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B-.TIIABILITY OP ACTCLIC POLYOMINOES 

Igor Křf 2 

The main result of this paper is to present a polynomial algo
rithm for deciding, whether a given acyclic polyomino (roughly spea
king, a connected finite configuration on infinite chessboard with
out holes) is tilable by l*n- and n*l-rectangles#(n fixed) 

The results on such tilings ([1,2,3,4,5]) so far known are ba
sed on global characteristics of some simple polyominoes# In our 
method we use a local analysis of the structure, which makes the 
general result pos3ible# 

Prom further results included let us name for instance the con
nectedness theorem (2#3#2#) or the theorem on the tilings of the 
complement of a subpolyomino (2#4.3.)» 

1 # Preliminariea 
1 #1 # We will use the symbol AB,AB,AB, respectively, for the 

segment, half-line, line, respectively, determined by the points 
A,B of the Euclidian plane E2# The points A,B are called the nodes 
of the segment i-B# An oriented segment is a couple (u,0(u)), where 
u is a segment and 0(u) one of its nodes (the origin); the other 
node T(u) will be called the terminal. For two parallel oriented 
segments we distinguish coherent or reverse orientations -in the ob
vious way# 

If u and v are segments, u2v, we say u is an extension of v. 
The length of a segment u will be denoted by |u|. 

For subsets MCEgjMC is the interior,[M] is the clo3ure and 
^M is the boundary of M# The cardinality of a finite M will be de
noted by # ( M ) # 

The plane will be endoved with a fixed coordinate sy3tem« The 
lattice (integral) points provide the plane with the obvious struc
ture of a CW-complex K# Ita closed 2-cells (the l x l 3quares) will 
be called simply cells. Refering to 1-cells in the sequel, we mean, 
of courae, the 1-cells of K# The 3ystem of l-cell3 obviously deconxH 

This paper is in final form and no version of it will be submitted for publication elsewhere. 
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poses into two classes (the vertical & the horizontal ones); these 
will be refered to as the K-directions. When speaking of a direction 
of a line or half-line, we mean the direction of the segments inclu
ded. 

The -.oil with the vertices (i, j),(i, J+l), (i+1, J), (i+1, j+1), will 
be denoted by <i, j>. The translations of the plane given by the for
mulas (x,y)*-» (x,y+l) resp. (x,y) V-* (x+l,y) are denoted by ^resp.T. 

An oriented segment u is said to be right perpendicular to an 
oriented segment vj" if for T(u) - 0(u) ~ (x L,y 1), T(v) - 0(v) = (x2, 
y 2) it holds 

det (Zlíì>°-
(Realize the obvious geometrical meaning of this, somewhat clumsy, 
definition.) Left perpendicular is at* inverse relation to right per 
pendicular. 

We say that the oriented segment ((0,0)(1,0),(0,0)) is right in

cident with the cell( 0,0) and use this expression for all the con

figurations obtained from the mentioned one by translations and ro

tations. 

1.2, A polyomino P is any finite regular subcomplex of K (i.e., 

we have[]Pt] = P). Its volume is the number of its 2-cells. An I-

-component of P is the closure of a component of ]P[. P is said to 

*>e acyclic, if both]P[ and E^ N]P[ are connected subsets of the plans. 

In the sequel, we will use the term rectangle for those rectangles, 

which are polyomina. 

Given a polyomino P, then each 1-cell of *3P will be oriented 

once for ever so that it is right-incident with a cell of P. This 

will be refered to as the standard orientation. A side of P is any 

segment a c ^ P such that it is a subcomplex of K, its 1-cells are 

coherently oriented and it is maximal with respect to this property 

(see fig.l). 

fig.l 

II,§5 are sides, JEC is not. We can define the standard orientation 

of a side to be coherent with the orientation of its 1-cells. 
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We define a function sucCptM—*M, whero M is the set of all the 
sides of P, putting 

(i) T(s) = 0(succp(s)) for seM 

(ii) If s' satisfies T(s) = 0(s') and s is right perpendi-
cular to s', then s \ = succp(s). 

1.2»1. By Jordán Theorem, we immediately obtain 
Lemma: P is acyclic iff succp is a cyclic permutation. D 
O P is not necessarily a Jordán curve - for this we would háve to 
assume a connected ^2NP» But, it behaves, in an obvious sense, al-
most as one: The exterior and the interior is canonicaxiy defimed; 
moreover, P = intdP.) 

