USA 14

Mare Wisła

Continuity of the identity embedding of Musielak-Orlicz sequence spaces

In: Zdeněk Frolík and Vladimír Souček and Marián J. Fabián (eds.): Proceedings of the 14th Winter School on Abstract Analysis. Circolo Matematico di Palermo, Palermo, 1987. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplements No. 14. pp. [427]--437.

Persistent URL: http://dml.cz/dmlcz/701915

Terms of use:

© Circolo Matematico di Palermo, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Abstract. If the Nusielak-Orlicz seauence spaces I^{Φ}, I^{Ψ} consist of real sequences or the functions Φ, Ψ are convex, then the inclusion $1^{\Phi} \subset 1^{\Psi}$ implies the continuity of the identity embedding $i: 1^{\Phi} \rightarrow 1^{\Psi}, i(f)=f$, with respect to the usual norm topologies in these spaces [1], [5]. It is shown that this fact does not hold in general. In the main theorem a necessary ond sufficient condition for the continuity of the embedding i is presented. Other notions of continuity with respect to the norm and modular convergences are also studied.

1. Introduction. Throughout this peper X will denote a real inear space.
1.1. DEFINITION. A function $\Phi=\left(\Phi_{n}\right), \Phi_{n}: X \rightarrow[0,+\infty]$ is said to be a Φ-function if
a) $\Phi_{n}(0)=0, \quad \Phi_{n}(-x)=\Phi_{n}(x) \quad$ for every $x \in X, n \in \mathbb{I}$,
b) $\quad \lim _{u \rightarrow 0} \Phi_{n}(u x)=0$ for every $x \in\left\{y \in X: \Phi_{n}(y)<+\infty\right\}, n \in \mathbb{N}$,
c) $\quad \Phi_{n}(u x+v y) \leqslant \Phi_{r}(x)+\Phi_{n}(y)$ for every $u, v \geqslant 0, u+v=1, x, v \in X$ and $n \in \mathbb{N}$.

If the functions Φ_{n} are convex on X for each $n \in \mathbf{N}$ then we shall shortly write: Φ is convex on X.

Let \mathfrak{X} be the space of all seouences of elements of the space x. The functional $I_{\Phi}: \mathfrak{X} \rightarrow[0,+\infty]$ defined by

$$
I_{\Phi}(f)=\sum_{n=1}^{+\infty} \Phi_{n}\left(f_{n}\right) \quad \text { for } \quad f=\left(f_{n}\right) \in \nVdash,
$$

is a pseudomodular on \mathfrak{X} [3].
1.2. DEFINITION. By the musielak-Orlicz sequence space 1^{Φ} we

This paper is in final form and no version of it will be submitted for publication elsewhere.
mean the space of all sequences $f \in \mathbb{X}$ such that I_{Φ} (af) $<+\infty$ for some a>0.
1.3. DEFINITION. A seauence $(f(m))$ of elements of \mathfrak{X} is said to, be modular [resp. norm] convergent to a seauence $f \in \mathscr{X}$ with respect to a Φ-function Φ (shortly: I_{Φ}-convergent [resp. N ${ }_{\Phi}$-convergent] to f) whenever $\lim _{m \rightarrow+\infty} I_{\Phi}(a(f(m)-f))=0$ for snme $a>0$ [resp. for all a 0].
1.4. we say that N_{Φ}-convergence implies N_{Φ}-convergence (shortly: N_{Φ}-conv. $\Rightarrow \mathrm{N}_{\Psi}$-conv.) whenever each sequence ($f(\mathrm{~m})$ which is N_{Φ}-convergent to O is N_{Ψ}-convergent to 0 at the same time. In an analogous way we define the notions N_{Φ}-conv. $\Rightarrow I_{\Psi}$-conv. , I_{Φ}-conv. $\Rightarrow \mathrm{I}_{\Psi}$-conv., and I_{Φ}-conv. $\Rightarrow \mathrm{N}_{\Psi}$-conv. .
1.5. REMARK. The functional

$$
|f|_{\Phi}=\inf \left\{u>0: I_{\Phi}\left(\frac{f}{u}\right) \leqslant u\right\}
$$

is an F-pseudonorm on 1^{Φ}. A sequence $f(m)$ is N_{Φ}-convergent to 0 if and only if $|f(m)|_{\Phi} \rightarrow 0$ as $m \rightarrow+\infty$.

Throughout this paper we shall use the following notations:

$$
\begin{equation*}
P_{n}(a, c, K)=\left\{x \in X: \quad \Phi_{n}(x) \leqslant a \quad \text { and } \quad \Psi_{n}(c x)>K \Phi_{n}(x)\right\}, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\alpha_{n}(a, c, K)=\sup \left\{\Psi_{n}(c x): \quad x \in P_{n}(A, c, K)\right\} \tag{2}
\end{equation*}
$$

(with $\sup \varnothing=0$) for every $a, c, K>0$ and $n \in \mathbb{N}$.
2. The inclusion $1^{\Phi} \subset 1^{\Psi}$.

