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ON THE COMPUTATION OF SOME QUANTITIES 

IN THE THEORY OF FREDHOLM OPERATORS 

L.W. Weis 

O. Introduction 

Although the theory of Fredholm operators is usually approached 

with Banach algebra techniques (e.g. [6 ],[4 ]) there has been 

some interest in "measures of non-compactness" (e.g. [19],[28]). 

Roughly speaking, they may be used as a substitute for the operator 

norm if one is interested in Fredholm inverses and the essential 

spectrum instead of the usual notion of invertibility and spectrum. 

For a bounded linear operator T in a Banach space X they are de­

fined in terms of X and T (not via quotient algebras like the 

Calkin a1 rebra) but it is often not easy to calculate them and 

this is the problem we address in this report. 

We will concentrate on the following variante of these quanti­

ties (introduced by M. Schechter in [30]): 

(*) A(T) = sup infllT. || 
M NcM ' 

where the 'sup1 and 'inf' is taken over all infinite dimensional 

subspaces of X. At first glance it may look hopeless to try to 

calculate this quantity for concrete operators, especially since 

one has to consider 'arbitrary1 subspaces N of X and the restriction 

T.N will in general distroy any concrete representation of T that 

might . be useful to estimate the norm ( it is well known that 

every contraction in a Hilbert-space is similar to a restriction of 

the shift-operator, [27]). 

But we will see that for operators in the classical Banach 

spaces 1^,1^ (u),C(K) one has to deal in (*) only with very special 

subspaces M and N for which the form of T.N is in general still 

very close to the original operator T. Using modern Banach space 

theory one can show that usually it is enough to consider 'bands' 

in these spaces (i.e. subspaces of functions that vanish outside 

a given measurable set). In L (u) this is of special interest for 

This paper is in final form and no version of it will be submitted for publication elsewhere. 
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ODpr^tors of 'local type1 according to Simonenko ([31]). As an il­

lustration we calculate A for certain classes of Toeplitz-, Hankel-

singu-ar integral- and pseudo-differential operators. 

We will also show that A is nicely related to other inter­

esting quantities: 

- For a large class of operators A(T) equals the distance of T to 

the ideal of strictly singular operator. This ideal, introduced 

by Kato is the maximal ideal of admissable Fredholm perturbations 

in L (y) and C(K) (see [22], [34]). 

- For operators in 1 and operators of local type many of the usual 
ir 

measures of non compactness are just a multiple of A. 

We detail these results in the following sections: 

1. General properties of Schechter's A-characteristic. 

2. Operators in 1 and in Hilbert spaces. 

3. Singular integral operators and Toeplitz operators. 

4. Operators in L (u), I < p < °° . 

5. Pseudo-differential operators. 

6 operators in L~ (u) and C(K). 

7. Comparison with measures of non-compactness. 

1. General properties of Schechter's A-characteristic. 

Let X and Y be Banach spaces and B(X,Y) the space of all bounded 

linear operators. Recall that T G B(X,Y) is called a <\> -operator 

(a <|> -operator) if T has closed range and dim(Ker T) < <» (codim 

T(X) < oo ) . These properties can be expressed in terms of the 

following quantities. 

(1) r(T) = in f l lT MH , r*(T) = inflt<|>MTll 
M M 

where the inf is taken over all closed subspaces with 

dim M = codim M = <» and <f>M denotes the quotient man <j> • x -> X/M. 

r was introduced by Gramsch in [11] and r*in[33], it is not difficult 

to see that 

1.1 Proposition: T is a <f>+-operator «• r (T) > 0([11]) 

T is a <|>_-operator *> r*(T)> 0([33]) 

In particular, T is a Fredholm operator if and only if 

r(T) > 0 and r*(T) > O. In the subsequent sections we shall see 

that many natural conditions that guarantee that certain concrete 

operators (e.g. singular integral operators) are Fredholm operators, 
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can be expressed in terms of r and r*. 
r and r* also appear in the -perturbation theory of (Semi-) 

Fredholm operators. In order to obtain a more generál ideál of ad-
missible perturbation of <J> -operators than compact operators .Kato 
introduced in [17] the class of strictly singulár operators. These 
are operators such that for all infinite dimensional subspaces M of 
X the restriction T... is not an isomorphism into. The duál notion 
of strictly cosingular operators (<ťMT is nevěr surjective if codim 
M = co) was considered by Pelczynski ([23]) and it was observed in 
[32 ] that these operators are admissable perturbations of <f>_-ope-
rators. The following qiíantity A introduced by Schechter ([30]) 
generalizes measures of non-compactness in the samé way strictly 
singulár operators generalize compact operators 
(2) A(T) = sup r(T|M) 

M 
where the sup is taken over all closed subspaces M with 
dim M = codim M = <*>. The duál quantity 

A* (T) = sup r*(<|>MT) 
M 

was considered in [33]. Indeed we háve 
1.2. Proposltion: A and A* are continuous and multiplicative semi-
norms on B(X) and 

A(T) = O ** T is strictly singulár (POT* 
A*(T)= O ** T is strictly cosingular ([3JJ;) 

Using A and T Schechter formulated the following perturbation 
theorem which generalizes Kato*s theorem on strictly singulár 
operators and the well known fact that the set of <J> -onerators is 
open in B(X,Y): 
1.3. Theorem; a) ([30]) If A(T) < r(S) then T+S is a <|>+-operator 
and ind(S) = ind (S+T). 
b) ([33]) If A*(T) < T*(S) then T+S is a <j>_-operator and 
ind(S) = ind(S+T). 
Furthermoref the quantities (1) and (2) can be ušed to give asymp-
totic formulas for the rádius r (T) of the essential spectrum of 
T € B(X) (see { 6 ] for its properties) and for the so called semi-
Fredholm radii. 
(3) S+(T) « supíe £ O : T - XI is a (j>+-operator for |X| < e} 