1.3> A side of P is said to be an edge of P, if succp(s) is left 
perpendicular to s and succp (s) is right perpendicular to s (see 
fig.2 and compare it with the situation of the edges t . , ^ ) . 

fig.2 

t, is an edge, t2 is not. 
1«5»1« Lemma: In every polyomino P there is at least one edge 

in any direction and orientation. 
Proof: Consider the least rectangle C containing P. It is easy to 
see that each of the sides of C contains an appropriate edge of P.O 

An edge h of P is said to be left regular (resp. right regular) 
if there is a k € 0\losuch that succp h) (resp. succp (h)) is 

an edge left (resp. right) perpendiculai to h, while for i = 0,... 
i i+2 ..,2k+l are succí(h), succp" (h) parallel and coherently oriented 

i i 2 
(resp. succp (h), succp (h) are parallel and coherently oriented). 

fig.3 

left regular:c,d,e,f,g; right regular:afdfe,f,g; neither:b. 
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1.3«2. Lemma: In every polyomino P there is at least one left re
gular and at least one right regular edge in any direction and orien
tation* 

Proof will be done for left regular by induction on n = |P|# (the vo
lume of P) The statement is obvious for n = 1. Let the statement hold 
for n<k # Choose a direction and an orientation# There is at least one 
corresponding edge a# Let * be the cell of P incident with 0(a)# We 
w ill distinguish two cases: 

1) |a| = 1# In [ P N H ] there is a left regular edge h of our di
rection and orientation. Let 2k+l be the least number such that 
succ[p%£j(h) is an edge left perpendicular to h# Obviously, * is not 
incident with any of the sides succr£ti](h)> 0^m4k # Thus, either it 
isn't incident with any of the sides succ^^j (h), too, arxl then h is 
left regular, or it it, and then a is left regular. 

2) la| J 1# Consider C, the I-component of [P^*} containing a 
1-cell of a# By the induction hypothesis, C has a left regular edge 

h parallel to a and coherently oriented. If h is not incident with a, 
then it is left regular in P# Otherwise, a is left regular. D 

X^t C b e a n s^S6 °^ p an^ le^ n ^e "^e smallest number such that 
succp(c) (resp# succ^

n(c)) is an edge left (resp# right) perpendicu
lar to c# The closure of the interior of M ={A| 3 i€<°* •••*&}3 B * 
€succ|(c): ABcp, ABic (resp# of M = {A|3 i e(0,###,n)H Bcsuoc[j.c): 
ABCP, ABic}) will be called the left (reap, right) semlsector of P 
over c# The intersection of both semisectors will be called the sec
tor of P over c# 

ŕig.4 

(V/e have to take[]M[], since M is not necessarily a polyomino, see 

fig.4#) 
1.4* L*t s be a direction. A subset M of Eg will be called s-

convex, if p n M is connected for any line p of direction s# A poly
omino P is said to be K-convex if it is s-convex for the both K-di-
rectlons s. 

1.4*1. Lemma: An acyclic polyomino P is s-convex iff no two of 
its s-edges have coherent orientations. 
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Proof £ Let us have edges c . - ,c 2 of the same orientation and the same 

direction s. Suppose P is s-convex. Then P has to lie in a halfplane 

determined by both clfc2. Thus, the edges c. lie in a common line and 

hence P is not s-convex, which is a contradiction. 

On the other hand, let P be not s-convex. Since P is acyclic, we 

see easily that there is a line p in the direction s, dividing ]PC in

to three components at least. Thus, at least two of them, say P T ^ * 

share a half-plane determined by p. Put p. = [-?!]• w© *-ave polyomina 

P. such that all the 1-cells of Pj. n p have the same orientation. Thus, 

according tp 1.3.1., there are edges h, of P. in the direction s with 

the opposite orientation. This concludes the proof, since h^ are ob

viously edges of P . D 

1.4.2, Lemma: Let c be an edge of P. Then the left (resp. right) 

semisector I of P over c is K-convex, iff c is left (resp. right) re

gular and there are no two edges of I parallel to c with opposite 

orientation to that of c. 

Proof: The condition is obviously necessary and we see easily the 

sufficiency from 1.4.1. Q 

1.4.3. Theorem: Let P be acyclic. Then for every direction s the

re is an edge c of P in the direction s such that one of the semisec-

tors of P over c is K-convex. 