The "inclusion" theorems play en imnortant role in classical function spaces, in particular in Orlicz and Wusielek-Orlicz seauence spaces (cf. [2]). ror instance, it is well known ([1], [4]) that the inclusion $\mathbb{I}^{\Phi} \subset 1^{\Psi}$ holds if and only if
(Cn_{0}) there are numbers $a, c, K>0, n_{0} \in \mathbb{N}$ and a seouence $\left(\alpha_{n}\right)$ of nonnegative numbers $\sum_{n=n_{0}}^{+\infty} \alpha_{n}<+\infty$, such that if $\Phi_{n}(x) \leqslant \theta$ then $\Psi_{n}(c x) \leqslant K \cdot \Phi_{n}(x)+\alpha_{n}$ for sll $x \in X$ and $n \geqslant n_{0}$.
The above condition may be written concisely:
(C_{0}) there are numbers $a, c, K>0, n_{0} \in \mathbb{N}$ such that

$$
\sum_{n=n_{0}}^{+\infty} \alpha_{n}(a, c, K)<+\infty
$$

In this connection a very simple question arises: can the number n_{0} be replaced by 1 or not? In general the answer is no (cf. Examples 2.6, 2.7 below). However the conditions $\left(\mathrm{Cn}_{0}\right)$ and (C 1) (i.e. (Cn_{0}) with $\mathrm{n}_{0}=1$) are equivalent in most ceses (Corollary 2.2). We start with the following:
2.1.PROPOSITION. If
(3)

$$
\underset{n \in \mathbb{N}}{\forall} \underset{(x(m))}{\forall}\left[I_{n}(x(m)) \xrightarrow[m \rightarrow+\infty]{ } 0 \Rightarrow \lim _{m \rightarrow+\infty} \sup _{n}\left(\frac{1}{m} x(m)\right)<+\infty\right]
$$

then conditions (Cn_{0}) and (C1) are equivalent.
Proof. Let conditions (3) and (c_{0}) (with numbers $a_{n_{0}}, c_{n_{0}}, K_{n_{0}}$) be satisfied. Suppose there is a number $1 \leqslant n<n_{0}$ such thet

$$
\underset{m \in \mathbb{N}}{\forall} \alpha_{n}\left(\frac{1}{2^{m}}, \frac{1}{m}, 2^{m}\right)=+\infty
$$

In virtue of (1) and (2) we can find a seouence ($x(m)$) of elements of X such that

$$
\Phi_{n}(x(m)) \leqslant \frac{1}{2^{m}} \quad \text { and } \quad \Psi_{n}\left(\frac{1}{m} x(m)\right) \geqslant m \quad \text { for all } m \in \mathbb{N} \text {. }
$$

Therefore $\Phi_{n}(x(m)) \rightarrow 0$ as $m \rightarrow+\infty$ and $\lim _{m \rightarrow+\infty} \Psi_{n}\left(\frac{1}{m} x(m)\right)=+\infty-$ in contradiction to the assumption. Thus for each $1<n<n_{0}$ we c an find numbers $a_{n}, c_{n}, K_{n}>0$ such that $\alpha_{n}\left(a_{n}, c_{n}, K_{n}\right)<+\infty$.

Denote $a=\min a_{i}, c=\min _{i} c_{i}, K=\max _{i} K_{i}$, where $i \in\{1,2$, $\left.\ldots, n_{0}\right\}$. Since $F_{n}(a, c, K)<P_{n}\left(a_{i}, c_{i}, K_{i}\right)$ for all $n \in \mathbb{N}$ and $i=1,2$, $\ldots, n_{0}, \quad \alpha_{n}(a, c, K) \leqslant \alpha_{n}\left(a_{n}, c_{n}, K_{n}\right)$ for each $n=1,2, \ldots, n_{0}-1$ and $\alpha_{n}(a, c, K) \leqslant \alpha_{n}\left(a_{n_{0}}, c_{n_{0}}, K_{n_{0}}\right)$ for all $n \geqslant n_{0}$. Therefore the thesis is obvious.
2.2.COROLLARY. Suppose one of the following conditions is satisfied:
$X=\mathbb{R}$ and the functions Φ_{n} are not identically equal to 0 for each $n \in \mathbb{N}$, $X=\mathbb{R}^{k}$ and $\lim _{\|x\| \rightarrow+\infty} \Phi_{n}(x)>0$ for each $n \in \mathbb{N}$,
(6) $\quad X=(X,\|\cdot\|)$ is a linear space with a p-homogeneous norm $\|\cdot\|$ $(p>0), \lim _{n \in \mathbb{\| x} \| \rightarrow+\infty} \inf _{n}(x)>0$ and $\lim _{\|x\| \rightarrow 0} \sup _{n} \Psi_{n}(x)<+\infty$ for
at least one of the implicotions N_{Φ}-conv. $\Rightarrow N_{\Phi}$-conv. ,
 I_{W}-conv. holds.
Then $I^{\Phi} \subset 1^{\Psi}$ if and only if condition (C1) is fulfilled.
Proof. Let $n \in \mathbb{N}$ be fixed. To prove the corollary it suffices to show that condition (3) is satisfied.

The implication $(4) \Rightarrow(5)$ is obvious. To prove (5) $\Rightarrow(6)$ let us note that the following lemme holds:
2.3. LEMMA. If $X=\mathbb{R}^{k}$ then every Φ-function Ψ is continuous at 0 , i.e. $\lim _{\|x\| \rightarrow 0} \Psi_{n}(x)=0$ for all $n=1, \dot{2}, \ldots$.