S_(T) * sup{e £ O : T - XI is a <|>_-operator fór |X| < e} 

1.4. Theorem: For T € B(X) we háve 

a) ([30]r[33]) r0(T) = lim A(T
n) 1 / n = lim L*(?n]/xí 

e n n 
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b) ([39]) s+(T) = lim r(T
n) 1 / n s_(T) = lim r*(T n) 1 / n 

n n 

1.1. to 1.4. suggest that if we deal with perturbations of (Semi-) 

Fredholm operators and the essential spectrum instead of perturba­

tions of invertible operators and the usual spectrum the role of 

the operator norm will be taken over by A , A*, and r , r* may be 

considered as substitutes for.the minimum modulus of the operator T 

(4) m(T) = inf{||Txll : |[x|| = 1} 

and the so called surjection modulus 

(5) q(T) = sup{e > 0 : TUX 3 eUy} 

where U X,U Y are the unit balls of X and Y. It is one of the main 

points of the next sections to show that the 'abstract1 quantities 

A,r,... for operators in classical Banach spaces can be expressed 

in terms of the more intuitive quantities (4) and (5). This will 

allow to calculate A,A*,r,r* and to apply theorem 1.3. and 1 4. in 

some concrete situations. 

The 'duality1 between A,r and A*,r* takes a simple form in 

reflexive spaces: 

1.5. Proposition; If X and Y are reflexive then 

A(T*) = A*(T) , r(T*) = T*(T) 

But in general Banach spaces, it might happen that e.g. 

A(T*) > A*(T) = 0 (see £23 ], [.8 1, [35 ]) . We shall also need the 

following useful relations which hold for general T G B(X,Y) 

(see [24] B. 3.8) 

(6) m(T*) = q(T) , q(T*) = m(T) . 

2. Operators in 1 and in Hilbert spaces. 

For multiplication operators it is rather easy to calculate A and T 

but this special case is useful in determing A and r for more gene­

ral classes of operators (see e.g. 2.2., 2.4.). 

2.1. Proposition; Let m € L63(fi,£,u). For the multiplication opera­

tor T: Lp.(fl,E,v) -• Lp(fi,E,y) with Tf(w) = m(w)«-f(w), w € n, we have 

A(T) = A*(T) = Tim R(m) 

r(T) = v*fp) B lim R(m) 

Here R(m) denotes the essential range of the function m, i.e. 

R(m) = (X € <E: y (Im-A |< e)>0 for all e > 0} 

If the measure space is purely atomic then T is a diagonal operator 
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T(fn) =(m fn) in a sequence space ln and 

A(T) = TIm|mnl , r (T) = liming I 
n n 

while HTII = sup|mnl , a (T) = q(T) = inf|mnl. 

If (^#E#IJ) has no atoms then 

A(T) = IITil = sup R(m), r(T) = a (T) = inf R(m) 

(this observation is also true for multiplication operators in 

Banach function lattices and in spaces with an unconditional basis, 

see e.g. [ 5 ],[20] for definitions). 

Sketch of proof: As subppaces on which A and r are (almost) 

attained we may take the span of XA , n € 3N , where the A € E are 

pairwise disjoint and chosen in such a way that the values of 

Imlxn a r e very close to lim R(m) or lim R(m) . 
An 

Using results on basic sequences from Banach space theory 

(see e.g. [20]) we can reduce the calculation of A and r for an 

operator T in 1 to certain diagonal operators. More precisely, if 
IT 

x € lp satisfies 
,,xnH * 1' xn " ^ °' H T xn H ~^~* d 

then there is a subsequence x , such that x and 
k k 

y, = T(x )-l!T(x )ll are equivalent to the unit vector basis (e,) 
K nk nk 

of 1 . Then the diagramm 

[ V " {Txnk
] 

"1 V 

commutes, where U(ek) = x , V(ek) = yk are (almost) isometries and 

D is the diagonal operator D(a.) = (l|Txnll a ) . In particular 

d = A(D) = r(D) « A(T|-V -) « r(T|-v -) 1V V 
> 

This is the essential step in the proof of the following theorem: 

2.2. Theorems For a bounded linear operator 

T s 1 —• 1 , I £ p < * or T : c —• cQ we have 
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A(T) = A*(T) = lim HP
n
TP I 

n*m-*«> 

D 

sup{lim||Tf
n
l| : f pairwise disjoint^lf^l» 11 

n 

2) 

Г ( T ) 

inf{ | |T-K| | : K compact} 

Ura m(P nTPm) 
n,m--»00 

= inf{liml|Tf
n
ll : f pairwise disjoint,11 f

n
ll= 1} 

= sup{m(T-K) : K compact} 

r*(T)= lim cr(P TP ) 

n,m-*«> 

= sup{q(T-K) : K compact} 

In sections 4 and 6 we shall extend these formulas to operators in 

L (u) and C(K). They improve the original definition of A and r in 

several ways: 

- Instead of arbitrary infinite dimensional subspaces M of 1 we 

only have to consider the 'special' subspaces P„(l ) = [e„,K > n] 

on which T still may have a form similar to the whole operator. 

E.g. if T : 1 -> 1 is 
* P P 

by an infinite matrix 

E.g. if T : 1 -> 1 is given with respect to the unit vector basis 

* p p * * 

then P TP is given by 
n m -1 

n,m+1 
a
n+1,m

 a
n+1,m+1 

And on the subspaces
 P

n
(--

D
)f i-e*

 f o r
 these truncated matrices, 

we only have to estimate the 'traditional' quantities II ||,m(*)r 

and q(0- As an illustration for this, we shall consider Toeplitz-

and Hankel matrices in Sec. 3. 

D 
If (e

v
) is the unit vector basis of 1 we denote by P

M
 the co-

is. • p n 

ordinate projection P_ ( E avev) = E « A 
n
 K=1

 K K
 K=n

 K K 

2) 
In this line let p > 1 . 
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- In characterizations of semi-Fredholm operators sometimes* 

called singular sequences (i.e.||Xnll= 1 , X R—• 0) are used (see 

e.g. [19]/ [17]). Our formulas imply that it is enough to consider 

very special singular sequences formed by pairwise disjoint 

vectors. This corresponds to the use of 'Weyl-sequences' (which 

are orthogonal) in Hilbert space theory . 

