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Introduction 

The theory of monotone and accretive mappings, intensively studied in the last 
period, has fruitful applications in the theory of nonlinear partial, ordinary dif­
ferential and integral equations. 

This note deals with properties of asymptotic behavior of resolvents of maximal 
accretive multivalued mappings in smooth Banach spaces having X* Frechet smooth. 
Furthermore, we extend the result of Barbu [ l ] concerning the almost main selections 
for maximal accretive mappings in Frechet smooth Banach spaces and, moreover, 
we derive the result on approximations of resolvents of accretive mappings, which 
is connected with the assertion of Brezis and Pazy [2]. Let us remark that other 
results concerning the asymptotic properties of resolvents of accretive mappings 
have been obtained for instance by Gobbo [8], Reich [12—14], Takahashi and 
Ueda [16]. For the basic properties of accretive mappings, we refer to Barbu [1], 
Browder [3], Cioranescu [4] and Kato [10]. 

Definitions and notation 

Let X be a real normed linear space, X* its dual, <,> the pairing between X 
and X*, Sx(0) the unit sphere in X. By R, R+, we denote the set of all real and non-
negative numbers, respectively. We shall use the notions of Giles [7] for rotund 
(i.e. strictly convex) and uniformly rotund spaces, convex functions, Gateaux and 
Frechet differentials and derivatives. Recall that X is said to be: (i) smooth (Frechet 
smooth), if the norm of Xis Gateaux (Frechet) differentiable on Sx(0); (ii) uniformly 
(uniformly Frechet) smooth, if the norm of X is uniformly Gateaux (uniformly 
Frechet) differentiable on St(0); (iii) an (H)-space, if for each (u„) c l , un-*u 
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weakly, u e X, ||M„|| -> ||M||, we have that un -> u in the norm of X. Let .4: X -> 2y 

be a multivalued mapping (Y denotes a normed linear space, 2Y the system of all 
subsets of Y), D(A) = {UEX: A(u) * 0} its domain, G(A) = {(u, v) e X x Y: 
u e D(A), v e A(u)} its graph in the space X x Y. A duality mapping J: K -> 2X* is 
defined by j(ii) = {M*eK*, <M*, M> = ||M||2, |M*|| = ||M||} for each ueX. Recall 
that J(M) is a nonempty convex weakly* compact subset of X* for each ueX and 
that X is smooth (Frechet smooth) if and only if J is singlevalued (continuous) on X 
(see [6]). A mapping A: X -• 2X is said to be: (i) accretive if I + AA, where I is an 
identity mapping in X, is expansive for each X > 0; i.e. if for each M, t? e D(.A) and each 
x e A(u), y e A(v), there is ||(M — v) + A(x — y)\\ _ ||M — v\ for each 2 > 0 (equi­
valent^ if for each u, v e D(-4) and each x e A(u), y e A(v) there exists an element 
x* e J(u — v) such that <x — y, x*> = 0); (ii) maximal accretive, if >4 is accretive 
and if (u, x) E X x X is a given element such that for each v E D(A) and y E A(V) 
there exists a point x* e J(M — v) such that <x — y, x*> = 0, then u e D(-4) and 
x E A(u); (iii) m-accretive, if A is accretive and the range R(I + AA) of I + XA is 
equal to K for some X > 0. Let I denote an identity mapping in X, A: X -» 2* an 
accretive mapping with D(^4) _ K. Then the so-called resolvent Jk = (I + 1 4 ) - 1 

of .4 exists for each X > 0 and is singlevalued with the domain D(jk) = .R(I + XA) 
and the range R(Jk) = £(-4). The Yoshida approximations Ak of .4 are defined 
by Ak = X~X(I — Jk) for each X > 0. For a subset G c l w e define (see [5]) 

finf{||i?||:»6G} if G 4= 0 , 
• oo if G = 0 . 

Let A:X-*2X be a mapping. We set A°u = { i ;e i (u) : ||v|| = |^4(M)|} for each 
u E D(A) and -0(A°) = {M E D(A): A°U 4= 0}. In general, _4° is a multivalued mapping 
from D(,40) into 2X. If D(y4°) = D(A) and A°M is a singleton for each u E D(A), 
then A0 is a selection of A with the property that for each fixed u E D(A) we have 
that ||-4°M|| = \\x\\ for each x e A(u). In this case, A0 is called a canonical restriction 
of A (see [1], [5]). Let X be a normed linear space, A: X -* 2X a maximal accretive 
mapping with D(^4) g K. Recall that: (i) if X is smooth, then A(u) is convex and 
closed for each u E D(A); (ii) if X is Frechet smooth, then G(A) is closed in the 
space (X, I"!) x (X, a(X,X*)), where o(X,X*) denotes the weak topology on X. 