Proof. Let $\varepsilon>0$ be fixed. Denote $e_{i}=(0, \ldots, 0, \underbrace{1,0, \ldots, 0}_{i-t h \text { place }})$ for $i=1,2, \ldots, k$. In virtue of Definition 1.1.b. there is a number $u>0$ such that $\Psi_{n}\left(u e_{i}\right)<\frac{\varepsilon}{k}$ for $i=1,2, \ldots, k$.

Let $x=\sum_{i=1}^{k} x_{i} e_{i}$ be an element of R^{k} with $\|x\|^{2}=\sum_{i=1}^{k}\left|x_{i}\right|^{2} \leqslant$ $\leqslant \frac{1}{4 k^{2}}$. Hence, $\left|x_{i}\right|^{2} \leqslant \frac{1}{4 k^{2}}$ for $i=1,2, \ldots, k$, so $\sum_{i=1}^{k}\left|x_{i}\right| \leqslant \frac{1}{2 k} k=\frac{1}{2}$. Thus

$$
\begin{gathered}
\Psi_{n}(u x)=\Psi_{n}\left[u \sum_{i=1}^{k}\left|x_{i}\right| \cdot \operatorname{sgn} x_{i} \cdot e_{i}+\left(1-\sum_{i=1}^{k}\left|x_{i}\right|\right) \cdot 0\right] \leqslant \\
\leqslant \sum_{i=1}^{k} \Psi_{n}\left(u e_{i}\right)<\varepsilon .
\end{gathered}
$$

Therefore $\sup \left\{\Psi_{n}(x):\|x\|<\frac{u}{2 k}\right\} \leqslant \varepsilon$, so $\lim _{\|x\| \rightarrow 0} \Psi_{n}(x)=0$.
Proof of Corollary 2.2 (continued). (6) $\Rightarrow(3)$. Let $(x(m)$ be a sequence such that $\lim _{m \rightarrow+\infty} \Phi_{n}(x(m))=0$. Then it is bounded, ie. $\|x(m)\|<K$ for some $K>0$ and all $m \in \mathbb{N}$. By assumption, $\sup _{\|x\|<u} \Psi_{n}(x)<+\infty$ for some $u>0$. Let $m_{0} \in N$ be a number such that $\left\|\frac{1}{m} \cdot x(m)\right\| \leqslant \frac{1}{m^{p}} \cdot K \leqslant u$ for all $\quad \mathrm{m} 2 \mathrm{~m}_{\mathrm{o}}$. Then

$$
\begin{aligned}
& \lim _{m \rightarrow+\infty} \sup _{n}\left(\frac{1}{m} \cdot x(m)\right)=\inf _{k \in \mathbb{N}} \sup _{m \geqslant k} \Psi_{n}\left(\frac{1}{m} x(m)\right) \leqslant \\
& \quad \leqslant \sup _{m \geq m_{0}} \Psi_{n}\left(\frac{1}{m} \cdot x(m)\right) \leqslant \sup _{\|x\|<u} \Psi_{n}(x)<+\infty,
\end{aligned}
$$

so (3) is satisfied.
$(7) \Rightarrow(3)$. We have

Therefore we may assume that N_{Φ}-conv. $\Rightarrow I_{\Psi}$-conv. . Suppose there is a sequence $(x(m))$ such that $I_{\Phi}(x(m)) \rightarrow 0$ as $m \rightarrow+\infty$. and $\underset{m \rightarrow+\infty}{\lim \sup _{n}}\left(\frac{1}{m} \cdot x(m)\right)=+\infty$. For brevity, but without loss of generaliny, we shall assume that $\lim _{m \rightarrow+\infty} \Psi_{n}\left(\frac{1}{m} \cdot x(m)\right)=+\infty$. Let $f(m)=$ $\left(f_{i}(m)\right)_{i \in \mathbb{N}}$ be defined as follows

$$
f_{i}(m)= \begin{cases}\frac{1}{m} \cdot x(m) & \text { for } i=n \\ 0 & \text { otherwise }\end{cases}
$$

Let $a>0$ and let $m_{0} \in \mathbb{N}$ be such a number that $\sqrt{m} \geqslant a$ for all $\mathrm{m} \geqslant \mathrm{m}_{0}$. Then, for $\mathrm{m} \geqslant \mathrm{m}_{0}$,

$$
I_{\Phi}(a \cdot f(m))=\Phi_{n}\left(a \cdot I_{n}(m)\right) \leqslant \Phi_{n}\left(\sqrt{m}{ }_{\sqrt{m}} x(m)\right) \xrightarrow[m \rightarrow+\infty]{ } 0
$$