- Since the Fredholm property of T : 1 -> 1 corresponds to the in-

vertibility of the equivalence class $FB(1 )/K(l ) one may for-
? P 

mulate properties of Fredholm operates. ., or the essential spectrum 

in terms of the quotient norm IITil. Frcn this point of view A pro­
vides a manageable 'lifting1 of IITII to the original space. 

2.1. and 2.2. contain some results on Hilbert space operators 

which are essentially known, although not stated in terms of A 

and r . Since a separable Hilbert space is isometric to. . we obtain 

from 2.2. 

2.3. Corollary ([14] §3, Theorem 1): For a bounded linear operator 

T : H -* H in a Hilbert space H we have 

A(T) = A*(T) = sup{TIm||Txn II : llxnll= 1, (xn> orthogonal} 
n 

= irwf (IIT-K II : K compact} 

Of course analoguous formulas can be derived for r and r*. Since 

self-adjoint operators are similar to multiplication operators the 

next statements follows from 2.1. but they also follow from results 

in [19], p. 61/62; [2 ] and [40]. 

2.4. Corollary: Let T be a bounded linear operator in a Hilbert 

space and T* its Hilbert space adjoint. Then 

A(T) = A*(T) =sup ae ([T*T]
1/2) = sup ae([TT*]

1/2) 

r(T) = inf ae([T*T]
1'2) 

r*(T)= inf ae([TT*]
1/2) 

.eroof: By the polar decomposition we have 

T = U|T| T* = |T*|U* 
1 /2 where IT I = [TT*] ' and U and U* are partial isometries. Hence 

A(T) = A(IT I) = A(IT*I) and we may restrict ourselves to self ad­

joint operators. But by the spectral theorem for self adjoint 

operators T there is a space L2(ErV0f an isometry U : H • L2(E*u) 

and a multiplication operator Mf (y) = m(y)f (y) in L~(£,u) such that 
-1 

T = U JU. By 2.1. we have 

A(T) = A(M) = Iim R(m) = sup ae (M) = sup a0(T) 

T(T) = r(M) m lim R(m) = inf ae (M) = inf a0(T) 

th'J formula for r* (T) follows by duality* 
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We mention one more consequence of 2.2. which is helpful in 

calculating r and r* for Fredholm operators. 

2.5. Corollary; If T and S are bounded linear operators in 1 such 

that T»S - I and ST - I are compact then 

A(T) = r(S)" 1 = r*(S)" 1 

This 'generalizes1 the well known fact that for a invertible opera­

tor T we have 

HTM = m ( T " 1 ) " 1 = q ( T " 1 ) " 1 . 

Using the corollaries 2.3, 2.4 and 2.5 one can sometimes deduce 

r(T) and A(T) easily from known results. For examples, see Sec. 3 

and 5. 

3. Singular integral operators, Toeplitzoperators and Hankel 

operators in L 2(T). 

Let T be the unit circle in CE and u be Lebesgue's measure on T. 

Here we are interested in operators in L2(T,p) of the form 

(1) M c + M dS c,d e LJT) 

where M denotes the multiplication operator by c, i.e. 

Mc(f) (x) = c(x)f (x) 

and S denotes the operator of singular integration 

Sf (x) = ----- f £-&-- dy (Cauchy-principal-
"- T y"x value). 

Let us recall the connection of the singular integral operator (1) 

with Toeplitz- and Hankel-operators: f (e1 ) = e n , n € Z, form a 
n 

orthonormal basis of L2(T) and 
p,„L°»f»' • »L°»f»" 0 , i . - °» f »'" »5o-»f» 

are orthogonal projections onto the Hardy space H9(T) and its 

complement H 2(T), respectively. Since P = j(Id + S ) , Q = £(Id - S) 

we can write (1) in the form 

(2) M c + M dS = M aP + M bQ where a = c + d , b = c - d . 

With respect to the decomposition L2(T) - H2(T) + H~(T) the singu­

lar integral operator (1) has therefore the 'matrix*-representation 

P M a | H 2 

(3) 
Q M a | H 2 

р м ы н -
Н
2 

Q M
b l

H
-

H
2 

where the 'diagonal
1
 operators are similar tc Toeplit. operators 
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and the 'off-diagonal1 operators are essentially Hankel operators. 

More precisely, a Toeplitz-operator is of the form 

(4) P M a l H 2 : H 2 — H 2 , a € LTO(T) 

If J : L2(T) —• L2(T) is given by J(fR) = f_n , then P - jn.T and 

JPJ - Q is the orthogonal projection onto (1) and we have that 

(5) QM bQ - J~
1[PM J ( b )P]J = QMbQ - JPJMbJPJ 

is a finite dimensional operator. Hence the diagonal operators of (3) 

are essentially similar to Toeplitz-operators. A Hankel-operator is 

given by ^ 

(6) P J M M H : H 2 ( T ) """* H 2 ( T ) ' a € Loo(T) 

Then the following operators are one-dimensional 

QM P - J[PJM P] a a 
PMbQ - [PJMj-P]*J = PMbQ - PMbJPJ 

(7) QM aP - J[PJM aP] 

i.e. the 'off-diagonal1operators in (3) can be expressed in terms of 

Hankel-operators. 

Furthermore, we want to recall the connections of defini­

tions (4) and (5) with Toeplitz- and Hankel-matrices. The Fourier-

transform of the Toeplitz-operator U = PM lu is an operator 
+ + a » H 2 

U : 1 2 (22 ) -> L (2Z ) given by an infinite matrix of the form 
a o a1 

(8) (cL_k) = / a-1 a a. . 1 where a. = a(j) ,j €2Zt 

a-2 a-1 a Q a-

Such a matrix is called a Toeplitz-matrix. 
*• + + The Fouriertransform V : 1 2 (Z ) -• £ 2 CZ ) of a Hankel-operator 

V = PJM .„ : H 2 —• H 2 is given by the matrix 

/ a o a1 a2 ' \ 
(9) (aR+;.) + = / a. a 2 . I where a^ = a(-j) , j £ TL 

K'J£Z V »2 ' / 
which one calls a Hahkel-matrix. 