Results 

The basic properties of the operators Jk and Ak are contained in the following 
lemma, where the assertions e), f) are expressed in a more general form (compare 

Lemma 1. Let X be a normed linear space, A: X -+ 2X an accretive mapping 

with D(A) g K, Then: 

(a) || Jkx - Jky\\ = ||x - y\\ for each x,yE D(Ak); 
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(b) Ax is accretive on D(AX) and \\Axx — Axy\\ ^ 2X x\\x — j;|| for each x, y e 
' D(AX); 

(c) AxxeAJxx and \AJxx\ = ||.4Ax|| for each xeD(Ax). If x e D(A) n D(AX), 
then \\Axx\\ = \Ax\; 

(d) if x e D(A) n (f]{D(Ax): X > 0}), then lim Jxx = x. If xe f){D(Ax): X > 0} \ 
A->0 + 

\D(A), then \\Axx\\ -> +00 as X -> +00; 

(e) if X is smooth and x e D(A) n (f]{D(Ax): X > 0}), then the function X -» ||-4Ax|| 
is nonincreasing on [0, +00); 

(f) /f X is reflexive and smooth and the graph G(A) of A is closed in (X, || • |) x 
x (X, o(X, X*)), then lim ||AAx|| = \Ax\for each x e D(A) n ([\{D(AX): X > 0}). 

A->0 + 

In particular, the assertion f) is valid ifX is a reflexive Frechet smooth Banach 
space and A is maximal accretive. 

Lemma 2. Let X be a reflexive smooth and rotund Banach space, A: X -> 2X 

a maximal accretive mapping with D(A) Q\ X. Then there exists a unique canonical 
restriction _4° of A. 

Proof. Since X is smooth and A is maximal accretive, A(u) is a convex closed set 
for each u e D(A). Fix u e D(A) and set d = inf {||x||: x e A(u)}. Then there exists 
(xn) c A(u) such that ||xB|| -> d. Then there exists a subsequence of (xn), say (xn), 
such that xn -> x0 weakly in X. Then ||x0|| ^ liminf ||x„|| = lim ||x„|| = d. Since 

n-+oo 

A(u) is weakly closed, X0G^4(W) and ||x0|| = d. But the rotundity of X and the 
convexity of A(u) imply that x0 is the unique point of A(u) with the minimum norm. 
Setting x0 = A°u (where u e D(A)), we see that _4° is the unique canonical restriction 
of A. 

Theorem 1. Let X be a smooth Banach space such that K* is Frechet smooth, 

A: X -> 2X a maximal accretive mapping with D(A) _ X. If R(A) is convex and 
C\{D(AX): X > 0} => D(A), then the strong limit lim (ljX) Jx(u) exists for each 

A-+ + 00 

ueD(A) and lim (l/X) Jx(u) = — a0 for each ueD(A), where a0 is the unique 
A-+ + 00 

element ofR(A) with the minimum norm. 

Proof. Since K* is Frechet smooth, X is reflexive rotund and (H)-Banach space. By 
Lemma 2, A has the unique canonical restriction _4°. By Lemma \,AX = X~X(I — Jx) 
is lipschitzian with constant 2A_1 from D(AX) into X for each X > 0 and the function 
(0, 00) B X -» ||-4A(w)|| is nonincreasing for each fixed u e f]{D(Ax): X > 0}. Moreover, 
\\Ax(u)\\ ^ ||-4°(u)|| for each u e D(A). Hence there exists lim ||^Au|| = p(u) for 

A-> + oo 

each u e D(A). We have that \\Ax(v)\\ = \\Ax(v) - Ax(u)\\ + ||-4A(«)|| ^ 
^ 2A"1 | |M - 171| + ||-4A(w)||. Therefore p(v) = lim |-4A(i;)|| = lim ||-4A(w)|| = p(u) 