On the other hand, $a \geqslant \frac{1}{\sqrt{m}}$, for all $m \geqslant m_{1}$. Hence

$$
I_{\Psi}(a \cdot f(m))=\Psi_{n}\left(a \cdot \frac{1}{n} x(m)\right) \geqslant \Psi_{n}\left(\frac{1}{m} \cdot x(m)\right) \xrightarrow[m \rightarrow+\infty]{ }+\infty
$$

i.e. $(f(m))$ is N_{Φ}-convergent to 0 and is not I_{Ψ}-convergent to 0 at the same time. This contradiction ends the proof of Corollary 2.2.
2.4.REMARK. Corollary 2.2 (with assumption (4)) implies results of Fh.Turpin [5,Theorem 3a] and J.Y.T. Woo [7,Froposition 2.1].
2.5. REMARK. The following result follows from the proof of Theorem 2.6 in [1]:

If X is a Banach space, Φ_{n} are lower-semicontinuous on X and $\lim \inf \Phi_{n}(x)>0$ for each $n \in \mathbb{N}$, then $I^{\Phi} \subset 1^{\Psi}$ if and only if con$\| \times l \rightarrow+\infty$
dition (C1) holds.

Thus, the third assumption in (6) may be omitted in this case.
2.6. EXAMPLE. The implication ($\left.\mathrm{Cn}_{\mathrm{o}}\right) \Rightarrow(\mathrm{C} 1$) does not hold in general. Moreover, if the dimension of the normed space ($X,\| \| \|$ is infinite then Lemma 2.3 is false.

Let $X=1^{\circ}$ be the space of all real sequences $x=\left(x_{k}\right)$ such that $x_{k}=0$ for all sufficiently large $k \in \mathbb{N}$. with the norm $\|x\|=\max _{k \in \mathbb{N}}\left|x_{k}\right|$. Let us denote

$$
\begin{aligned}
& \Phi_{1}(x)=\Phi_{n}(x)=\Psi_{n}(x)=\|x\| \quad \text { for } n \geqslant 2, \\
& \Psi_{1}(x)=\sum_{k=1}^{+\infty} k\left|x_{k}\right|
\end{aligned}
$$

Then $\liminf _{\|x\| \rightarrow+\infty} \Phi_{n}(x)=+\infty$ for all $n \in \mathbb{N}$ and $\sup _{\|x\|<u} \Psi_{1}(x)=+\infty$ for all $u>0$. Therefore neither condition (6) hold nor Ψ_{1} is continuous at 0 . It is easy to verify that $I^{\Phi}=1^{\Psi}$.

On the other hand, we have

$$
\begin{aligned}
& \text { the other hand, we have } \\
& r_{1}(a, c, K)=\left\{x \in 1^{\circ}:\|x\| \leqslant a \text { and } K \cdot\|x\|<c \sum_{k=1}^{+\infty} k\left|x_{k}\right| \cdot\right.
\end{aligned}
$$

Taking $y(m)=(0, \ldots, 0, \underbrace{a, 0, \ldots}_{m-t h})$ wlace obtain $\|y(m)\|=a$ and $\Psi_{1}(c \cdot y(m))=\sum_{k=1}^{+\infty} c k\left|y_{k}(m)\right|=c \cdot m \cdot a>K \cdot a$
for all $m \geqslant m_{0} \geq \frac{K}{c}$. Thus, $y(m) \in P_{1}(a, c, k)$ for $m \geqslant m_{0}$ and

$$
\mathcal{L}_{1}(a, c, K) \geq \sup _{m \geqslant m_{0}} \Psi_{1}(c \cdot y(m))=\sup _{m \geq m_{0}} c \cdot a \cdot m=+\infty
$$

The arbitrariness of numbers a, c, K implies that condition ($C 1$) is not satisfied.
2.7. EXAMPLE. The assumption $\lim \inf \Phi_{n}(x)>0$ cannot be omi,tted. Let $X=R^{2}, \quad \Phi_{1}(x, y)=|y|, \quad \Phi_{n}^{\| x \mid \rightarrow+\infty}(x, y)=\Psi_{n}(x, y)=\Psi_{1}(x, y)=\|(x, y)\|$ $=\sqrt{x^{2}+y^{2}}$ for $n=2,3, \ldots$. Then $1^{\Phi}=1^{\Psi}, \liminf _{\|(x, y)\| \rightarrow+\infty} \Phi_{1}(x)=0$ and $\lim _{\operatorname{sim}} \Psi_{1}(x, y)=0$. However, condition (C1) does not hold because $\|(x, y)\| \rightarrow 0$ taking the sequence $x_{m}=m, y_{m}=0$ for $m=1,2, \ldots$ we obtain $\left(x_{m}, y_{m}\right) \in P_{1}(a, c, K)$ and

$$
\mathcal{L}_{1}(z, c, K) \geqslant \sup _{m \in \mathbb{N}} c \sqrt{x_{m}^{2}+y_{m}^{2}}=\sup _{m \in \mathbb{N}} c \cdot m=+\infty
$$

for all $a, c, K>0$.

3. The identity embedding $i: I^{\Phi} \rightarrow 1^{\Psi}, i(f)=f$.

The inclusion of Orlicz and Musielak-Orlicz sequence spaces may be considered both as inclusion of sets and as topological inclusion of F -normed spaces. Hh. Turpin [5] has pointed out that these notions coincide in the case $X=\mathbb{R}$. A similar result has been obtained by A. Kaminska [1], provided (among others) Φ, Ψ are convex Φ-functions and X is a Banach space. No any of these assumptions can be omitted, cf. Examples 2.6, 3.4. Therefore, it is worth to study the continuity of the identity embedding $i(f)=f$ in general.