Proof will be done by contradiction constructing an infinite system 

of left (right) regular edges c, and corresponding semisectors I, of 

P. Put Î -jS &. By 1.3.2., there exists a left regular edge c of P in 

the direction s and an arbitrarily chosen orientation. Put c = c and 

let I be the corresponding left semisector of P. Now, let us have 

Cj.,1. for i<k. Let, say, c-^ be left regular. Then if 1-^ is not 

K-convex, we have, by 1.4.2., two parallel edges of I, , with the ori

entation opposite to that of c-^. Thus, at least one of those is not 

incident with 

C SUCCj 

tension 

Fuirther, denote by C. the closure of that component of JPv a.[, which 

is incident with a. Since P is acyclic, we have by 1.4.2. 30,0 --j- ?£s 

s 0 or]C2^ Ik_2t
= 0# Let> f o r instance,]C2x Ik_2 [ = 0. Then, accor

ding to 1.3.2., the polyomino C2 iias a left regular edge c || ck .. and 

inverse oriented. Thus, c is also a left regular edge of P. Put c, = 

= c and denote by I. the left semisector (right in the caseKLx I. 2[ 

= 0) of P over c. According to the acyclity of P, we have]l-A I.*[= 0 

for lk-tl>l. D 
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Remark; The acyclicity is €*ciential (see fig. 5) 

fig.5 

2. Tilings 

2.1.1. Put Ck % = {(x,y) 1 0 { A ^ - A . J^y v< J-l}. An n-tiling 

of a pdlyomino.P is a set M of rectangles congruent with C1 n (or, 

equivalently, with C n , ) such that U M = P and for a,b€ M we have 

JaC<\lbC = 0# If there is an n-tiling of P, we say that P is n-tlia

ble. 

Special tilings: We will use the notation M£ = [fA C n 1l i = 0,.. 

..,k-l>, N£ = { l 1 ^ n|i = 0,...,k-l). Let Pm, m = l,...,k'be n-ti- * 

lings and let i , j be the smallest natural numbers with U P c C. . . 

(supposed they exist) V/e will use the following notation 

P,+ P 0 + . . . + P v = 
1=1 
k 

k đf U«* 
•PІ = 2 pi» °*pi s #• 

«l*{ 

Further, for I, =«tn + ß , ß - 0 , . . . , n - l , «*«INQ , l c - j l t^ n rut 

Pj( e J^.kp) = iN^ + M£ + (-X - i )Nj 

(see f i g .б ) 

P>.-,l) ^ 1 1 
^ig.6 

For an edge ^ ux a polyomino P put k, = min ( |sucCp(c)l ,n), k2 = 
minHsucCp (c)l ,n). Then there i s a unique congruence <f iH^**^ 
mapping the segments (0,0)(0, | c | ) , (0 ,0 )(k 1 ,0 ) , (0,lcJ Hk^, Id ) to 
c, 8uccp(c), succ^ (c ) , respectively. Put 

Pj(c,P) = if (Pj fdchk,, !^) ) , j f t c P ) = <f (M^j). 
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(As a rule, we will be able to assume {f = Id without loss of genera
lity. Then we have 0(c) = (0,|c|), T(c) = (0,0) and the edge'c will 

be refered to as an edge in the normal position.) Moreover, we will 

use the notation 

whereLW/nJ is the low integral part. Let us note that [) P?(c,P), 
U$*(c,P), U P £ ( C , P ) will be in typical cases subsets of P, al
though this is not the general case.. 

2,1.2,, An equivalence of n-tilings. Write AA^B for A,B n-ti-

lings, MCE 2, if there exist i,j c Z such that A* **si N £ = B -

^*Xj* ^n' w h i l e ^ fflj* N n c M > and deno,te by "'lithe least equivalence 

containing d£rt . To the relation ̂ M we will refer as to the M-equiva

lence. In the case of M = E2 we will speak simply of the equivalence 

and write A ^ B . 

