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ON THE FRECHET DIFFERENTIABILITY OF DISTANCE FUNCTIONS 

L.Zajíček 

This paper is in final form and no version of it will be submitted 

for publication elsewhere. 

1# It is well known that in some Banach spaces (which are cal*-»< 

Asplund spaces) any continuous convex function is Frechet differen-

tiable at all points except those which belong to some first cate

gory set. In [2j and £5} more stronger estimates of the small-

ness of the set A« of points of Frechet ncndifferentiability of 

continuous convex function f in spaces with ~a separable dual are 

given. In C2l it is proved that Af is c/-porous and in £33 

this result is improved by showing that A- is even angle small. 

A subset M of a real Banach space X is said to be c< -an

gle porous (where °<>0) if for any x£M and every r > 0 one-

may find z , //z-x//<r , and g e X such that 

M Pi {yex ; (y-z,g) > *//g/| //y-z//J = 0 

Iff for every ex positive, M can be written as a countable union 

of c< -angle porous sets, we say that M is angle small. 

Let X be a Banach space and MCX an arbitrary nonempty 

closed subset of X . Denote by d„ the distance function and by 

P*. the metric projection determined by the set M . Suppose that 

X is separable and X has an uniformly Frechet differentiable 

norm. Then, according to £5j * the distance function d« is Fre

chet differentiable at all points of X-M except those which be

long to a Soporous set. If X is a separable Hilbert space, then 

it is known f4j that the distance function d„ is locally cT-co

nvex in X-M (a function is said to be cT-convex if it is a di

fference of two continuous convex functions ) . Therefore we easily 

obtain that the set of points from X-M at which d^ is not 

Frechet differentiable is even angle small. 

The purpose of the present article is to prove that this ass

ertion is also true in the case of a Banaoh space X which has 
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a separable dual and an uniformly Frechet differentiable norm. 

Using a result of £1] we obtain immediately that in Banach 

spaces which has an uniformly Frechet differentiable norm, a sepa

rable dual and a Frechet differentiable dual norm on X* any metric 

projection P™ is single-valued and continuous at all points of 

X-M except those which belong to an angle small set. 

In the following we use methods from [3] and [5J . 

2. In the following I is a real Banach space. 

DEFINITION'1. £5J . Let F be a real function defined in X . 

We say that g £ X* is an almost superdifferential of F at x£X 

if lira sup (F(x+h)-F(x)-(hfg)) //h // ~
1 i 0 . 

h ->o 

DEFINITION 2. Let F be a real function defined on an open set 

GcX . We say that F is uniformly almost superdifferentiable on 

G if for any x £ G we can choose an almost superdifferential 

g(x) of F at x such that for any £ >0 ' there exists or>0 

such that ( F(x+h)-Ftx) -(h,g(x))) |/h/|" 4 £, whenever 

0 < J/h||4: (f and x+h £G . 

DEFINITION 3. Let g:X -> X* be a singlevalued mapping defined 

on an open set GcX . We say that g is LAN (locally almost 

nonincreasingj on G if for any X£G and £>0 there exists 

a neighbourhood U cf x such that for any y,z e U 

(y-Zfg(y)-g(z)) < ttly-zll 
DEFINITION 4. Let {f^ ; o( £ A } be a system of real functions 

on an open set GcX . We say that {f^ ; tf^Aj is uniformly 

Frechet differentiable on G if all f^ are Frechet differentia

ble on G and if for any £ > 0 there exists cT>0 such that 

I**(y*h) -**(*) -(h.f^y))/ ^ £|/h/| 
whenever y £ G , o< £ A , ||h/J<<T 

LEMMA 1. Let {f^ ; * 6 A } be a system of K-Lipsehitz fun

ctions on an open set GCX which is uniformly Frechet differentia

ble on G . Suppose that the function 

F(x) : » inf { ^ ( x ) ; o< e A} is finite on G . 

Then F is K-Lipschitz and uniformly almost superdifferentiable 

on G • 

PROOF. It is possible to repeat word by word the proof of Lemma 1 

from £5J ? since under present hypothesis the corresponding <T 

does not depend on x 

LEMMA 2. Let F be a real, function which is uniformly almost 

superdifferentiable on an open set GCX and let g(x) be as in 



ON THE FRlSCHET DIFFERENTIABILITY... 163 

Definition 2. Then 
(i) the mapping g : x -> g(x) is LAN on G and 
(ii) if g is continuous at a ^ G , then F is Frechet 

differentiable at a . 
PROOF. Let x € G and £ > 0 be fixed. Let cT>0 corresponds 

to £ as in Definition 2 . Then for any y,z £ G from the 
5/2 - neigbourhood of x we have //y-z/J^cT and consequently 

F(y) - F(z) ^ £//y-zff + (y-z,g(z)) and 
F(z) - F(y) ^ tf/y-z/f + (z-y,g(y)) . 