In the following we shall consider four comprehensions of continuity with respect to the notions introduced in 1.5. We start with two lemmas which will be often used ir the sequel.
3.1. LEMNA. Suppose there are sequences $\left(a_{m}\right),\left(c_{m}\right),\left(K_{m}\right)$ of positive numbers and a number $0<b<+\infty$ such thet

$$
\sum_{n=1}^{+\infty} \alpha_{n}\left(a_{m}, c_{m}, K_{m}\right) \geqslant b \quad \text { for ell } n \in \mathbb{N}
$$

Then there exist sequences $\left(\xi(m)\right.$) of elements of X and $\left(j_{n}(m)\right.$) of numbers such that, for all $n, m \in \mathbb{N}$,
(o) $.0 \leqslant j_{n}(m)<+\infty$,
(9)

$$
\begin{array}{ll}
\text { (9) } & \Phi_{n}\left(g_{n}(m)\right) \leqslant a_{m}, \\
\text { (10) } & \Psi_{n}\left(c_{m} g_{n}(m)\right) \geqslant j_{n}(m) \geqslant K_{m} \cdot \Phi_{n}\left(g_{n}(m)\right),
\end{array}
$$

$$
\begin{equation*}
\sum_{n=1}^{+\infty} j_{n}(m) \geqslant \frac{1}{2} \cdot b \tag{11}
\end{equation*}
$$

Froof. Let $m \in \mathbb{N}$ be fixed. Denote $A_{m}=\left\{n \in \mathbb{N}: \alpha_{n}\left(a_{m}, c_{m}, K_{m}\right)>0\right\}$ (it is nonempty), $A_{m}^{\prime}=\left\{n \in A_{m}: \quad \mathcal{L}_{n}\left(a_{m}, c_{m}, K_{m}\right)<+\infty\right\}, \quad A_{m}^{\prime \prime}=A_{m} \backslash A_{m}^{\prime}$.

Then for each $n \in A_{m}$ we can find an element $g_{n}(m) \in X$ such that (12)

$$
g_{n}(m) \in P_{n}\left(a_{m}, c_{m}, K_{m}\right),
$$

and

$$
\dot{\Psi}_{n}\left(c_{m} g_{n}(m)\right)> \begin{cases}\alpha_{n}\left(a_{m}, c_{m}, K_{m}\right)-\frac{b}{2^{n+1}} & \text { for } n \in A_{m}^{\prime} \\ \max \left\{n, \frac{b}{2}\right\} & \text { for } n \in A_{m}^{\prime \prime}\end{cases}
$$

Let us define $g_{n}(m)=0$ for $n \notin A_{m}$. Then

$$
\sum_{n=1}^{+\infty} \Psi_{n}\left(c_{m} g_{n}(\dot{m})\right) \geqslant \frac{b}{2}
$$

further, denote $B_{m}=\left\{n \in N: \Psi_{n}\left(c_{m} g_{n}(m)\right)=+\infty\right\} \quad\left(B_{m} \subset A_{m}^{\prime \prime}\right)$, and

$$
j_{n}(m)= \begin{cases}\Psi_{n}\left(c_{m} g_{n}(m)\right) & \text { for } n \notin B_{m}, \tag{13}\\ \max \left\{K_{m} \cdot \Phi_{n}\left(g_{n}(m)\right), \frac{b}{2}\right\} & \text { otherwise }\end{cases}
$$

Then (\quad) holds. woreover, if $B_{m} \neq \emptyset$ then

$$
\sum_{n=1}^{+\infty} j_{n}(m)=\sum_{n=1}^{+\infty} \Psi_{n}\left(c_{m} g_{n}(m)\right) \geqslant \frac{b}{2}
$$

Since the above inequality is obvious for $B_{m} \neq \varnothing$, (11) is proved. Furthermore, (9) and (10) follow immediately from (12) and (13), so the proof is finished.
3.2. LEMMA. By the assumptions of Lemma 3.1 there exists a sequince $(f(m))$ of elements of \mathscr{X} such that $f_{n}(m) \in F_{n}\left(a_{m}, c_{m}, K_{m}\right)$ and

$$
\begin{align*}
& I_{\Phi}(f(m)) \leqslant \frac{1}{2 K_{m}} b+a_{m}, \tag{14}\\
& I_{\Psi}\left(c_{m} f(m)\right) \geqslant \frac{1}{2} b \tag{15}
\end{align*}
$$

for all $n, m \in \mathbb{N}$.
proof. Let $m \in \mathbb{N}$ be fixed. In virtue of (() and (11) we can find a set $J_{m}=\left\{1,2, \ldots, n_{m}\right\}$ such that

$$
\sum_{n \in J_{m}} j_{n}(m) \geqslant \frac{b}{2} \quad \text { and } \quad \sum_{n \in J_{m}\left\{n_{m}\right\}} j_{n}(m)<\frac{b}{2}
$$

(we assume $\left.\sum_{n \in \emptyset}=0\right)$. Let us denote $f(m)=\left(f_{n}(m)\right.$ by

$$
f_{n}(m)= \begin{cases}g_{n}(m) & \text { for } n \in J_{m} \\ 0 & \text { otherwise }\end{cases}
$$