As indicated by (3),(5) and (7) one can reduce the calculation of A 

and r for singular integral operators to Toeplitz- and Hankel-

operators; we look therefore first at these operators. 

3.1. Satz: For a Hankel-operator V = PJM .u ,a € L (T), we have: . 

r*(T) = r(T) =- o 

A(T) - infdla-Cll^ : r. € H^tT) + C(T)} 

where H (T) =- L (T)flH, (T) . 
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Proof: Since the Fourier transform : H2 (T)—• 1~ (2Z ) is an isometry 

we have r(V) = r(V). From (9) we obtain for the unit vectors 

ek I 12(2Z+) that 

HVeJI2 = E la. I2 > 0 for K - -
K j=K i 

Now 2.3. implies that r(V) = 0. r*(V) = 0 follows by duality since 

V* is given by the Hankel matrix (a.,.) . . 
1 J i,jezf 

The second statement follows directly from 2.3. and the well known 

fact, that 

inf{||T-K II : K compact} = inf {|| a-c 11̂  : C € H^+C} 

(See Hartmann's theorem, e.g. in [25] §1). But in 3.2. and 3.3. we 

will only use "<" and this inequality is easy to prove: If c = C +Crt 
CO Q 

with c^ € Hoo(T) and cQ € C(T) and e > 0 choose a trigonometric 
polynomial C- = E 3 e i n such that lie - d II <• e. Then Ur = PJM., .„ i n o i Q* Q+ i .^2 
is a finite dimensional operator and 

A(Ua) = A(Ua-U ) S A(Ua )S lla-c„ C-H. 
1 °° I 

< Ila-r,||+ e . 

3.1. gives a criterion for when the 'off-diagonal' operators in (3) 

are negligeable in calculating r and A. If a,b € Hro(T) + C(T) then 

by (7) and (9) the operators PM, ,u- and QM,,„ are compact. This 
D | 11.-. a I liry 

motivates the following definition: 

A function a € L^JT) is called quasi-continuous'if a 6 H^tT) + C(T) 

ind a € Hoo(T) + C(T) (see also [29]). 

..2. Satz: For a Toeplitz operator U = PJM a£ L (T) , we always a|H9 lave 2 
A(U) = A*(U) = HUH = sup la! 

inf coR(a) <. r (U) < inflal 

If a is quasi-continuous we have in addition 

r(U) = r*(U) = inflal . 

Remark: Even for a piecewise monotone function a we may have 

r(U) = 0 < inflal , see [ 6 ] 7.20. 

Proof:The first statements follow from 

re(U) <. A(U) £ IIUII <. ||Mall = suplal 

r(U) < S+(U) <> inf{|X| :X € ae(U)} 
(see theorem 1.4) and the well known fact that R(a) c a (U) 
(see [ 6 ] Corollary 7.7) 



QUANTITIES IN THE THEORY OF FREDHOLM OPERATORS - Q O 

Choose X € co (a) such that u : = inflcoR(a)I = |X|. Put XQ = XIXl"
1 

and fix some u-> < u- Then, for r large enough co(R(a) ) is contained 

in the ball B(rX .r-pj with center rX and radius r-u-» . From the 

general inequality 

r(U+V) £ T(U) + A(V) 

we obtain then 

r(T) > r(rXQId)- A(rXQId-T) 

;> r| XQ| - (r-u^ = u1 
by our first estimate. Since u-i < u was arbitrary the second in­

equality holds. 

If a is quasi-continuous?it follows from 3.1. and (5) that QM P and 
a 

PM O are compact and therefore we obtain from 2.1 and lemma 3.3 a 
that 

inflal = r(MJ = r(PM P+QM P+PM,Q+QM Q) a a a a a 
= T(PMaP + QMaQ) = min(T(PMa|H )rr(QMajH~, 

< r(u) . 2 2 

The same argument works for r*(U) . 

3.3. Lemma: If W: L2(T) -• L2(T) has H2(T) and H~(T) as invariant 

subspaces then 

A(W) = max(A(W|H ) , A(W|H-)) 

r(W) = min(r(W)H ) , r (W H-)) 

r*(w)= min(r*(w „ ),r*(wlH-)) 
H2 'H2 

This can be shown using 2.3 and that L2(T) = H2(T) + H2(T) is an 

orthogonal decomposition. 

3.4. Theorem: For a singular integral operator U = M + M.S with 

quasi-continuous c and d we have 

A(U) = max(sup|c+d|, sup|c-dl) 

r(U) = r*(U) = min(inf|c+dl, inf|c-d|) . 

Proof: By (2) U = M P + M,Q where a = c+d and b = c-d are quasi-

continuous. By (7) and 3.1 the operators PM, .„- and QM .„ are 

compact and we obtain from (3) and 3.3: 

A(W) « max(A(PMa|H ), A(QMb|H-)) 

F(W) « min(r(PMa|H ), r(QMb|H-)) 
t. £ 

By (5) we have A(QMb|H-) - A(PMJ(b) ^ and r (QMb|H-) = r (PMJ(fa) mJ. 

Now the result follows from 3.2. The same argument works for r*. a 
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3.2. and 3.3. contain well-known characterizations of the Fredholm 

property for Toeplitz and singular integral operators: e.g. M +M,S 

tfith quasi-continuous c and d defines a Fredholm operator if and 

Dnly if inf Ic+dl • !c-dl = inf|c2-d2| > O (see e.g. [.10] Kap. Ill §7, 

[ 6 ] Theorem 7.26,[29] 

These results can be generalized using localization techniques 

(see section 4). 