A-* + 00 A-> + 00 
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for each w, v e D(A). This implies that p(u) = c = const for each u e D(A). Since X 
is reflexive and rotund and R(A) is convex, there exists the unique point a0 in R(A) 
with the minimum norm. If u e D(A) is an arbitrary point, then Jx(u) e D(A) and 
Ax(u)eA Jx(u) c R(A) for each X > 0. Hence ||a°|| = A\\x(u)\\ for each ue D(A) 
and ||a°|| = c. On the other hand \\Ax(u)\\ = \\A°u\\ = min {||t?||: veA(u)} for each 
ueD(A). Hence c g ||-4°(w)|| for each ueD(A). By definition R(A) = U{-4(u): 
M e D(A)} and therefore c <Z ||t;|| for each t; e R(A). If t;0 e R(A), there exists a se­
quence (vn) c K(A) such that vn -> v0 and therefore || t̂ „ || .= c for each w. Then 
||v0|| ^ c and c ^ ||z| for each z 6 R(A). In particular, c ^ |a°|| and hence c = ||a°||. 
Let (Xn) be a sequence of positive numbers such that Xn -> +00, we D(A) and set 
*„ = Axu. Then lim ||xn|| = ||a°|| and there exists a subsequence of (xn), say (x„k), 

«->co 

and a point v0eX such that xBle -• v0 weakly in X. Then ||i;0|| ^ liminf ||x,.J| = 
ft-* 00 

= lim ||xB|| = || a01|. Moreover, x„k e A JXnk(u) = A(u„k) e R(A), where u^ = 

= JXnk(u)eD(A). Therefore v0eR(A) and ||a°|| = ||t?0|| and hence ||a°|| = ||i;0||. 
Since X is rotund and R(A) convex, a0 = v0. Hence x„k -> a0 weakly in X, which 
together with the reflexivity of X implies that the whole sequence (xn) converges 
weakly to a0. As ||x„|| -* ||a°|| and X is an (if)-space, we conclude that xn -> a0 in 
the norm of X. Hence 

xn = Axu = Xn
xu - AJ1 JAn(u) -> a0 for each M e D(A) , 

which gives our assertion. 
If X is a real Hilbert space, A: X -• 2* a maximal monotone operator with 

D(̂ 4) g X, then R(A) is convex and D(AX) = i^(/ + A.4) = X for each A > 0 and 
the conclusion of Thm. 1 is valid (compare Morosanu [11]). The asymptotic pro­
perties of resolvents of accretive operators were intensively studied for instance 
by Gobbo [8], Reich [12 — 13], Takahashi and Ueda [16]. By a quite different proof 
method, S. Reich [14] proved another generalization of the Morosanu result. His 
result is as follows. Lcf Xbea uniformly Gateaux smooth Banach space such that X* 
is Frechet smooth. A: X -> 2X an accretive mapping such that R(l + XA) =3 D(A) 
for each X > 0 and that D(A) is nonexpanasive retract of X. Then for each x 
in D(A) the strong lim X"xJxx = — v9 where v is the element of the least norm 

A-* + oo 

in R(A). Recall that if X is a reflexive Banach space, then X* is Frechet smooth if 
and only if X is a rotund (if)-space. Let X = L#(G) be an Orlicz space provided 
by the Orlicz norm, where G cz Rn, mes G < + 00 and Rn denotes an n-dimensional 
Euclidean space. If N-function $ is strictly convex on [0, 00] and both # and its 
dual function #* satisfy the A2

-con(iition for large arguments, then X satisfies the 
assumptions of Thm. 1 (see [15]). A similar conclusion is valid if X is provided 
by the Luxemburg norm (compare Hudzik [9]). 
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The following lemma and theorem give an extension of the Barbu result [1] 
where we do not assume that X, X* are both uniformly rotund and A is m-accretive. 
Moreover, our proofs are rather different. 

Lemma 3. Let X be a Banach space such that X and X* are Frechet smooth 
A: X -> 2X a maximal accretive mapping with D(A) g X. Then lim Axu = A°u 
in the norm of X for each fixed u e D(A) n (C\{D(AX): X > 0}). A"0 + 

Proof. By Lemma 2 there exists the unique canonical restriction A0 of .A. Fix 
u e D(A) n (C\{D(AX): X > 0}), then for \i > 0 we have ||-4„(u)|| = |A(u)| = ||-4°(u)||. 
Let Xn > 0, Xn I 0 as n -> oo. Since (AXn(u)) is a bounded sequence, without loss of 
generality, one can assume that AXn(u) -> x weakly in X for some xeX. We have 
that (JXn(u), AXn(u)) e G(A) and assume that (v, y) is an arbitrary point in G(A). 
Then <y — AXn(u), J(v — Jxn(

u))y, i= 0 for each n. Since J^u -> u in the norm 
of X as n -> oo (Lemma 2), we get that <y — x, J(v — u)> ^ 0 for each (v, y) e G(A). 
As A is maximal accretive, we conclude that xeA(u) and j|x|| _ ||.A0(u)||. On the 
other hand ||x|| = liminf ||AAn(u)|| ^ ||y4°(u)|| by Lemma 2. Therefore j|x|| = 