2.2, 

2 . 2 . 1 . Theorem: Let c be an edge of P. If the sector I of P 
over c i s K-convex (which i s the same as being convex in the d irec
t i o n of c ) , then each n - t i l i n g of P i s I-equivalent with an n - t i l ing 
containing P?(c,P) for an i . 
Proof: An induction according to the length Icl of c. I f lc| < n, the 
statement i s obvious. Now, l e t d = Id > n and the statement hold for 
|c| < d . Take an n - t i l i n g A of P. Put k- = min(| succp(c) | ,n ) , k.2 = 
= min( Isuccp (c)l , n ) . We can assume that c i s in the normal posit ion . 
Now, the K-convexity of I implies the existence of i ^ , . . . , i2*+l€Wo 
and of j p . . . , $ j + 1 * { l , . . . , n i such that i-,*.. . + i 2 | t + 1 = l c l and 

A D Q = - V + ^ ( < + ! i ^ N * ) . 

Moreover, we can assume i2,...,i2^ nonzero. Put P'= U (A* Q), Then 

P' is a polyomino and for 2im 4 * is either 

cm = ( r ^ + - - - + i ^ * r^0,0)(0,i 2 m - 1) (+> 

an edge of P' and lsuccp*(cm) I, lsucc£'(cm)l £ n - j m, or j m f l = n. 
Similarly, for m = 1 (resp. m =<*+ 1) (+) is either an edge of P' 
and Isuccpic )l i lc. - J (resp. |succ£i(cm)l £ l^- ,Jm), or j-^ 1^ 
or 1,̂ = 0 (resp. jittA > kg or ia-t4i = 0). 

In any case, if c is an edge of Pj the sector I m of P'overjc 
is K-convex. Moreover, the sectors I m are mutually disjoint. Con
sequently, by the induction hypothesis, 

A> Q ^ u r B, where P
n(cm,P') C B 
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for some numbers ©t^. Since, however, njlcml= i2m-i>
 w e h a v e 

^ V p ) 9 <ri»+'--+i^-iri-Nn.,V 
where 

Thus, 

k, f oг m = 1 
£, = £ k2 foг m = * + 1 

^ n f oг o heг m. 

P ~ t ( B 0 Q ) o | < N n + S (M? + ^ N n ) + M n ^ + ^ N j ^ 

7 ~ I * N £ + l A . + t - - - i N n := C. 
*** n k. £»»-> ~v k t 

Let S i = n £ + b ("^«INo , b = 0 , . . . , n - l ) . Then C " |«Nn + Mn + 

K '" «̂t ° X + < + ((i + ̂  >< = p n , /n ( c ' P ) - ( s e e ^ . 7 ) 
•—i (i-niw.tko^ kypMjLiCs) 

I 

1 I 1 Г У 
f i g . 7 

2 .2 ,2 . Corol lary: Let us have besides of the assumption of 
2.2.-1. moreover lsucc p (c)l ^ n ( r e s p . Isuccp ( c ) l ^ n ) . Then each n-
- t i l i n g of P i s I-equivalent t o an n - t i l i n g containing P^(c,P) 
( r e s p . P*?'(c,P)). I f we have both lsucc p (c)l % n, I sucCp ( c ) l ^ n , 
then each n - t i l i n g of P i s I-equivalent with an n - t i l i n g containing 
$ n ( c , P ) . 
Proof: follows from 2 . 2 # 1 # and the formulas 

p f < ! jn.fc,) = i N j + 4 + < « - i ) H j ^ M ^ + < * - !)!»£* 

A/M^ + iNJJ + ( « - i ) N ^ o M^ +<<N^t a Pj( I ; n , k 2 ) . 

P £ ( C ̂ - n ) ^ P f | / i i ( l $ k l f n ) (analogously) 

Pj( C;n,n) = iNjj + M$ + ( * - i ) H j ^ B*J. • 
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2#2#3. Theorem: Let c be an edge of a polyomino P. Assume that 
all the edges of P have length at least n. If the left (resp. right) 
semisector I of P over c is K-co^vex, then each n-tiling A of P is 
I-equivalent with an n-tiling containing P£(C,P) (resp. P Q ' ( C , P ) ) . 
Proof will be done for the left semisector. According to 1.4.2#, the 
edge c is left regular. Let h. = sucCp(c) and denote by t the least 
natural number such that t^p +1 is an edge of P. We will use the in
duction on t . It will be of an advantage to consider the fact in a 
somewhat stronger formulation: we will restrict the assumption to 