Let us come back to Hankel-operators for a moment. Besides the sym­

bol a and the Hankel^matrix (aK .) there is a third discription 

of V = PJM=lU . If V is a positive operator (in the Hilbert space a|H2 
sense) then there is a positive measure A on [-1,1] such that 

a = S(-n) is the n moment of X: 

1 
(10) a = a(-n) = /tndy(t) 

n -1 

NowA(V) can be estimated as follows (compare Th. 1.6. in [25]) 

3.5. Corollary: If V is positive in H2(T) then 

c 
LA(V) < Tim n-la I < lim M([""t^[ } <4A(T) 

n t-*1 

Proof: For Ei f ± I
2 < 1, Elg. I2 < 1 we have 

1 E aK+if K^i! - S UP (l aK+i! (1 +K+^)K E WATT I f K I • I g i I) 
j,K>n K + 3 K ^ K,j>n K+3 K,jK+:) + 1 K D 

Since the Hilbert matrix ( .»•.. . ,) has norm ir and P VT = (a^.),. .. 
J \ + J T i n n i \ T j j \ , j i c i n 

it follows that 
A(V) = lim|PnVPnl < IT Tim n « | a n V 

n n 

The remaining inequalities also follow along the lines of the proof 

of theorem 1.6 in [25] . D 

3.6. Example; Let v be a positive and finite measure on [0,w) and 

oo 

k(x) = / e ydv(y) its Laplace transform. It is shown in the proof 
o 

of Theorem 2.5 in f?5] that a singular integral operator of 

Carleman type »*• 
oo 

(11) Sk : L2(0,oo) — L2(0,«), Skf(x) » / k(x+y)f(y)dy 
o 

is unitary equivalent to the Hankel matrix (avx4) . on 10 (22
+) 

given by the measure 'J 
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(12) ME) • = ' ^ / ( 1 + t ) 2 d v O T - 1 , T ( t ) = 1 ^ | 
. E- • 

i . e . •'" an••'=. J t n dX(t) 

Then A(S, ) = A((aT. ••) ..) arid by 3.5 arid an .estimate connecting 
•K -̂ "*"D t* _•>--_-"*• . • - ' " • • ' • 

n 

the vanishing, conditions "for the measures X' and v there is a con­

stant c > O such that •'•."''.* 

C * x-p X K 

•X-»°° 

4. Operators in L_(y). 
P • • • • . • 

In trying to generalize our results from operators in sequence 

spaces 1 to function spaces L_(X,y). it is natural to look but for 

form*: as of the kind 

(D A (T) = • TiH • lfx-vTi-.ll ,* 
u(A) ,y(B)-0. • • 

i.e. one tries to replace the ^z^r\x 1 (M) , M c. 3N , by the bands • 
p ••'.•.•••: • '.:.•-• 

L (A) , A c x. But (1) does not hold for arbitraryoperators, iri 

L (y) , e.g. there are convolution operators Tf = f*y , y a 'biased 

"oin* measure, with 
A(T) > O , Tim" M X A T I I T = 0 . 

y(A)-0 A 2 

On the other handr we will discuss in this section a class of 

operators for which (1) holds and which is large enough to contain 

many interesting operators from analysis. 

Let (X rA ry) and (Y,B,v) be separable measure spaces and y , v are 

finite measure equivalent with y and v respectively. S,T,... denote 

bounded linear operators from L (X,y) to L (Y,v),I < p < ». 

4.1. Definition: i) S: L (X,y) -• L (Y,v) is called almost compact, 

if for all e > 0 there are A € A, B G B with y (A) £ e, v (B) ̂  e 

and such that T - X A T x B is compact. 

ii) T : L (X,y) -• L p(Y,v) is of diagonal type if for all e > 0 

there are A.-,...,A € A, B<.,...,B € B 

( 2 ) 0 < y ( A i ) < e, A ±nA. • 0 for I + j, U A^ « X 

0 < y (B^) < c , B inB. - 0 for i * j , u B. = Y 

n 
,uch that T - E Xo Tx A is almost compact. 

1=1 B i A i 
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4.2. Examples: a) It was shown in [36] that an integral operator 

Tf(y) = Jk(y,x) f(x)du(x) 

with an absolute kernel (i.e. |k(y,x)I also defines a L -bounded 

integral operator) is almost compact. So is the singular integral 

operator S : L2(0f») -* L2(0f°°) 

sf(y) = J ~ - f(x) dx 
o y 

since Sxr-. w Xra \S , a > 0f are compact. On the other handf La,*, Laf«; « 

S is unitarily equivalent to multiplication by TT (cosh (•--—)) on 

L 2(1R). So one should no,t take the word 'almost1 too liberally. 

b) T is of diagonal type if 

Tf (g) = a(y)f(6(y)) + Jk(yfx)f (x)d (x) 

where the measurable functions a : Y -+ (C f 6 : Y -• X and 

|k|: Y x X -» UR are such that the above operators are L -bounded 

c) T is of diaqonal type if 

T = S + Jk(yfx)f (x)du(x) 

where S is 'local type'f i.e. X = Y is a metric space and for dis­

joint compact subsets A fB cz X we have that XBSxA is compact. Topi­

cal examples of local type are singular integral operators anc" 

pseudo-differential operators with a smooth symbol (see e.g. Sec.5) 

Proof: a) See [36] and [25]/ Theorem 2.6. 

b) Since for B = 6~ (A), A 6 A, we have v(B) = Jx 1 dv = 
6"'(A) 

-1 

Jx A(^jp—)du it is possible to choose A n c X and B n = 6~
1 (An) 

such that (2) is satisfied. 

c) For A . , , . . . , A € A with A ^ A . = 0 for i * j we have 

n n 
S = E XA SxA + Z XA SxA . 

i=1 A i Ai ifj=1
 Ai Aj 

i J 

The sev. .id sum is an almost compact operator since S is of local 

type and u f v are regular measures. 

