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We present some observations on the problem of which topological or geometrical properties 
of Banach spaces X and Y are inherited by spaces of compact operators between X and y, and 
we note some of the open problems in this context. 

In 1957 L. Schwartz [21] introduced the e-product XsY of two locally convex 
spaces as the space Le(X*9 Y) of continuous linear operators from X*9 the dual of X 
endowed with the topology of uniform convergence on compact convex sets, into Y9 

with the topology of uniform convergence on the equicontinuous subsets of X*. 
He noted that Le(X*9 Y) reduces to the space KW*(X*9 Y) of compact weak*-weakly 
continuous linear operators with the operator norm topology in the Banach space 
setting and that it coincides with the completed injective tensor product X A ®g Y 
for complete locally convex space X and yin case X or Y enjoys the approximation 
property. 

The decisive feature of Le(X*9 Y) is its canonical embeddability into the space 
of continuous functions C(U° x V°)9 U and V being zero neighbourhoods in X 
and y, respectively. For Banach spaces, this embedding reads KW*(X*9 Y) Q 
Q C(BX* x BY*)9 where Bx* denotes the closed dual unit ball with its relative weak* 
topology. 

It is this embedding that makes it possible to tackle the basic problem in analyzing 
the operator space Le(X*9 Y)9 namely to connect its properties with the correspond­
ing properties of X and Y. We are going to present a sample of propositions where 
this technique is employed, see [4], [5], [19], and the literature cited there for related 
results. We also point out some open problems. 

In the first section we shall be concerned with compactness properties. The point 
here is that the Arzela-Ascoli theorem quickly yields a precompactness criterion 

*) Fachbereich Mathematik, Universitat Essen, Universitatsstr. 3, D-4300 Essen, B.R.D. 
**) I. Mathematisches Institut FU Berlin, Arnimallee 3, D-1000 Berlin 33. 
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for Le(X*9 Y) [21, p. 22]. By means of this tool (in the somewhat more elaborate 
version of [18]) we give fairly elementary proofs of some stability results. In the second 
section we observe that the injective tensor product of two weakly compactly generat­
ed Banach spaces is weakly compactly generated. Also, variants of this result are 
obtained in a rather trivial manner. The third section contains a discussion of geo­
metrical property of Banach spaces, namely, of the M-ideal structure in X A ®e Y. 

Finally, it should be mentioned that results on Kw* can be parlayed into results 
on spaces of (a) compact operators, (b) vector-valued continuous functions, and (c) 
compact range vector measures via the isometric isomorphisms 

(a) K(X9 Y) = KW*(K**, Y)9T-* T**9 

(b) C(K, X) = C(K) A ®£ X = KW.(C(K)*9 X) , 

(c) cca(l9X) = cca(l) A®8X = Kw.(cca(l)*9 X) . 

For details and further examples, cf. [4], [5], and [19]. 

1. The Gelfand-Phillips property and the Schur property 

In a series of papers [7 — 11], the following result was established (for the defini­
tions see below). 

1.1. Theorem. For Banach spaces X and Y with the Gelfand-Phillips property, 
the space KW*(X*9 Y) has the Gelfand-Phillips property. 

We shall give an elementary proof of 1.1 which, actually, yields a general locally 
convex version. 

A bounded set B of a locally convex space X is called limited if every equiconti-
nuous weak* nullsequence converges uniformly on B. X is said to have the Gelfand-
Phillips property if every limited set is precompact. (Conversely, precompact sets 
are limited.) 

In view of section 2 it is worth mentioning that a Banach space with a weak* 
sequentially compact dual unit ball has the Gelfand-Phillips property. (This is not 
hard to show.) 

1.2. Theorem. For locally convex spaces X and Y with the Gelfand-Phillips property, 
the space Le(X*9 Y) has the Gelfand-Phillips property. 