By (9) and (10) we infer that

$$
\begin{aligned}
& I_{\Phi}(f(m))=\sum_{n=1}^{+\infty} \Phi_{n}\left(f_{n}(m)\right)=\sum_{n=J_{m}} \Phi_{n}\left(g_{n}(m)\right) \leqslant \\
& \sum_{n \in J_{m}\left\{n_{m}\right\}} \frac{1}{K_{m}} \cdot j_{n}(m)+\Phi_{n_{m}}\left(g_{n_{m}}(m)\right)<\frac{b}{2 K_{m}}+a_{m} .
\end{aligned}
$$

Furthermore, by (10) we obtain

$$
I_{\Psi}\left(c_{m} f(m)\right)=\sum_{n=1}^{+\infty} \Psi_{n}\left(c_{m} f_{n}(m)\right) \geqslant \sum_{n \in J_{m}} j_{n}(m) \geqslant \frac{b}{2} .
$$

3.3. THEOREM. The following conditions:

$$
\begin{equation*}
1^{\Phi} \subset 1^{\Psi} \quad \text { and } \quad N_{\Phi} \text {-conv. } \Rightarrow N_{\Psi} \text {-conv. }, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
I^{\Phi} \subset 1^{\Psi} \quad \text { and } \quad N_{\Phi}-\text { conn. } \Rightarrow I_{\Phi} \text {-cons. }, \tag{ii}
\end{equation*}
$$

(Ni)

$$
\underset{\varepsilon>0}{\forall} \quad \underset{a>0}{\forall} \quad \underset{c>0}{\overrightarrow{7}} \underset{K}{\frac{7}{K>0}} \sum_{n=1}^{+\infty} \alpha_{n}(a, c, K)<\varepsilon,
$$

are pairwise equivalent.
Proof. The implication (i) \Rightarrow (ii) is obvious.
(ii) \Rightarrow (NN) . Suppose

$$
\underset{\varepsilon>0}{\frac{7}{\square}} \underset{m \in \mathbb{N}}{\forall} \quad \sum_{n=1}^{+\infty} \propto_{n}\left(\frac{1}{m}, \frac{1}{m}, m\right) \geqslant \varepsilon .
$$

In virtue of Lemma 3.2, there is a sequence ($\mathrm{f}(\mathrm{m})$) such that
and

$$
\begin{aligned}
& I_{\Phi}(f(m)) \leqslant \frac{\varepsilon}{2 m}+\frac{1}{m} \xrightarrow[m \rightarrow+\infty]{ } 0 \\
& I_{\Psi}\left(\frac{1}{m} \cdot f(m)\right) \geqslant \frac{\varepsilon}{2}
\end{aligned}
$$

Define $g(m)=\frac{1}{f} f(m)$. In an analogous fashion as in the proof of the implication (7) $\Rightarrow(j)$ in Remark 2.2, we deduce that $(g)(m)$) is N_{Φ}-convergent to O and is not $\mathrm{I}_{\mathbf{Y}}$-convergent to 0 at the same time, in contradiction to (ii).
(iN) \Rightarrow (i). It suffices to show that $N_{\Phi}-$ conn. $\Rightarrow N_{\Psi}$-cons. . Let $(f(m))$ be an arbitrary sequence Λ_{Φ}-convergent to 0 in the space 1^{Φ} and, moreover, let $u>0, \varepsilon>0$ be fixed. Then, by ($N: N$), we can find numbers $a, c, k>0$ (depending on ε) such that

Denote $\mathrm{v}=\frac{\mathrm{u}}{\mathrm{c}}$. Since $\mathrm{I}_{\Phi}(\mathrm{vf}(\mathrm{m})) \rightarrow 0$ as $\mathrm{m} \rightarrow+\infty$, we infer that $\underset{\mathrm{m}(\varepsilon, \mathrm{u}) \mathrm{m} \geqslant \mathrm{m}(\varepsilon, \mathrm{u})}{\forall} \mathrm{I}_{\Phi}(\mathrm{vf}(\mathrm{m}))<\min \left\{\frac{\varepsilon}{2 \mathrm{~K}}, a\right\}$.
Hence $\Phi_{n}(v f(m)) \leqslant a$ for all $n \in \mathbb{N}$ and $m \geqslant m(\varepsilon, u)$: (1) and (2)
imply $\quad \Psi_{n}(c x) \leqslant K \cdot \Phi_{n}(x)+\alpha_{n}(a, c, K)$
for all $n \in \mathbb{N}$ and $x \in\left\{y \in X: \Phi_{n}(y) \leqslant a\right\}$. Therefore, for $m \geqslant m(\varepsilon, u)$, $\perp_{\Psi}(u f(m))=I_{\Psi}(v \cdot c \cdot f(m)) \leqslant K \cdot I_{\Phi}(v f(m))+\sum_{n=1}^{+\infty} \alpha_{n}(a, c, K)<\varepsilon \quad$, so $(f(\mathrm{~m}))$ is N_{Ψ}-convergent to 0 ."
3.4. EXAMPLE. N_{Φ}-convergence may not imply N_{Φ}-convergence
even then $1^{\Phi}<1^{\Psi}$. Let $x=\mathbb{R}^{2}, \quad \Phi_{n}(x, y)=\frac{|x|}{2^{n}}, \quad \Psi_{n}(x, y)=\frac{|y|}{2^{n}(2+|y|)}$
for $n=1,2, \ldots$. Since for $n=1,2, \ldots$. Since