Therefore (z-y, g(z)-g/y)) <£ 2 f | y - z | , which proves (i) 
Now suppose that g is continuous at a and let £ > 0 be given. 
Choose a cT>0 corresponding to £ by Definition 2 and find 

UJ > c such that Jjg(x) - g(a))|< £ whenever //x-af/ < u) 
If l/x-a|/ < min (<T,aO , then 

( 0 F(x) - F(a) -4 £ ffx-a/| + (x-a,g(a)) and 
F(a) - F(x) ^ £l/x-a// + (a-x,g(x)) . 

The last inequality implies 
(2) F(x) - F(a) -* (x-a,g(a)) + (x-a,g(x) -g(a)) - £ (|x-a|| *= 

^ (x-a,g(a)) - 2 £ |/x-alf . 
The inequalities (1) and (2) imply that gfa) is the Frechet de
rivative of F at a 

LEMMA 3. Let X* be separable and let g: X -» X* be LAN on 
an open set G c X . Then the set A of all points of discontinui
ty of g is an angle small set. 

PROOF. Put A » { x € G ; lim sup // g(y) - g(x)// > 1/n} 
y-> x 

and choose an arbitrary o< > 0 . Find a sequence (y-^) dense in 

X* and define A n # k = { x e A n ; f|g(x) - yk// < * / 4 n } 

Obviously A = U &n k and 
(3) Hg(x) - g(y) I < o(/2n whenever x^y ^ A

n,k * 
Since g is LAN on G and X is separable we can find for any 

n a countable open covering (*^)D-1 °^ G such that 
(4) (y-z,g(y)-g(z)) < (°</2n) f/y-zf/ for y,z € H* . 

butting A n f k f p - A n f k n H £ we have A . (J A n f k > p and con-
sequently it is sufficient to prove that any set A^ , ̂  is 

n ,K,p 
o<-angle porous. Let n,k,p, x e A ^ . ̂  and r > 0 "be fixed. 

Ii , A , p 

Find z e H j such tha t //z-x// < r and || g(z) -g(x)/( > 1/n . 
To f in i sh the proof i t i s suf f ic ien t to show tha t the se t 

B s * An,k,p H (yeX ; (y"z* g(x) ' g ( z ) ) > ^'^-z'lflg^)-g(2)ll} 

is empty. Suppose on the contrary that there exists y 6 B . Or 

account of (3) and (4) we obtain 
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( * / 2 n ) l|y-z// ^ | |y-z(| f|g(x) - g(y)// -* (y-z fg(x) - g(y)) = 
= (y-z tg(x) -g(z)) • ( y - z , g ( z ) - g(y)) > | |y-z || || g (x) - g(z)/ / -

- (*/2n)|fy-z|J > (*/n) || y-z// - (*/2n) || y-z || 
which i s a con t rad ic t ion . 

PROPOSITION 1. Let X* be separable and let F be a real 

function which is uniformly almost superdifferentiable on an open 

set GcX . Then F is Frechet differentiable at all points of 

G except those which belong .to an angle small set. 

PROOF. Proposition is' an immediate consequence of Lemma 2 and 

Lemma 3 • 

PROPOSITION 2. Let X* be separable and let {f* ; °<£A} 

and F be as in Lemma 1 . Then F is Frechet differentiate at 

all points of G except these which belong to an angle small set. 

PROOF. Proposition is an immediate consequence of Lemma 1 and 

Proposition 1. 

THEOREM. Suppose that X has a separable dual and an uniformly 

Frechet differentiable norm. Let M be an arbitrary nonempty 

closed subset of X . Then the distance function d™ is Frechet 
n 

differentiable at all points of X-M except of those which belong 

to an angle small set. 

PRCOF. Let U<lX-M be an open bounded set for which 

dist (UfM) > 0 . "ft is easy to see that there exists a bounded 

set AcM such that dM(x) = dA(x) . for any xeU . Denoting 

f*(x) = JJx-«JJ we have dM(x) = inf { f ^ x ) ; * 6 Aj . 

Since the norm of X is uniformly Frechet differentiable (on the 

unit sphere) it is easy to see that the system -[f^ ; * €: AI 
is uniformly Frechet differentiable on U . Using Lemma 1 (for 

K = 0 and Proposition 2 we obtain that dM is Frechet ̂ differen

tiable at all points of U except those which belong to an angle 

small set. Since a countable union cf angle small sets is obvious

ly angle small and G is separable, it is easy to finish the proof. 

Using Corollary 2.7. from [J3 we obtain immediately the follo

wing consequence. 

- COROLLARY. Suppose that X has an uniformly Frechet differen

tiable norm, X* is separable and the norm cf X* is Frechet diff

erentiable. Let M be an arbitrary nonempty closed subset of X . 

Then the metric projection PM is singlevalued and continuous 

at all points of X-M except thcue which belong to an angle small 

set. 
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