n-*oo 

= ||/4°(u)||. Since X is rotund and A(u) is convex, x = A°(u). Therefore the whole 
sequence (AXn(u)) converges weakly to A°(u) and lim sup ||AAn(u)|| ^ ||^4°(u)||. 
Hence " ^°° 

||A°(u)|| = liminf ||AAn(u)| = lim sup ||AAn(u)|| = ||^°(u)|| . 
n-+co n-*co 

Therefore ||AAn(u)|| -> ||-4°(u)|| as n --> oo. Since X is an (if)-space, AXn(u) -> A°(u) 
in the norm of X, which proves our lemma. 

Lemma 4 ([5]). Let X be a smooth normed linear space, K a nonempty closed 
convex subset in X. Then x0eK is the point of minimal norm in K if and only if 
||x0||2 ^ <i?, J(x0)> for each veK. 

Let X be a real normed space, A: X -> 2X an accretive mapping with D(A) g X. 
Recall ([2]) that a singlevalued mapping A':D(A)-+X is said to be a main 
selection of A if the following two conditions are satisfied: (i) A' is a selection of A; 
(ii) if(u0, x0) e D(A) x X is such that for each u e D(A) there exists x* e J(u0 — u) 
such that <x0 — A'(u), x*> = 0, then (u0, x0) e G(A). 

Theorem 2. Let X be a Banach space such that X and X* are Frechet smooth, 
A: X —>- 2X a maximal accretive mapping with D(A) e X and that fi{.D(.A;i): 

X > 0} => D(A). Let A be a selection of A such that there exists a nondecreasing 
function co: [0, oo) -> R+ with the property that ||-4(u)| ^ co(||yl0(u)||) for each 
u e D(A). If (u0, x0) e D(A) X X is such that <x0 - A(u), J(u0 — u)> = 0 for 
each u e D(A), then x0 e A(u0), i.e. A is "almost the main selection" of A. 

Proof. By Lemma 2, A has the unique canonical restriction A0. If u e D(A), then 
u e C\{D(AX): X > 0} and Axu -> AL°u in the norm of X, when X -> 0+ in view of 
Lemma 3. Since X is Frechet smooth, the duality mapping J: X -> K* is continuous 
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and hence J(Axu) -> J(A°u) as X -> 0 + . Without loss of generaltiy one can assume 
that x0 = 0. (if x0 4= 0, we consider a mapping Ax = A — x0 instead of A which 
has the same properties as A.) Then — <A(u), J(u0 — u)> _ 0 for each u e D(A). 
Since JA(u0) e D(-4), we have that <A(JA(u0)), J(AA(u0))> _ 0. As AAu0 e AJxu0 

(Lemma 1) and A°JAu0 is a point of the minimal norm of the set A(Jju0)), then 
\\A(J,(u0))\\ ^ a)(||X0(J4(tto))||) ^ co(||^(«o)||) = co(||A0(u0)||) for each X > 0. Let 
(/ln) be a sequence of positive real numbers such that Xn -> 0. Since A Jxn(

uo) is 
a bounded sequence in X, without loss of generality one can assume that A Jxn(

uo) ~* 
-> y weakly in X. Put un = Jku0, then un e D(A) and un -> u0 in view of Lemma 1, 
because u0 e D(A). Since the graph G(A) of A is closed in (X, || • |) x (X, a(X, X*)) 
and A(un) e A(un) and A(un) -> y weakly in X, we get y e A(u0). Passing to the limit 
in the inequality <A(un), J(AAn(u0))> = 0, we get that (y, J(A°(u0))> = 0. Since 
A(u0) is a convex closed set and A°(u0) is the unique point of A(u0) with the minimum 
norm, we have, in view of Lemma 4, that <v, J(A°(u0))> = ||A°(u0)||2 for each 
v e A(u0). Now the last inequality and y e A(u0) imply that ^4°(u0) = 0. As A°(u0) e 
e A(u0), then 0 e A(u0), which proves the theorem. 

Theorem 3. Let X be a reflexive (H)-Banach space such that the graph G(j) 
of the duality mapping J:X-+2X* is sequentially closed in (X, a(X, X*)) x 
x (K*, <j{K*, X)). Let A: X -> 2X, Aa: X -> 2X be accretive mappings with D(A) s 
_ X, D(Aa) = X for each a > 0, A' a main selection of A and let D c X. Assume 
that Aa satisfies the following two conditions: (i) J* = (I + XAa)~

lm. D —> D(A) for 
each X > 0 and a > 0; (ii) for each u e D(A) there exists ya e Aau such that yx -> 
-> A'(u) as a [ 0. 