fctt*iUn only. 
For fc = 0, k, = thu*i| > n and the theorem follows directly 

from 2#2#2# Let * = f©>0 and the theorem hold for I =fc0-l. Put k- = 
min( |sucCp(c)| ,n), k2 = mindsuccp (c)J ,n)# If k-̂ = n, the theorem 
follows from 2#2#2# Let k-̂ < n# According to 2#2#1#, we can assume 
P^(c,P) C A for some i# If either i = 0 or n\ |c| and k2^k 1, we have 
Pg(c,P) C P^(c,P) and the proof is finished. Assume the contrary. 
Put P'= U (A^ P^(c,P)). We can assume that c is in the normal posi
tion. Then c'= l ^ U ^ ((0,0)(0,ni)) is an edge of P. The left semi-
sector I'of P'over c'is contained in I and hence K-convex. Putting 
h^= succp(c), we have h^ = h,+2

 and hence I -1 is the least natural 
t 'such that hu'«.4 is an edge of P# From the induction hypothesis 
it follows that A\pJ(c,P) is I-equivalent with an n-tiling B, con
taining PJJ(c;P') »XkMiN£_w, ), where 

p _ ̂  n for nfld c ~ N k2for nllcr 
Hence, setting |c| = un + £ . *e N e f |i = l>#..fn-l, we have A ~t B 0 
UPj(c,P):>iN" + Mg+ (CC - i ) N J ^ MS^4A + («-i)N* ***# + iN* + 
+ ( c c D N ^ M ^ ^ N ^ = pJJ(c,P)#d 

Remark: The assumption of l h a 4 l | > n is essential (see fig.8) 

fig.O 

2.!?. The necessary and sufficient condition ror n-tilability 
of acyclic polyomina 

2.3.1. Consider a polyomino P with acyclic I-components. We 
have proved the following facts: 
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(1) P is n-tliable, iff each of its I-components is n-tilable. 
(2) Assume P has an edge c of length < n. Then P is n-tilable, 

iff U pJJ(c,P)cp and [P - U P^(c,P)3 is n-tilable. 
(3) Let P have no edges of length < n. Then there exists an edge 

c of P such that the left (resp. right) semisector of P over 
c is K-convex. Now P is n-tilable, iff U P £ ( C , P ) C P (resp. 
U P £ ' ( C , P ) O P ) and [P - U PJJ(C,P)1 (resp. [P N U PJJ'(c,P)]> 

is n-tilable (see 1.4.3.,2.2.3.) 
These statements yield an obvious "reduction algorithm" for testing 
the n-t liability, which consists of a construction of a certain n-
-tiling of P. The time complexity of this algorithm depends or|the 
time needed for finding the convex semisectors. If we use the trial 
and error, we obtain the complexity of 0( )P| ). 

2.3.2, Theorem 2#2#3. gives a stronger result than the reducti
on algorithm. By the same method, we obtain quite analogously 
Theorem(The connectedness theorem): Let P have acyclic I-components. 
Then any two n-tilings of P are n-equivalent. D 

2,4. Tilings of complements of subpolyomina 
Let P be a polyomino. Assume that for a set jc'&P it holds* 

j = bu succp(a) u sucCp(a)u .•. usuccp(a) u c 

for some ketNcand for some segments bCa,ccsucCp (a), which are 

subcomplexes of K and satisfy T(b) = T(a), 0(c) = 0(sucCp+1(a)) in 

the standard orientation. Then j is called an interval of dP. An 

interval is sais to be n-correct-. if |b|,lsuccp(a)| ,...,|sucCp(a)|, 

|c|<n. A polyomino P is said to be an n-correct subpolyomino of Q, 

if p e g and ^ P x ^ Q C j for some n-correct interval jc^p, 

2,4.1. Proposition: Let P be a 2-tilable polyomino and a 2-cor-

rect subpolyomino of Q. Then any 2-tiling of Q contains a 2-tiling 

of P. 

Proof:Color a cell <i,j> black (resp. white) if i+j is odd (resp. 

even). It is obviously necessary for a polyomino to be 2-tilable 

to have the same number of black and white cells. 

Suppose now that a .2-tiling A of Q not containing a 2-tiling 
of P exists. In particular, the polyomino Q'= U{xc AIIXA P C / 0}$Q 
is 2-tilable. Since all the cells inciding with a 2-correct interval 
are obviously of the same color and since P is 2-tilable, the number 
of black and white cells in[P\ Q']is not equal, which is a contra
diction^ Q 

Note that 2.4.1. obviously does not generally hold for n>2. It 
holds, however, under the assumption P is acyclic. Our aim in the 
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rest of this paragraph will be to prove this fact. 