Proof. Let H c Le(X*9 Y) be limited. In order to show that H is precompact we 
use Theorem 1.5 of [18]. First, for y* e Y*9 H*(y*) = {T*y*: TeH} is limited 
in X and thus precompact. It remains to show that H(U°) is precompact in Yfor any 
zero neighbourhood U in X. Let (hnx*)n be any sequence in H(U°) and (y*)„ any 
equicontinuous weak* nullsequence in Y*. Note that (x* ® y*)„ is an equicontinuous 
weak* nullsequence in Le(X*9 Y). Hence 

128 



as n -> oo, and this shows that H(U°) is limited and, consequently, precompact. 
Next, we consider the Schur property. (A locally convex space has the Schur 

property if every weakly convergent sequence converges w.r.t. the original topology.) 

1.3. Proposition. If X and Y are locally convex spaces with the Schur property, 
then Le(X*9 Y) has the Schur property. 

Proof. Let (hn)n be a weak* nullsequence in Le(X*9 Y) and assume that (hn)n is 
not convergent. Then there exist zero neighbourhoods U and VinXand Y9 respectively, 
a sequence (xn)n in II0 and a subsequence (hnk)k of (hn)n such that 

(*) hnk(x*)$V for all keN. 

Note that for any y* e Y*9h*y* -» 0 weakly in X and thus in the original topology 
ofX. Therefore 

<hnk(xt),y*> = <hi(y*), ***>-o 

for all y* e Y*. By assumption on Ythis means 

in 7which contradicts (*). 
For Banach spaces, 1.3 was proved in [17] in a different manner. It follows from 

Eberlein's theorem that a Banach space has the Schur property if and only if every 
weakly compact subset is actually compact. We shall consider a variant of this 
property in the next result. 

1.4. Theorem. Suppose X and Y are locally convex spaces with the property: 

(*) Every relatively weakly compact set is precompact. 
Then Le(X*9 Y) has property (*). 

Proof. Let H c Le(X*9 Y) be relatively weakly compact. In order to show that 
H is precompact we again use [18, Th. 1.5.] First note that H*(Y*) is relatively 
weakly compact in X and hence precompact for all y* e 7*. Next, let U be any zero 
neighbourhood in X and (ftax*)a any net in H(U°). Then there exist subnets (hfi)p 

and (x*)p9 h0 e Le(X*9 Y) and x0 e U° such that 

hp -+ h0 weakly , x* -> x* weak* . 
We conclude 

\(h$x* - h0x*09 y*}\ ^ \{(hfi - h0) xt y*>\ + \<h*y*9 x* - x*>| -+ 0 
since 

<hp - h09 x* ® >>*> -> 0 

and since H*(y*) is precompact in X. Consequently, (hax*)a has a weakly convergent 
subnet, and H(U°) is relatively weakly compact, hence precompact. 
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2. WCG spaces and weaker notions 

Recall that a Banach space is called weakly compactly generated (WCG for short) 
if it contains a weakly compact total subset, (cf. [6, Chapter1 V] for a discussion 
of this property.) 

2.1. Theorem. If X and yare WCG Banach spaces, then so is X A ®e Y. 

Proof. Suppose X = lin V9 Y = lin W with V and TV weakly compact. Then 
V®TVc:XA(g)gyis weakly compact (this is a consequence of the Dominated 
Convergence Theorem), and it is readily verified that V® Wis total. 

Actually, by [5, Theorem 1.4] the same proof extends to locally convex spaces X9 

and y(cf. [3]). 

2.2. Corollary. If X* and Y are WCG and one of them has the approximation 
property, then K(X9 Y) is WCG. 

It is not clear if the approximation assumption can be dispensed with, that is if 
the following is true. 

2.3. Problem. Is KW.(X*9 Y) WCG if X and yare ? 

One may, however, prove easily: 

(*) If X and y are WCG (or merely subspaces of WCG (spaces), then KW.(X*9 Y) 
is a subspace of a WCG space. 