Then JAx -> JAx, A\x -> Ax for each fixed xeD and fixed X > 0 as a \ 0, wh^re 

AS = A-V - J5). 
Proof. For fixed xeD and X > 0 we set ua = (I + /L4a)

_1 x. Then 
ua e D(-4). Let u e D(A) be an arbitrary (but fixed) element, ya e Aau 
be such that ya -> A'(u), when a 10. Since Aa are accretive and 
(x — ua) X~x e Aaua, ya e Aau, we have that for each a > 0 there exists x* e J(ua — u) 
such that (X~1(x - ua) - ya, x*> = 0. Then (Xya - x + (ua — u) + u, x*> ^ 0 
for all a > 0. Hence ||ua — u||2 = <x — u — /Lj!a, x*> = ||x — u — Aja|| . 
. ||ua — u||. Thus ||ua — u\\ = \\x — u — Xyaj and ||x*|| = |[ua — u\\. Suppose that 
(an) is a sequence such that an > 0 and an -> 0 as n -> oo. The sequences (u a j , (x*n) 
are bounded in X and X*9 respectively. Without loss of generality, one can assume 
that uan -> u0 weakly in X and x*n -> x* weakly in K*. We show that uan -> u0 in 
the norm of X. Since ||u0 | _ lim inf | | u a j , it is sufficient to prove that lim sup ||uan|| _ 

7i->oo n->oo 

= ||u0||. First of all we have that | |u a j = \\u\\ + <x — u — Xyan, x*n>1/2. Hence 
lim sup ||uan|| = \\u\\ + lim sup <x — u — Xyan, x*n>

1/2 = ||u|| + lim <x — u — Ayan, 
n-->oo /I-+00 n-*oo 

x*nY
12 = \\u\\ + <x - u - AA'(u), x0>1/2 . As uan - u ~+ u0 - u weakly in X, 

x*n e J(uan — u) and x* -> x0 weakly in X* and G(J) is sequentially closed in 
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(X, a(X, X*)) x (X*, o(X*, X))9 we conclude that x* e J(u0 - u). Let us set in the 
last inequality u = u0. Since x0 G J(0), x* = 0 and lim sup | |u a j = ||u0||. Therefore 

f|->00 

| |u a j -> ||u0|| as n -> oo. As uan -» u0 weakly in X and X is an (H)-space, uan -» u0 

in the norm of X. Passing to the limit in the inequality <2_1(x - u a j - yan, x*n> ^ 

= 0, we get that <A_1(x - u0) - A'(u)9 x*> = 0 for each u e D(A). Now uan G D(A) 
(n = 1, 2,. . .) and uan -» u0 imply that u0 G D(-4). According to our hypothesis A' 
is a main selection of A. Hence u0eD(A) and /l_1(x — u 0 ) e i ( u 0 ) , i.e. u0 = 
= (I + >L4)-1 x = JAx. Since the limit point u0 is uniquely determined, the whole 
sequence (uan) converges to u0 and ua -> u0 when a J, 0. Furthermore, A\x = 
= A_1(x — J\x) -> 2_1(x — JAx) = Akx in the norm of X for each fixed xe D 
and A > 0, when a [ 0, which proves the theorem. 

If X is a Banach space such that X and X* are uniformly rotund and A: X -> 2* 

is m-accretive, then £(-4) is convex (see [1, chapt. V] and [4, chapt. II]). More 

generally, we get the following 

Proposition 1. Let X be a Banach space such that X* is Frechet smooth, A: X -> 2X 

an accretive mapping with D(A) _ X. If f){D(Ax): X > 0} ID conv D(A)9 then 
D(A) is convex. 

The proof of this assertion relies on the following statement: Let X be a Banach 
space such that K* is Frechet smooth, x, y e X9 x + y and (zn) c X are such that 
there exist the limits lim ||x — z„|| and lim ||y — z„||. If lim ||x — zn\\ + 

M-+OO n->oo n->oo 

+ lim \\y — zn|| = Ix — y\\, then there exists lim zn = z in the norm of X and z = 
/i-* oo new 

= X0x + (/ — X0) y for some X0 e [0, 1] (compare [4, chapt. II]). Furthermore, the 
proof is based on almost the same arguments as in [4]. 
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