$$
\sum_{n=1}^{+\infty} \alpha_{n}(a, c, k) \leqslant \sum_{n=1}^{+\infty} \sup _{(x, y) \in \mathbb{R}^{2}} \Psi_{n}(c x, c y) \leqslant \sum_{n=1}^{+\infty} \frac{1}{2^{n}}=1<+\infty
$$

for all $a, c, K>0, I^{\Phi} \subset I^{\Psi}$ by Corollary 2.2.
On the other hand $\left(\frac{u}{2}, \frac{1}{u}\right) \in P_{n}\left(u, u, \frac{1}{u}\right)$, so

$$
\alpha_{n}\left(u, u, \frac{1}{u}\right)=\sup _{(x, y) \in P_{n}\left(u, u, \frac{1}{u}\right)} \Psi_{n}(u(x, y)) \geqslant \Psi_{n}\left(u\left(\frac{u}{2}, \frac{1}{u}\right)\right)=\Psi_{n}\left(\frac{u^{2}}{2}, 1\right)=\frac{1}{32^{n}}
$$

for every $u>0$. Let a, c, K be arbitrary positive numbers. Then we can choose $u>0$ such that $0<u \leqslant \min \left\{a, c, \frac{1}{K}\right\}$. Therefore

$$
\sum_{n=1}^{+\infty} \alpha_{n}(a, c, k) \geqslant \sum_{n=1}^{+\infty} \alpha_{n}\left(u, u, \frac{1}{u}\right) \geqslant \frac{1}{3} .
$$

In virtue of theorem $3.3 \quad N_{\Phi}$-convergence does not imply N_{Φ}-convergence.
3.5. THEOREM. $I^{\Phi} \subset 1^{\Psi}$ and I_{Φ}-conv. $\Rightarrow N_{\Psi}$-conv. if and only if
(IN) $\quad \forall \quad \forall 0 \quad \underset{c}{\forall} \quad \underset{a}{ } \quad \underset{K}{ } \quad \frac{7}{K} \sum_{n=1}^{+\infty} \alpha_{n}(a, c, K)<\varepsilon$.
Proof. (\Leftrightarrow) Assume $I_{\Phi}(f(m)) \rightarrow 0$ as $m \rightarrow+\infty$. Let c, ε be arbitrary positive numbers. Then

$$
\sum_{n=1}^{+\infty} \alpha_{n}(a, c, k)<\frac{\varepsilon}{2}
$$

for some $a, K>0$ (depending on ε and c). Moreover

$$
I_{\Phi}(f(\mathrm{~m})) \leqslant \min \left\{a, \frac{\varepsilon}{2 \mathrm{~K}}\right\}
$$

for all $m \geqslant m(c, \varepsilon)$. Thus, by (1) and (2),

$$
I_{\Phi}(c f(m)) \leqslant K \cdot I_{\Phi}(f(m))+\sum_{n=1}^{+\infty} \propto_{n}(a, c, K)<\varepsilon
$$

for all $m \geqslant m(c, \varepsilon)$. Therefore $(f(m))$ is N_{Ψ}-convergent to 0 .
(\Rightarrow) Suppose that

$$
\underset{\varepsilon>0}{\exists} \quad \underset{c>0}{\exists} \quad \underset{m \in \mathbb{N}}{\forall} \sum_{n=1}^{+\infty} \mathcal{L}_{n}\left(\frac{1}{m}, c, m\right) \geqslant \varepsilon .
$$

In virtue' of Lemma 3.2, there is a sequence $(f(m))$ such that

$$
I_{\Phi}(f(m)) \leqslant \frac{\varepsilon}{2 m}+\frac{1}{m} \quad \text { and } \quad I_{\Phi}(c f(m)) \geqslant \frac{\varepsilon}{2}
$$

for all $m \in \mathbb{N}$. Thus $(f(m))$ is I_{Φ}-convergent to 0 and is not N_{Ψ}-convergent to 0 - a contradiction.
3.6. REMARK. If $\Phi=\Psi$ then condition (IN) is equivalent to $\left(\delta_{2}^{0}\right) \quad \forall \quad \underset{\varepsilon>0}{\forall} \quad \underset{a>0}{\exists} \underset{K>0}{\exists} \sum_{n=1}^{+\infty} \alpha_{n}(a, 2, K)<\varepsilon$,
(in other words: for every $\varepsilon>0$ there are $a, K>0$ and a sequence $\left(\alpha_{n}\right)$ of nonnegative numbers such that $\sum_{n=1}^{+\infty} \alpha_{n}<\varepsilon$ and

$$
\Phi_{n}(x) \leqslant a \quad \Rightarrow \quad \Psi_{n}(c x) \leqslant 2 \Phi_{n}(x)+\propto_{n}
$$

for all $\mathbf{x} \in \mathbb{X}$ and $\mathrm{n} \in \mathbb{N}$.
3.7. THEOREM. $I^{\Phi} \subset I^{\Psi}$ and I_{Φ}-conv. $\subset I_{\Psi}$-conv. if and only if (II)

$$
\exists_{c>0}^{\exists} \quad \forall \quad \underset{\varepsilon>0}{\forall} \underset{a>0}{\forall} \sum_{n=0}^{+\infty} \mathcal{L}_{n}(a, c, K)<\varepsilon \quad .
$$

