = f]{0tx:xeS}. 
It is easy to see that 0t is dense in Cen (X) and \&\ = m. 

Example 3. Let cot + 1 denote the set of ordinal number not greater than cov 

In set cOi + 1 we shall consider topology generated by order. This is the compact, 
Hausdorff, zero-dimensional space of weight cox. By Parovitchenko's theorem the 
space coi + 1 is a continuous image of co* (the remainder of the Cech-Stone com-
pactification of the space cu). From this it follows that there exists a compactification 
of co with remainder cox + 1. Let us denote this space by K. Let us consider the space 
Cen (K). From the Fact it follows that s(Cen (K)) = co. The space which is thick and 
separable is dantian. Hence Cen(K) is centered and dantian space of weight cox. 
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We shall prove that Cen (K) is not a polyadic space. Denote by T = {U c K: U is 
clopen in K and coleU}. Let us observe that Te cl U {{«} + • " = 1,2, . . . } . Mrowka 
[7] proved that if X is a polyadic space and U is open in X9 then for each x e clU 
there exists a chain {x„} c 17 which is convergent to x. 

(*) Suppose that there exists a chain {xn} c f) {{n} + : n = 1, 2, . . .} which is 
convergent to T. 

It means that for each open neighbourhood of T there exists Nv such that for 
each n > NvxneU. 

Since T is the maximal centered family, hence V or K \ V belong to T for each 
clopen subset of K. It is easy to see that (K\V)+ cz V. 

Hence it is sufficient to consider neighbourhoods of T of the form V+. Since K 
is the compactification of a set co9 hence for each V c K we have some subset of G> 
equal w n F . 

Since each element U e Tis a neighbourhood of point G^, hence 17 is infinite. Let 
{an} be a chain from Un (G^ + 1) such that an < cot for each n e w . There exists 
P < cot such that for each n e G> a„ < /?. If jS < col9 then /?+ < a^. Then the set 
G = {y: y ^ jS+} is the clopen subset of c0x + 1. Both the sets G n U n (G^ + 1) 
and {y: y = /? and y e U n (G)X + 1)} are infinite and clopen in cox + 1. Let G = 
= (cot + 1) n H and {y: y ^ £ and y e U n (cOi + 1)} = (cot + 1) n E where if 
and £ are clopen in K. Sets H r\co and £ n co are contained in U n co and both are 
infinite. So (*) is false. 
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