(The point is, of course, that subspaces of WCG spaces need not be WCG9 [6, p . 
190 CF.].) Now, (*) is entirely trivial if one uses the following well-know facts: 

- If X is WCG, then C(BX.) is WCG. [6, p. 148] 
- C(K) is WCG iff K is Eberlein compact. [6, p. 152] 
— If K! and K2 are Eberlein compact, then Kt x K2 is Eberlein compact. 

It is left to observe (for X c E, Y c F) 

KW*(X*9 Y) c KW.(E*9 F) c C(fl£, x B,.) 

which is JVCG for WCG spaces £ and F. 
In his paper [25] (see also [23] and [26]) Talagrand studied the class of weakly 

fc-analytic (w.fc-a.) Banach spaces. (X is w.fc-a. if K, in its weak topology, is the conti­
nuous image of a Cf£ab) By [24] and [27], every WCG space is w.fc-a. In the discussion 
of weak fc-analyticity of KW+(X*9 Y) we shall make use of the following non-trivial 
results of Talagrand's: 

- X is w.fc-a. iff C(BX*) is w.fc-a. [25, Theorem 3.6] 
— A closed subspace of a w.fc-a. space is w.fc-a. 
— The class of cpmpacts K yielding w.fc-a. C(K)-spaces is closed under formation 

of countable products. [25, Theorem 5.2] 
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In the same way as above, we now obtain a slight improvement of [25, 5.1. (iv)]. 
Moreover, this method also works for the even larger class of weakly countably 
determined (w.c.d.) spaces (discussed in [25] and [27]). 

2.4. Proposition. If X and Y are w.fc-a. (resp. w.c.d.), then KW*(X*9 Y) is w.fc-a. 
(resp. w.c.d.). 

Also, the tensor stability result [23, 8.52] for the class 9C introduced by Stegall 
[23, Chapter 8] can be reformulated in the context of J£w«-spaces. 

According to [25, Theorem 6.4] w.c.d. (and thus w.fc-a.) spaces have weak* 
angelic dual unit balls. In particular, these spaces have weak* sequentiaUy compact 
dual unit baUs, and weak* sequentially continuous functionals on the dual space are 
actuaUy continuous. Hence, by 2.4 these properties are inherited by KW+(X*9 Y) 
for w.c.d. spaces X and Y. 

The latter property, sometimes called Mazur's condition, has been studied in [15]. 
Let us note that the proof of [15, Prop. 5.1] even yields the following result, proving 
the approximation assumption in [15] to be superfluous. 

2.5. Proposition. Suppose X and Y fulfiU Mazur's condition and 

(i) the canonical operator j : X* A ®n Y* -> (KW*(X*9 Y))* has weak* sequentially 
dense range, 

(ii) ex Bx+ or ex BY* is weak* sequentially relatively compact. 

Then KW.(X*9 Y) fulfills Mazur's condition. 

2.6. Corollary. If X and Y fulfill Mazur's condition and X* or Y* has RNP, then 
KW*(X*, Y) fulfills Mazur's condition. 

In fact, in this case ; is onto [4], and (ii) is fulfilled, too [13]. 
Note that j always has weak* dense range. Condition (ii), with "or" replaced by 

"and" easily implies that ex B(K ^x*tY))*(= ex &x* ® ex -&Y* by [16], [20]) is weak* 
sequentially relatively compact. The following, however, seems to be an open problem: 

2.7. Problem. Does KW*(X*, Y) (or X A ®t Y) have a weak* sequentiaUy compact 
dual unit ball if X and Y have ? What about having weak* angelic dual unit 
baUs? 

Finally, let us give a list of the results of section 1 and 2. KW*(X*9 Y) inherits 
property (n) from X and Y: 

(0) reflexive no (e.g. X = Y = I2) 
(1) WCG ?, yes for X A ®e Y 
(2) w.fc-a. yes 
(3) w.c.d. yes 
(4) class 9C yes if X or Ydoes not contain Z1 
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(5) dual ball weak* seq. comp. ? 

