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Disjointly Strictly-Singular Operators in Banach Lattices 

F. L. HERNANDEZ*) 

Spain 

Received 11 March 1990 

The aim of this note is to study some basic properties of the class of all disjointly 
strictly-singular operators defined on Banach lattices. We also present some applica­
tions in the context of Orlicz function spaces. 

If X is a Banach lattice and Y is a Banach space, an operator T: X -> Y is said 
to be disjointly strictly-singular if there is no disjoint sequence of non-null vectors 
(xn) in X such that the restriction of Tto the subspace [x„] spanned by the vectors (xn) 
is an isomorphism. 

This new class of operators, bigger than the class of strictly-singular operators, 
has been introduced recently in ([2], pp. 48), where applications to the problem of 
finding "non-natural" projections in lattices of measurable functions were given. 
More precisely, it happens that if for a Banach lattice X there exists a Riesz operator 
T. X -> lf(0,1), for p ^ 1, which is not disjointly strictly singular, then X contains 
a complemented subspace isomorphic to lp. 

Let us recall that an operator T between two Banach spaces X and Y is called 
strictly-singular (or Kato) if it fails to be an isomorphism on any infinite dimensional 
subspace. It is well-known that the class of all strictly singular operators from X to Y 
is a closed operator ideal in L(X, Y), the space of all bounded operators endowed 
with the usual norm. (cf. [7], [8]; for other properties and extensions see eg. [ l ] , 

W. [5])-
Clearly, every strictly-singular operator is a disjointly strictly singular operator. 

However the converse does not hold in general: 
An easy example is the inclusion operator T: U(0,1) <-• L*(0, 1) for 1 ^ q < p, 

which is disjointly strictly singular because for any sequence of disjoint functions (fn) 
in Lp(0,1) we have [f„]p « lp and [T(fn)]q « P. However the operator T is not 
strictly singular because the restriction of T to the subspace generated by the 
Rademacher functions [r„] is an isomorphism [r„]p « I2 « [T(rw)]g. 

*) Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad Com-
plutense, 28040 Madrid, Spain. 
Supported in part by D.G.I.CY.T. grant PB88-0141 
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We will show that, in general, the class of disjointly strictly singular operators is 
not an operator ideal (but it is from a lattice point of view). 

When we consider Banach lattices X, having a Schauder basis of disjoint vectors, 
it comes out that both class of operators coincide: 

Proposition 1. Let X be a Banach lattice with a Schauder basis of disjoint vectors 
and Y be a Banach space. An operator T: X —.• Y is disjointly strictly-singular if 
and only if it is strictly singular. 

Proof. Assume that Tis not strictly singular, so there exists a subspace Z such that 
TjZ is an isomorphism. Now, by ([6] Proposition l.a.ll) there exists a subspace 
Zi = [*„] with a basis (x„) which is equivalent to a normalized block basis (xB) 
of the disjoint basis (en) of X. Hence there exists 5 > 0 such thatJlT^a^x,,)!! ^ 
= 5||Za„xB||. Now using that (xn) is disjoint, we have \ak\ = ||2-Vc„|| for every fc, 
hence 

\\T(ZaX)\\ Z \\T(La„x„)\\ - \\T(Za„x„ - Xanx'„)\\ £ 

^ <5|Ea„x„|| - | | r | | S a X | (Z|K " x'JI) > 

^Uxanx'„\\-\\T\\e\\i:a„x'„l 
K. 

z(j£-'\n)\*ví\ 
where K is the constant of the equivalence between (x„) and (xn) and e is taken suf­
ficiently small. So Tjrjc,n] is an isomorphism and Tis not disjointly strictly-singular. 

q.e.d. 

Example. For operators defined on separable modular (or Lorentz) sequence 
spaces to be disjointly strictly singular is the same as to be strictly singular. 

Proposition 2. Let S and T be operators from a Banach lattice X to a Banach 
space Y. If S and Tare disjointly strictly-singular then S + Tis disjointly strictly 
singular. 