2.4.2, Lemma: Let P be an acyclic n-tilable polyomino and let 
jC^P be an n-correct interval. Then there exists an edge c of P and 
an n-tiling A of P such that 

c n j = 0 (1) 

$n(c,P) cA. (2) 

Proof will be done by induction on the volume \P| of P. For )P| ̂ n 
the fact is obvious. Let now |F( = m > n and the fact hold for |P| < m. 
We have three cases: 

1) P contains an edge c, |c| <n, crtj = 0. Then any n-tiling A 
of P satisfies $n(c,P) c A, 

. 2) For all edges c of P, satisfying cO i - 0, it holds Id £n, 
but there exists an edge d of P with dO j A 0 and |d| < n. Then any 
n-tiling of P contains ^ n(d,P). Let C be an I-component of fp N 
NU$ n(d,P)3. Put j'=^Cn(jU U$n(d,P)). Then j' is an n-correct 
interval of ^ C . By the induction hypothesis there exists an n-1 j 
-tiling B of C and an edge c c 3c with c nj'= 0 such that 'B^ n(c,C). 
Obviously, c is also an edge of P with c n j = 0 and any n-tiling A 
of P containing B (which necessarily exists) satisfies (1) and (2)# 

3) All the edges of P are of length ̂  n. By Theorem 1.4.3., 
there exists an edge cc$P such that one of the semisectors (assume 
it is the left one) of P over c is K-convex. Then there exists an 
n-tiling B of P with P*(c,P) c B. Denote by Q an I-component of 
[P N UP*(c,P)3 inciding with succ~p(c). There exists a B'c B with 
UB'= Q. Let $ = U(Pj(c,P)n$n(c,P)). Put J = ^ Q n § # Evidently, J 
is an ^correct interval odTfcQ. By the induction hypothesis there 
exists an edge d C Q not inciding with J and an n-tiling D' of Q 
such that$n(d,D) c Di It is easy to see that d is either an edge 
of P or d c succp (c). In any case we have an edge d of P containing 
d such that $n(d,P) c (B^B')i>D'= D. If dnj = 0, we can put D = A, 
c = d, concluding the proof. Let* now dAj /* 0. Assume, for instance, 
T(d) c j. Then D is obviously equivalent to an n-tiling E with E O 
0pJvdfP)* denote by Q' an I-component of [P ̂  UPJJ(d,P)J, inciding 
with succp^a). There exists an E'cE with L)E'= QC Put j'= ^Q'o 
ft (U (P^(cfP)A$

n(c,P))U j). Obviously, j'is an n-correct interval 
off $QC By the induction hypothesis, we have an edge c'of Q'not inci
ding with j'and an n-tiling F of Q' with $n(c',Q} cF. As above, c' 
is either an edge of P or c' succ£ (d). In any case, we have an ed
ge c1 of P with c'c c-ĵ  and $

n(c l fP) cA = Pu(E^E'), We see easily 
that c-^ j = 0 . Q 
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2+4.3. Theorem: (The separation theorem) Let P be an n-correct 

acyclic subpolyomino of Q. ((̂ needn't be acyclic). If P is n-tilable 

then any n-tiling of Q contains an n-tiling of P. In particular, if 

P,Q are n-tilable, then CQ N P J is n-tilable. 

Proof will be done by induction on IPI . For \V\ £n the statement is 
obvious. Let now IP. = m>n, and the theorem hold whenever (Pi <m. 

Let j be the n-correct interval of ̂ P such that IP ̂  ̂ Q c j. If P is 

n-tilable, then, by lemma 2.4.2., there exists an edge C c ^ P , cn«j= 

0 and an n-tiling A of P such that | n(c,P)cA, Now suppose that c 

is in the normal position. Let B be an n-tiling of Q. As c is ob

viously an edge of Q, there exists a C c{C 4 u ,Cn%|i}with C^B. In 

any case, A is equivalent with an n-tiling A'J containing C Then 

tP v C] is n-tilable. As all the I-components of D?N Cjare obviously 

n-correct subpolyomina of [Q* C], B * {c} must contain an n-tiling of 

CPvC}. Putting A' = A"u4c}, we haveBoA'.Q 

Acknoledgement: I am very indebted to A.Pultr for a valuable 

discussion of this manuscript. 
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