4.3. Theorem: Let T : L (Xfu) -> L (Yfv) be of diagonal type. Then 

we have that 

A(T) = A*(T) = Tim" IIXpTxJl . 
Un(A)->o

 B A 

v°(B)^o 

= sup[Timl|Tfnl| : Ilfnll - 1 and fR pa irwise d i s j o i n t } 

= inf{||T-SII : S compact}. 
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r(T) = lim m(Tx») = sup{m(T-S) : S compact} 
MQJKT^o A 

r*(T)= lim q(xaT) = sup{q(T-S) : S compact} 
V 0 7 A 7 - O

 A 

Using some information about subspaces and basic sequences of L 

one can reduce this result to 2.2. Instead of going into the details 

of the proof we discuss some examples which illustrate our ealier 

remark, that formulas as given in 4.3. reduce the estimation of A 

to norm estimates for operators which have a form similar to the 

original T. 

4.4. Examples; For a composition operator 

Tf(y) = a(y)f(6(y)) 

, .-1 
we define s(x) = JSV ialp|6) (x) • - ^ p — ( x ) where E(|a|p|6) is the 

-1 
conditional expectation of |a|p given 6 and -----4 denotes the 

Radon Nikodym derivatives of the image measure vo6"" with respect.. 

to y. Then 

A(T) = IIT II = sup|s| 

r(T) = a(T) = inf|s| 

Proof: tor t € L (Xry) we have 

UTf ||p = Jla(y) |p|f (6(y) |pdv(y) 

= /E( a|p | 6) (x) If (x) | p d v ° ^ (x)dy(x) 

Now the estimates are the same as for multiplication operators. 

4.5. Example. For f € L (0r1) define 

(3) Tf(y) - u(y) jf v(x)f (x)đx , y Є (0,1) 

Here we assume that for all C € (0r1)r « + ~ =
 l f w e ^ a v e 

( 4 ) u G L p(C r1) r y(supp(u)H(Cr1])'> 0 

v € L q(O rC) r u(supp(v)fl (0rC)) > 0 

a<y<b à y 
Put K(arb) - sup (J|v(x) |qdx)1/q.(/|u(x) l^dx' 

Tomaselli has shown , that T is a bounded operator in L (0r1) if and 

only if K(0r1) is finite and 

(5) K(0r1) £ IITII $ p 1 / p«q 1 / q.K(0 r1) . 
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In particular, if u G L_(0,1) and v € L (0,1) then 
hr *d 

HxRTXJV< D - ( / | v ( x ) | q d x ) 1 / q ( / l u ( x ) l p d x ) 1 / p 

B A A B 

• 0 f o r u ( A ) , u(B) —> 0 

i.e* T is compact in this case. In order to estimate A(T) we con­

clude from the special form of T that for all 0 < a < b < 1 

T = X
[a,b]c

Tx
[a,b]c

+x[b,1]TX[afb]
+X[a,b]TX[o,b] 

The last two operators are again of the form (3) but with u and v 

replaced by restrictions of these functions that belong to L (0,1) 

and L. (0,1) respectively. Therefore these operators are compact 

and we have 

M T ) = A( X TX •) * II X TX dt l 
• [ a , b . ] c [ a , b ] c [ a , b ] c [ a , b ] d 

< p 1 / p - q 1 / q m a x ( K ( 0 , a ) ,K(b ,1 )V 

by ( 5 ) . Hence we obta in from 5 . 3 . and (5) 

K * A(T) < p 1 / p q V q . K 

where K = max{lim K(0,a), lim K(b,1)} • 
a-+p > b-*1 

In [15] Juberg and Stuart have estimated measures of non-compact­

ness for integral operatoris t>f form (3). It will follow from sec-

tion 7 that (6) is an improvement of their results. D 

For an operator U : L (T) -* L (T) of local type A and r can be 
ir hr 

expressed by the 'localized' quantities 

6(U,X) = inf{||UxK(x e)«:e > 0} 

Y(U,x) = sup{a(UxK(^£)): e > 0} 

where K(x,e) = {y 6 T : *|x-y| < e} . Such quantities were studied 

in [ 1 ]; up to a factor 2 the following result was already given 

in [31]. 

4.6. Corollary: For an operator U : L (T) -> L (T) of local type we 
hr hr 

have 

A(U) • sup 6(U,X) 
xЄT * 

r(u) - inf y(U,x) . 
x€T 

Tnis local approach may be used to refine the results of section 3: 
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4.7. Example: Consider a singular -integral operator 

n •= aP + ;)• . L 2 (T) -* L 2 (T) 

as defined in Section 3. If a is piecewise.continuous, then 

r(U) = inf|a*| 

where a * : T x [0,1 ] -»<E is defined' by 

a*(t,p) = a(t-0)u + a(t+0)(1-u) 

i.e. in the jumping points of a we add vertical lines to the graph 

of a. 

Proof; For a continuity point x of a one can show easily 

Y(U,x) -= |a(x)| = la (x,u) I for all 0 < y £ 1 . 

If a(x-O) * a(x+6) define V = bP + Q by a function b which equals a 

on K(x,e) and is continuous outside K(x,e) such that 

coR(b)) c co({a(y) : y € K(x,e)}) =: D 

Applying 3.2. to V we obtain 

r ( UXK(x,e) ) ~ i n f { | x | : A € D} 

• inf{ a*(x,u) : 0 < y < 1} for e -> 0 . 

On the other hand, one always has by [10] IX 2.5 

r(U) < inf{|X| : X€a (U) }= inf|a*| . 

One can estimate A(T) and r(T) also for more general classes of 

singular integral operators in L -spaces. But these cases are more 

complicated and they will appear elsewhere together with the proofs 

of 4.3. and 4.6. 

5. Pseudo-Differential operators. 

First we will discuss an algebra of pseudo-differential operators 

introduced by Herman and Cordes in [ 3 ]; later on we consider 

operators of the Hdrmander class S on -R 

5.1. The Laplace Comparison algebra (cf. [ 3 ],[ 4 ]). Denote by A 

the C*-subalgebra of B(L 2(B
n)) generated by all operators of the form 

a(M) and b(D). Here a(M) denotes the multiplication operator 

a(M)g(x) - a(x)g(x) , g € L2(JR
n) 

where a is a bounded, continuous function on H n whose 'local os-? 

dilation• vanishes at <», i.e. 