Proof. We assume that S + T is not a disjointly strictly singular operator. Thus, 
there exists a sequence of disjoint vectors (x„) such that S + T^^ is an isomorphism, 
i.e. there exists a constant K > 0 such that 

||(s + r) (x) | |^H 
for every x e [x„]. (We can assume w.l.o.g. that K > jf). 

Since T is disjointly strictly singular, Tj[JCn] is not an isomorphism and we can 
build a block basis (un) of (x„) verifying that 

(•) M«OU^M. «e^-
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Indeed, there exists yx = Y,ai,nxn with UĴ H = 1 and ||T,(.y1)|| g 1/(4. 10). Now, 
1 = 1 PA 

take px e H big enough such that ux = £ ai,nxn verifies ||y! — ut\\ < 1/(4 . 10||r||). 
Hence \\ut\\ > \ and w=1 

lituOi ^ llrCu, - yi)il + inyOII -̂  ̂  • 

Since T^Xn^n> t *s n o t a n isomorphism, we can repeat the process obtaining, by 
induction, the sequence (un) wanted. ^ 

Now, let us consider the closed span [uM]. If v e [uM], v = £ KUK*
 w e have \Xnun\ g 

^ Ml and 

| | T v | | g E | | T ( A M u J ^ I K | M 
« /» 1 U 

^ It'll/9 • 

This implies that for v e [u„], 

|S(t,)|| > K\\v\\ - \\v\ . 

So S is an isomorphism on [u„], which is a contradiction, q.e.d. 
Disjointly strictly-singular operators are also stable with respect to the com­

position on the left: 

Proposition 3. Let X be a Banach lattice, Yand Z be Banach spaces. If T:X -> Y 
is disjointly strictly-singular and S:Y-->Z is a bounded operator, then SoT 
is a disjointly strictly-singular operator. 

The verification is straightforward. 
In general disjointly strictly singular operators are not stable with respect to the 

composition on the right with bounded operators: 

Example. Let S be the canonic inclusion L2 (0,1) <-> L1 (0,1) and let T be the bounded 
operator T: I2 -* L2(0,1) defined by T(en) = r„, where (r„) is the Rademaclier 
function sequence and (en) is the canonic basis of I2. 

The operator S is disjointly strictly singular since for every disjoint function 
sequence (f„), [fw]2 « I2 and [S(f„)]i ~ I1. However the composition operator 
S o T is not disjointly strictly singular since, by Khinchine inequality, there exist 
constants A± and .A2 > 0 such that 

AJSa^H, = \\Xan(So T)(en)l S A2\\Xanen\\2 . 

Hence the restriction of S o Tto [eM] is an isomorphism. 

Proposition 4. Let X and Y be Banach lattices and T: X -» Y a Riesz operator. 
If S: Y -> Z is a disjointly strictly singular operator for Z a Banach space, then 
S o T is disjointly strictly singular. 
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Proof. Assume that (S 0 T) is not disjointly strictly singular. So there exists a dis­
joint vector sequence (x„) in X and K > 0 such that 

| | S 0 r ( x ) | | ^ | | x | | ^ | | T ( x ) | | for x e [ x j . 

Now, if (yn) denotes the sequence of disjoint vectors (T(xn)) in Y, we deduce ||S(y)|| i= 
^ (K/|[T||) ||y|[ for every y e [yM], So S is not disjointly strictly singular, q.e.d. 

If D.S.(X, Y) means the class of all disjointly strictly-singular operators from 
a Banach lattice X to a Banach space Y, we have the following: 

Proposition 5. The class D.S.(X, Y) is closed in L(X, Y). 