(6) Mazuťs condition ?, yes e.g. if X* or У* has RNP 

(7) Gelfand-PЫШps yes 

(8) Schur yes 

These properties are linked as follows: 

( 0 ) * ( l ) - ( 2 ) * ( 3 ) * ( 4 ) * ( 5 ) * ( 7 ) 
( 3 ) - ( 6 ) 
(8) and (1) => separable. 

3. M-ideals 

In this section we shall investigate a geometrical (rather than topological) property 
of Banach spaces. According to [l], a closed subspace J of Banach space X is called 
M-ideal if J°, the polar of J, is an L-summand of X*, that is, if there is an L1 -direct 
decomposition 

X* = J°®tV9 

where Vis isometric to J*. The canonical projection on X* with range J° is called 
the associated L-projection. The reader is referred to [1] and [2] for an exposition 
of the theory of M-ideals. 

We shall prove the following theorem which improves [28, Theorem 2.8], where X 
was assumed to contain no non-trivial M-ideal. 

3.1, Theorem. Suppose X has finitely many M-ideals J0 = X,..., Jr = {0}. 
Then Z is an M-ideal in X A ®e Y iff 

Z = n ( J i A ® 4 y + - Y A ® f i K i ) , 
i = 0 

where .Kj is an M-ideal in Y. 

Proof. The "if" part immediately follows from [28, Corollary 2.3] and the fact 
that finite intersections and sums of M-ideals are M-ideals [2, 2.5 and 2.7]. 

Now, suppose Z is an M-ideal in X A ®£ Y. Let E denote the L-projection onto Z°. 
Throughout the proof we shall make use of the following facts: 

(a) ex Bix A QeY)* = ex Bx* ® ex BY* [16], [20] 
(b) U ®! V = JVimplies ex î V u e x 5 K = ex IV . (Clear!) 
(c) For every qeex BY* there is an L-projection P on X* with weak* closed range 

such that 
E(x* ®q) = P(x*) ® q for all x* e X* . 

[28,2.10] 

132 



For 0 = i = r put 

Ci = {qeex BY.: E(x* ® q) = Pt(x*) ® q for all x* eX*} , 

where Pt is the L-projection onto J?. By (c) and by assumption on X we have 

ex By = C 0 u . , . u C r (disjoint union). 

Let as assume C0 =f= ex BY*9 since otherwise Z = X A ®s Y, and we are done. Next, 
apply (c) to again obtain a collection {Qp: p e ex Bx.} of L-projections on Y* with 
weak* closed ranges Mp such that 

E(p ®y*) = p® Qp(y*) for y*eY*. 

For 1 = i — r put 
Et = ex BJto . 

Then (by (b)) 
ex Bx* = £ 1 u , . . u £ r 

Also, let Ap = {i: p e Et} for peex Bx*, and 

Fv = {p: Ap = q>} for <p <= { 1 , . . . , r} . 
We claim 

(*) Mp = cl liri* U Ci for aU p e F^ . 
i*e<p 

"<=" Let ^ G ex BMp. Then ^ e ex B y by (b). 

It follows E(p ® q) = p ® Qp(q) = p ® q and on the other hand 

E(p ®q) = Pt(p) ® q 

ifqe Ct. Hence Pt(h) = p and p e Ei9 that is i e Ap = (p. Now apply the Krein-
Milman theorem. 

"=>" Let i e <p and q e Ct. Then 

P® QP(q) = E(p®q) = Pi(p)®q (qeCi) 

= P®q (i eAp). 

Hence q e Mp. 