(1) max{ Ja(x-i-h) - a(x) | : h G 3Rn , |h| £ 1} -> 0 

for |x| -> oo . On the other hand, b(D) stands for the formal Fourier 

multiplier 
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b(D)g = F'1(b'F(g)) , g € L 2 ( . m n ) 
where b is a bounded, continuous function on 3Rn such that the 

limits lim b(pz) ****<*+. uniformly for z 6 TRn , I z I = 1- . 
p-> oo 

The algebra A contains for example the operator 

(I-A)"1 

where A is the Laplace operator on 1R , and also the ideal of Com­

pact operators on L2(3R )..Furthermore, the quotient A/K is a com­

mutative C*-algebra with a maximal ideal space M. Now the symbol c(T) 

of an operator T € A is defined as the Gelfand transform of the 

equivalence class T € A/K . In particular, a(T) € C(M) and the sym-' 

bol is invariant under compact perturbations. It follows directly 

from this definition of the symbol, some standard properties of tb~ 

elfa d homomorphism and Corollary 2.5. that for every T £ A we nave 

A(T) = A*(T) = max I a I 

r(T) = r*(T) = minlaI. 

There is a rather concrete discription of the maximal ideal space M 

in [ 4 ], Chap. IV, Theorem 1.6, from which it follows for example 

that for an operator T of the form 

n 
T = E a.(M)b.(D) € A 

i=1 x 1 

we have 
n 

A(T) = lim E a. (x)b, (ç) 
lxl + |ç|->oo 1 X * 

n 
(2) r(T) = E a. (x)b. U ) . 

|x| + lcl->- 1 

Operators in the Sobolev spaces H , 

(3) H s = (u € S
1 : Hull2 = JlCU) |2( l + l U 2 )dr . < «,} 

may be treated in the same way using the isometries 

(4) Afc = b(D) : H s - H g + 2 t , b(c) = (l + l c l 2 ) ^ 

(see [ 4 ] Sec. 8,9). We illustrate this by an example. 

5.2. Example; Let K be the partial differential operator 
K = E a D a 

la|<3J a 

with coefficients a„ that satisfy (1) . K : H -• H„ XT is bounded and 
a u 3 s -N 

by (4) we h a v e 
A(K : H - H ) = A(T : H -• H ) - ^ / 2 

where T = A Z KAS / 

r (K : Hg -* H B - 1 | ) = r (T : HQ - HQ) W t i e r e T A K A 

But T belongs to A and has the form 
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T = E a (M)b (D) , b. = (l+lcl 2)" N / 2C a . 
lal<N ° a tt 

Since l b a ( c ) l -+ 0 for |a|<N and lcl-*<» we g e t from ( 2 ) : 

A(T) = max{ sup I E a (x) r,a I, sup Tim I £ a (x)b (c ) l> 
x€2R n , c€S n " 1 , a , = N ^ n l x l — l a l S N 

r(T) = min{ inf I £ a ( x ) c a | , i n f l im I £ a (x)b (c)|>. 
xe]Rnc€sn-1 , a | = N ce^1 5^0 0 | a U N 

This gives a Fredholm criterion for K which corresponds to theorem 33 

in [ 3 V . 

Now we turn to classes of pseudo-differential operators defined by 

Fourier integrals. 

5.3. Symbols of class S m c. We say that a C00-function p(x,c) de­

fined on 1 n = ]Rn x3Rn is a symbol of class S m «., -<» < m < « > , 
x r. p, o 

0 £ 6 < p £ 1, if for any multi-index a,3 there is a bounded func­

tion C B(x) such that 
(5) ' | 3 ^ x 3 p ( x , C ) | ^ CafB(x)(1 + U | ) m + 6 I B , " p J a l 

for all x € P n , c € 2Rn . For a rapidly decreasing function u € S 

we define 

(6) Pu(x) = JJ e
i ( x " x , ) ptx^ufx'Jdx'dc . 

P extends to bounded linear operator P : H , -• H (see e.g. [18] 
s+m s 

Chap. 3, Theorem 3.7). There are some estimates for the distance of 

T to the class of compact operators from H to H due to HQrman-

der [13] and some sufficient conditions for the Fredholm property 

of T due to Grushin ([12]) and Kumano-go ([18]). Their methods 

(e.g. Garding's inequality and special parametrices) lead to the 

followinq estimates: 

5.4. Proposition. Let p be a symbol of class S m
 fi and assume that 

its derivatives are slowly varying in the sense that in addition 

to (5) we have: 

(7) |C Q(x) I • 0 if |x| -• oo for all a and 3 * 0 . 
a, p 

Then for P : H -• H def ined by (6) we have 
A(P) * TIE l p ( x , c ) (l + U I 2 ) " m / 2 l . 

l x | + |rJ->co 

If p(x,c) = 0 for all x outside some compact set, then we 

have equality. 
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§6 Operators in L.j (y) and C(K).' 

In the situations we considered so far the class of strictly (co-) 

singular operators .coincides.with' the ideal of compact operators. 

In L1 (y) and C(K> they form a larger class, and - this is more im­

portant for us - they interact better with the Banach. space struc­

ture of L A p ) and C(K) than cfompact "operators do. Pelczynski [2-3 ] 

has shown for example that an operator in'L-(y). -is strictly singu­

lar if and only if it is weakly-compact, i.e; 

(1) A(T).= 0 iff • : Tim" llx̂ Tll = 0 1) 

V Q ( A ) H O 

The latter conditions-means that T (U-. ) is equi-irttegrable. As a 

generalization of (1) we, get the following formula for A . 

6.1. Theorem ([38]); For an arbitrary bounded linear operator . 

T : L-(X,y) -> L_. (Y,v) we have 

A(T) = A*(T) = Tim UXATM 
vQ(A)-0

 A 

= inf{||T-Sll : S weakly compact} . 

This formula has again the useful properties we discussed after 2.--. 