Proof. Reasoning in a standard form, suppose that (Tn) c D.S. converges to T 
and Tis not disjointly strictly-singular. So there exists a disjoint vector sequence (x„) 
in X and a constant K > 0 such that ||T(x)|| _ K||x|| for every x e [x„]. Now, there 
exists n0 e N such that |[T„ - T\\ ^ K/2 for n = n0. Hence 

\Tjx)\Z\Tix)l-l(T-Tj{x)\>£\x\ 

for x e [xn], so T„0 is not disjointly strictly singular, which is a contradiction, q.e.d. 

We pass now to study disjointly strictly singular operators in the context of Orlicz 
functions spaces. If ocp, ft™ denote the associated indices to an Orlicz function space 
LF(0,1), we have the following result given in ([3] Proposition 3): 

Proposition 6. If T is a Riesz operator T: LF(0, 1) -> LG(0,1) and [a£, J?"] n 
n [a£, /?£] = 0, then T is disjointly strictly singular. 

In the special case of the operator T be the inclusion operator LF(0,1) <-> LG(0,1), 
a characterization of the disjointly strict singularity was obtained in ([2], pp. 51). 

Proposition 7. Suppose LF(0,1) L-> LG(0, 1). The following conditions are equi­
valent: 
(1) The inclusion operator T: LF(0,1) *•-• LG(0, 1) is disjointly strictly singular. 
(2) For any K > 0, there exist y1 < y2 < ... < y„ < 1 and cu ..., cn > 0 such 
that 

YciF(tyi)^KYciG(tyi) (r = l ) . 
i = i i = i 

(3) For any K > 0 there exist 1 = xt < x2 < ... < xn and cl9..., cn > 0 such 
that 

^^(tx^KYcMtXi) (t = l) 
i = i »-=i 

(4) For any K > 0 there exists a > 1 and a positive Borel measure \x with support 
contained in [1, a] SMC/I that 

J F(fx) dji(x) = K J G(tx) d/z(x) (t = 1). 
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We present now a suitable analytic criterium for the inclusion operator 
Lp(0, 1) L-> LF(0,1) be disjointly strictly singular: 

Proposition 8. The inclusion operator LP(0,1) «•-.» LF(0,1) is disjointly strictly-
singular if and only if 

i i m s u p j _ r M d M = 0. (*) 
a-cos^l log a J t SPUP l 

Proof. Suppose that LP(0,1) <--> LF(0, 1) is disjointly strictly singular. Then, using 
the above Proposition 7(2), for any constant K > 0, there exist yt < y2 < ... < y„ = 

_; 1 and cl9 c2,..., cn > 0 such that 

i Ci(styty = K t c^styy (s, f = 1) . 
*=i » = i 

For a = 1/y., 

rEc-^d^xtr;--^. (+) 
Now 

and 

î Ґ - . - Ş # d í = (£c ł j»ľ)s '21og« 

Then, from (+) we get 

_ L _ f I _ _ ) d M < _ 
sploga}1 up+1 K 

for s — 1 and a > l/j^. 
Assume now that (*) holds. Then, for any K > 0 there exists a > 1 such that, 

(for s = 1) 

Гă_.)du<^loga=xГ(i-d« J l M " + 1 " J l M ' + 1 

Then, by Proposition 7.(4), we get that Tis disjointly strictly singular, q.e.d. 

Example. If Fp denotes the Orlicz function xp/log(l + x), for p > 1, then the 
inclusion operator LP(0,1) c-» LFp(0, 1) is a disjointly strictly-singular operator, since 
the condition (*) is verified. (Notice that the indices a™ = ftp = p, hence the 
converse of Proposition 6 does not hold). 

Finally, let us mention that a similar characterization of when the inclusion 
LF(0,1) <-* Lp(0,1) is a disjointly strictly-singular operator has been obtained in ([2] 
Proposition 3.3), which is used to find Orlicz spaces LF(0,1) containing "singular" 
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/^complemented copies for p > 1, that is, LF(0,1) has a /^-complemented subspace 

and it does not exist any sequence of mutually disjoint characteristic functions (xAl) 

spanning an Zp-subspace. 
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