Finally, put $ = {Ap: p e ex Bx.} and 

C<p = \JCi for <p e d>. 
ieq> 

With this notation, (*) implies that 

K9: = {yeY:<q9yy = 0 for all qeC9} 

is an M-ideal in Yfor all <j9 6<l>. 
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On the other hand, Ap = <p means 

pens. <=n •!? = (£-J*)0. 
ie<p ie<p ieq> 

and Y/i is a n M-ideal [2,2.7], so there is a number i(<p) = 1 such that i e <p iff 2su» c 

iep ' 

c= £,, i.e. f, Et = £ w . 
ie^> 

Now we are ready to prove 

(**) z = n (/,(„ A®£ y + JT A ®. ig . 
q>e0 

We have already pointed out that the space on the right hand side, Z1 say, is an 
M-ideal. (Note that <P is finite.) To prove (**) it is enough to prove ex 2?zo = ex BZlo, 
that is (by (a) and (b)) p ® q e Z° iff p ® q e Z\ for p e ex Bx*, qeex By*. In fact, 
by construction 

p ® qeZ°x iff P®qeU Ei{(p) ® C^ = ex £z0 . 

After reordering one obtains the announced representation from (**). This con­
cludes the proof of 3.1. 

r 

3.2. Corollary. Under the assumptions of 3.1, Zis an M-ideal iff Z = £ Jt
 A®„ Ht 

for some M-ideals Ht in Y. i=s° 

Proof. Again, only the "only if!' part needs to be considered. In 3.1. the representa­

tion Z = H (Ji A ®* Y + X A ®g ̂ i) was shown, which is equivalent to 
i = 0 

ЄX z0 = U i E г ® Ғ , 

with E,. = ex Bji0, Fi = ex BKio^ It follows that (ex Bx* ® 5 r,) \ ex 2*z0 may be 
represented as a finite union Uy EJ ® E}, where Ej(F )̂ is the complement of a finite 
union of Ei's(Fi's): 

exBx*\E'j = UEi , exBy\F} = UEf. 

Thus, 

Tn^exBx.\E'j = (()Ji)0=-:W^ 
ieAj 

iiriw*ex5r\F; = ( n ^ i ) 0 = : ( ^ ) 0 , 

and Jj, J9j are M-ideals. We conclude 

since the complement of ex .B^*^^ is Ej ® Fj, Again, the announced representa­
tion follows. 
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These results are applicable for example for X = L(lp), 1 < p < oo, here K(lp) 
is the only non-trivial M-ideal [12]. Also, a complex C*-algebra with finitely many 
closed two-sided ideals may be considered [22]. 

Let us give a third formulation of 3.1. For a Banach space X, Alfsen and Effros 
[1, p. 143] introduced the structure topology on ex Bx* as the topology whose closed 
sets are exactly those of the form ex Bx* n J° = ex BJ0, where J runs through the 
collection of M-ideals in X. It is coarser than the relative weak* topology and non-
Hausdorff in general. Define the equivalence relation "pt ~ p2 iff pt and p2 are 
linearly dependent" on exBx* and the pertaining quotient space Ex := exBx*\~. 
Note that Ex*®tY = Ex x EY, and these topological spaces are homeomorphic if 
the quotient topology of the weak* topology is considered. Let us write (Ex, st.) 
to indicate the quotient topology of the structure topology. 

3.3. Corollary. Under the assumptions of 3.1, the product (Ex, st.) x (EY, st). 
is homoeomorphic with (Ex*®tY, St.). 

Indeed, this was shown in the proof of 3.2. 
Let us mention some problems. 3.3 suggests the following question. 

3.4. Problem. Does the conclusion of 3.3 hold for all Banach spaces X and y? 
(Of course, the product topology is always coarser.) 

Another problem concerns the possibility of extending our results to KW*(X*, Y). 

3.5. Problem. Does the conclusion of 3.1 hold for KW*(X*, Y)l See [28, 2.13] 
for a partial answer. Also, by the method of [28, 2.11], spaces in which M-ideals 
are already M-summands (e.g. spaces which are M-ideals in their biduals, [14]) 
may be considered. The basic obstacle for treating the general case is the following 
problem: 

3.6. Problem. If J is an M-ideal in Y, is KW.(X*, J) and M-ideal in KW.(X*, Y)7 
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