(just replace the bands 1 (M),M c U', by L 1(B),B c Y, and compact 

operators by weakly compact operators.) E.g. we obtain a formula 

for the essential spectral radius which applies to a perturbation 

argument in transport theory (see [37] ) . In [37] we also dis-

cribe a connection between the formula A(Tn) ' n • rQ (T) and the 

so called Doeblin-condition for Markov processes. 

6.2. Examples ([38]) ; a) Let U : L.1 (X,y) —* L.] (Y,v) 

(2) U(f)(y) = Jk(y,x)f (x)dy(x) 

be an integral operator defined by a measurable kernel k. Then 

A(U) = inf sup / |k(y,x) |dv(y) 
n x IkI>n 

b) Let V : L.-(X,y) -> L--(Y,v) be defined by 

(3) Vf(y) = Jfdyy v-a.e. 

where (y ) € V is a stochastic kernel of y-singular measures on 

(X,A). Then 

A(V) - HV|| = suplly || 
Y Y 

where lly II is the total variation of y . 

' We continue with the notation of section 4. 
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Since an arbitrary operator V : L.(X,u) —• L.(Y,v) can be written 

is a sum T = U + V where U and V have the form (2) and (3) resp. 

(see[37]), the above examples already cover the general case. 

For operators in C(X) we get results which are essentially 

dual to our results in the L^-case. 

6.3. Satz: For compact spaces X and Y and a bounded linear opera­

tor T : C(X) —• C(Y) we have: 

MT) = sup dim )ITxB II : A c X open and A DA = 0 for n * m} . 
' n 

If X is extremely disconnected or Y metric then 

A*(T) = A(T) 

=tnd if Y is extremely disconnected we also have 

A(T) = inf{||T-SH : S weakly compact} 

One can also 'dualize1 the formulas given in 6.2. But it can happen 

that A*(T) = 0 < A(T) (e.q. choose C(X) » c , C(Y) w 1 M and T as an 

isomorphic embedding. Then A(T*) = 0 since by a theorem of Rosen­

thal [26] every separable quotient of 1°° is reflexive). 

6.4. Remark. So far we can estimate r(T) and r*(T) only for special 

operators in L1 and C(X). For example, if T has the form 

oo 

Tf(y) = Jk(y,x)f(x)dy(x) + £ a(y)f(a (y)) 
n=1 

then for T : L-(X,u) -* L- (Y,v) one can show that 

r(T) = lim m(TX,) 
y(A)-0 A 

ana .or T : C(X) —»C(Y) we have 

r*(T) = inf{Um a ( X A T) : An c X of fen, AR fl Am * 0 
n n 

for n * n} 

I don't know at this point if these formulas hold for general boun­

ded linear operators in L-(u) or C(X). 

7. Comparison with measures of non-compactness. 

There is an abundance of measures of non-compactness and quantities 

similar to A and r in the literature (see [19] , [28], [30], [39 ] and 

their references. We have concentrated here on A and r since these 

formulas seem to be well suited for the application of Banach space 

methods also in L^(y)- and C(K)-spaces. But our methods also give 

that in many situations of interest in applications A and r actual­

ly coincide with various other notions. Here are some examples. 
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a) In [30] and [39] it was shown that the quantities 

T(T) = sup{m(TjM) : dim M = «0 

T*(T)= sup{q(QMT) : codim M = «} 

have properties similar to A and A*. This is no coincidence. In 

a joint work with 0. Beucher we shall show that 

A(T) = T(T) , A*(T) = T*(T) 

for arbitrary bounded linear operators in a large class of 

Banach-spaces including all L (u)-spaces, I <p< » , Lorentz 

function spaces, certain Orlicz function spaces, Hardy-spaces 

and Sobolev-spaces. 

b) In all situations considered in sections 2,3,4 and 5 the popular 

measures of non-compactness coincide with A and r. More precise­

ly, let us call 'measure of non-compactness1 any function 

a : C — • ]R , 

where C is the class of absolutely convex, bounded subsets of 

the underlying Banach-space X, with the following properties 

i) If A,B € C and A is relatively compact then a(A+B) = a(B) 

ii) If A,B € C and A c B then a(A) < a(B) . 

iii) If A € C and r € if then a(rA) = ra(A). 

iv) There is a constant C such that a (T1M) = C for the unit ball 

UM of every infinite dimensional subspace M of X. 

For example the well-known Kuratowski and Hausdorff-measures of 

non-compactness have these properties, see [28] §1.2. 

For X and T € B(X) as in section 2 to 5 we then have 

a(TUx) = CA(T) . 

Indeed it is not difficult to see that 

C-T(T) < a(TUx) <. C inf{(|T-J 

and then equality follows directly from our earlier results. 

C - T ( T ) < a(TUx) <. C i n f { ( | T - K | | : K comp.} 

This observation does not extend to X = L- (u) or X = C(K). There 

are integral operators T in C[0,1] and L-[0,1] which are weakly 

compact but not compact and therefore satisfy 

0 = A(T) < q(TUx) 

c) Different kinds of measures of non-compactness were studied in 

[30] and [39]: 

c(T) = inf{tlTlM!l : codim M < »} 

k(T) = inf{|jQMTir : dim M = - } 

Since A(T) £ C(T) <. JTM-Kr, A* (T) £ k(T) <. (I T+Kf for a l l compact 

K, we have 

A(T) = c(T) - k(T) = A*(T) 

for all situation considered in sections 2 to 5 but not for 
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X = L.. (u) or X = C(K) . 

In [30] and [39], some relatives of r and r* were considered: 

B(T) = sup{m(TlM) : codim M < «>} 

M(T) = sup{q(QMT) : dim M = «>} 

T is shown in Muse papers that 

moo(T):= sup{m(T-K) : K finite dim.} < B(T) < r (T) 

qoo(T) := sup{q(T-K) : K finite dim.} < M(T) <> r*(T) . 

Since compact operators in'L (y) can be approximated by finite 
IT 

dimensional operators we have equality in these inequalities in 

all situations considered in sections 2 to 5. A similar remark 

applies to the characteristic y (T) considered in [39] . 
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