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ALGEBRAIC PROPERTIES OF THE 3-STATE VECTOR POTTS MODEL 

A.K. Kwaśniewski 

Abstract 

The purpose of this note is to report on further progress in algebraic appro

ach to Potts models as to compare with [1] and [2], 

The generalized hyperbolic functions are shown again to be a structural ingre

dient of these models. 

The case of arbitrary n-state Potts model was treated in [2], Here, in order 

to compare our considerations with [1], we restrict ourselves to n=3 vector Potts 

model on the pxq torus lattice. 

Its transfer matrix M can be expressed as M = AB where 

A = det a ( a ) 
p
/з expja* j ^ + xj}}. (D 

with a(a) - an interaction matrix, and 

Б = П exp 

k=1 

b ( z k z k + i + zk+iV (2) 

with Z „ = Z,. 
p+1 1 

The 3
p
x3

p
'matrices X.&Z, ; k=1,...,p, are of the familiar form: 

X. =Ix ,,, x Ixø x Ix,,, x I 
k 1 

Z. = l x . . . x i x a x l x , . , x l 
k 3 

(p - terms) 

(p - terms) 

(3) 

where I, o 9 o are 3x3 matrices belonging to the so called generalized Pauli al

gebra i.e. to say 

o.o? - wa?
ai anc* °-\ ~ aia? w n e r e w = exp«j-----j. Explicitly the matrices are 

J2ITÍ\ 

given by 
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•0 1 0 
i 

o = | 0 0 1 

' 1 0 0 

0 oj 0 

. s 2 
o = 0 0 0) 

1 0 0 

1 0 0 

0 OJ 0 

\ 0 o 

(4 ) 

Another useful (and familiar from the Ising case) representation of A&B matrices 

is by means of generalised Y'S (generators of generalized Clifford algebras) 

which might be define as follows: 

Y 1 = a x i x i x . . . x i x i 

Y2 = a xg x I x ... x i x i 

Y = a 1 xa.. xa 1 x... xa 1
 x o^ 

Y ^* = Y. = On x I x Ix ... x I x I 'p+1 '1 2 

V2 = y2
 = a \ x a 2 x l x ' " x l x l 

(5) 

Y2p = \ = °1 X *1 X °1 X '•• X °1 x a2 

It is easily seen that Y-Y- = ^Y-Y- 5 i<j and Y- = 1 where i,j=1,...,2p. 

In terms of generalized Y'S the A & B matrices read: 

B = ̂  exp |b [YJ+1 ү k +
 ӯ2

k ү
k + 1

] } (6) 

r * ' ~|Pl3 f P 2 2 - - 2 1 
j^det a ( a ) j exp j a * £ (a) YkYk

 + Y k Y k ) j 
(7) 

2 a R e k k 

where a(a) £ e a1 and a* is the dual of a , to be found from [3] the 
k=0 ] 

equation: 

det â(a) = 33[det â(a)]"1 . (8) 

The expressions (6) & (7) are the starting point for the two major observations of 
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this note. 

At first we show how the diagonalization of the 3 *3 transfer matrix is reduced to 

the independent diagonalizations of three matrices T , T*9 T" to be defined. 

Then we show how the matrices A & B induce inner automorphisms in the three-

dimensional subspaces of generalized Clifford algebra, in a similar way as it was 

done in [1] for the standard Potts model. This time however, the matrices represen

ting the very automorphisms are expressed in terms of hyperbolic functions of or

der 3 [4] , which is of great advantage as the system of their properties is well 

established by now, and also the hyperbolic functions of order n were recently 

shown to be crucial in the Onsager problem for Potts models [2] . 

For completeness, we recall [4] the definition of these functions: 

h. (x) = - £ 0) exp^w x> , xЄR, i=0,1,2 
1 J

 ь=n l J 
(9) 

2 

I 
k=0 

The first observation: 

Define the following operators V
fc
, V.V = 6 V [2] 

2 

I 
i=0 

U = OJ2 ®
P o. (11) 

\
 = 1 ^

 w
"

kl U l > W h e r e k > 1 = 0 , 1
»

2 a nd (10) 

Denote by B (k=0,1,2 ) the following matrices 

p-1 
B. = JT exp {b [y2

a Y a + 1
 + Y*

+ 1
 Y

a
]} expjb [«o

k
 Y* ̂

 +
 ^

 Y
J } . (

12
) 

Then one has: 

M= L \ ( A V 5 VoTo + V 1 T 1 + V 2 T 2 ( 1 3 ) 

k=0 

However, due t o 

[U, 1 ] = 0 and U3 = 1 , (14) 

we conclude that there exists such similarity transformation that U becomes U of 

trie form 

I = (З
p _ 1
 *3

P
""

1
) . (15) 

Therefore T. -> T. (j=0,1,2), where-
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T = 
o Ч \ 

T " 
o 

T
2 = Ч 

J2 

(16) 

In this representation V. matrices are particularly simple. Namely: 

• V. -I I . v
2
 -| 0 (17) 

Therefore 

(18) 

which proves our first observation. 

The same observation in the case of Ising model just enables to solve it. 

For Potts model however, it is no more "that easy", as in our case [A,B] f 0 ! 

The second observation: 

For the sake of second observation we come back to formulas (6) & (7) and we 

see that the factors to be studied are the following: 

\ = Є X P { Ь ү k + iVk } ; l-V-Л = o 

and 

K= e x p { a * " V p + k 1 ' [ v a i ] = ° 'p+k 

where now k , l = 1 , 2 , . . . , p 

(19) 

(20) 

Therefore both kinds of factors are of the type: 

exp{xY
v
Y

y
} where v < u 

One then proves: 

Lemma 1. 

expíxү ү } 
v u 

I 2 2 

\Vu 

'„\ 
exp{-XY Y }

 =
 f(x) Y 

v y y 
2 2 

\
Y
v

Y
y / 
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where l/(x) is 3x3 matrix. 

Proof: 

*3 ~2 
It is enough to notice that for C = 1 f C 

2 * 2 
exp{xC} = h (x)l + h,(x)C + h

0
(x)C and that C = Y Y 

o 1 2 v u 

2 2 
acting on the "spinor" subspaces spanned by Y > Y » Y Y > both from the left and 

right, becomes an auto morphism just of these subspaces. To give an example:-

2 - . - 2 - 2 

C = Yi Y
k

 l n t n e
 basis y,9 y,, y, y acting from the left is represented by the 

following matrix 

' 0 co 0 

0 0 oj
2
 I = a

0
 „ (!) C = 

П 
1 0 0 

From the proof of Lemma 1 we also conclude: 

Lemma 2. 

Matrix elements of l/(x) are bilinear in hyperbolic functions h , h , h«.
 fl 

It is not difficult to derive l/(x) in explicit form. This we leave however - alto

gether with study of its further properties based on properties of h. functions -

for the forthcoming paper. 
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