Proof. (\Leftarrow) Assume $I_{\Phi}(f(m)) \rightarrow 0$. as $m \rightarrow+\infty$. Let $\varepsilon>0$ be fixed. Then, by (II),

$$
\sum_{n=1}^{+\infty} \alpha_{n}(a, c, K)<\frac{\varepsilon}{2}
$$

for some $a, K>0$ (depending on ε) and an absolute constant $c>0$. Moreover, $I_{\Phi}(f(m)) \leqslant \min \left\{a, \frac{\varepsilon}{2 K}\right\}$ for all $m \geqslant m(\varepsilon)$. Thus

$$
I_{T}(c f(m)) \leqslant K \cdot I_{\Phi}(f(m))+\sum_{n=1}^{+\infty} \mathcal{L}_{n}(a, c, K)<\varepsilon
$$

for $m \geqslant m(\varepsilon)$, so $(f(m))$ is I_{Ψ}-convergent to 0 .
(\Rightarrow) Suppose (II) does not hold. In particular,

$$
\underset{r \in \mathbb{N}}{\forall} \quad 1>\varepsilon_{r}>0 \quad \forall \quad \forall \quad \sum_{m=1}^{+\infty} \mathcal{L}_{n}\left(\frac{1}{m+r}, \frac{1}{r}, m+r\right)>\varepsilon_{r} .
$$

In virtue of Lemma 3.2 there are sequences $g(m, r)$ such that

$$
I_{\Phi}(g(m, r)) \leqslant \frac{\varepsilon_{r}}{2(m+r)}+\frac{1}{m+r} \quad \text { and } \quad I_{\Psi}\left(\frac{1}{r} \cdot g(m, r)\right)>\frac{1}{2} \varepsilon_{r}
$$

for all $m, r \in \mathbb{N}$. Now, we shall construct one sequence $(f(k))$ from the sequences $(g(m, r))$. Denote $s_{p}=1+2+\ldots+p, p \in \mathbb{N} ; \quad f(1)=g(1,1)$,

$$
f(k)=g\left(p_{k}+2-1_{k}, 1_{k}\right) \quad \text { for } k=2,3, \ldots,
$$

where numbers $p_{k}, l_{k} \in \mathbb{N}$ are defined by

$$
s_{p_{k}}<k \leqslant s_{p_{k+1}}, \quad l_{k}=k-s_{p_{k}} \text { for } \quad k=2,3, \ldots \text {. }
$$

Then
$I_{\Phi}(f(k))=I_{\Phi}\left(g\left(p_{k}+2-1_{k}, 1_{k}\right)\right) \leqslant \frac{1}{2\left(p_{k}+2\right)}+\frac{1}{p_{k}+2} \xrightarrow[k \rightarrow+\infty]{ } 0$.
On the other hand, the sequence $f(k)$ is not I_{Ψ}-convergent to 0 . Indeed, let $u>0$. Then $u>\frac{1}{r}$ for some $r \in \mathbb{N}$. Thus

$$
I_{\Psi}(u g(m, r)) \geqslant I_{\Psi}\left(\frac{1}{r} \cdot g(m, r)\right) \geqslant \frac{1}{2} \varepsilon_{r}>0
$$

Since $(g(m, r))_{m \in \mathbb{N}}$ is a subsequence of $(f(k)),(f(k))$ is not I_{Ψ}-convergent to 0 - a contradiction.
3.8. REMARK. Analogous theorems concerning the continuity of the identity embedding $i(f)=f$ of Musielak-Orlicz spaces in the non-atomic measure case were presented in [6].

REFERENCES

[1] KAMINSKA A. "On comparison of orlicz spaces and Orlicz classes", Functiones et Approximatio 11/1981/, 113-125.
[2] LINDENSTRAUSS J., TZAFRIRI L. "Classical Banach spaces I" Berlin, Heidelberg, New York 1979.
[3] MUSIELAK J., ORLICZ W. "On modular spaces" Studia math. 1브 /1959/, 49-65.
[4] SHRAGIN I.V. "Conditions of inclusions of sequence classes and their conclusions", Mat. Zametki /5/ 20 /1976/, 681692 / in Russian /.
[5] TURPIN P. "Conditions de bornitude et espaces des fonctions mesurables", Studia Math. 56 /1976/, 69-91.
[6] WISiA M. "Continuity of the identity embedding of some Orlicz spaces II", Bull. Acad. Polon. Sci.: Math. 31 /1983/ 143-150.
[7] WOO J.Y.T. "On modular sequence spaces", Studia Math. 48 /1973/, 271-289.

WISLA MAREK
INSTITUTE OF MATHEMATICS
A.MICKIENICZ UNIVERSITY

POZNAŃ
ul. J.MATEJKI 48/49
POLAND

