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Theorem Proving Through Depth-First Test 
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We point out that the basic concept of depth-first search is not only an efficient tool in algo­
rithmic graph theory but also it provides a powerful approach for proving theorems of a non-
-algorithmic nature. The main application in this note is a sharp extremal result concerning the 
maximum number of clauses that can be satisfied simultaneously in a Boolean formula in con­
junctive normal form, with at most two literals per clause. We prove this theorem by designing 
a linear-time algorithm whose worst-case performance is at least as good as the general lower 
bound. Some results on graph k-colorability are recalled, too. Applying depth-first search or 
its variations, linear or polynomial algorithms can also be obtained for solving some subpro-
blems of those NP-complete problems. 

0. Introduction 

Depth-first search (DFS, for short) is one of the basic graph-search techniques 
in computer science, because it can easily be implemented in linear time. It has 
found many applications in algorithmic problems, see e.g. [7, 14]. In graph theory, 
a typical area where DFS is efficient is to test various sorts of connectivity (to find 
a spanning tree if the graph is connected, to list the connected components and the 
2-connected blocks of an undirected graph or the strong components of a directed 
graph). References to further applications (3-connectivity, planarity, planar graph 
isomorphism, dominators) can be found in [14, 15]. 

For a long time, DFS was applied to design fast algorithms only. Recently it has 
turned out, however, that this algorithmic approach is powerful in solving problems 
of a purely theoretical nature as well. In the present note we briefly describe two 
areas of such applications. The basic problems are: 
(a) Satisfiability of clauses of a Boolean formula in conjunctive normal form — 
estimate the number of clauses that can be satisfied simultaneously. 

*) Computer and Automation Institute, Hungarian Academy of Sciences, H - l l l l Budapest, 
Kende u. 13—17, Hungary. 
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(b) Chromatic number of graphs — find necessary and/or sufficient conditions 
ensuring that a graph is k-colorable, for a given natural number k = 3. 

The problems Maximum Satisfiability and Graph k-Colorability both are NP-
-complete. Using DFS, however, one can obtain fast algorithms that provide 
estimates for either of them when the formulae or the graphs in question satisfy some 
further requirements. 

We mention a third field of application of DFS, namely that one can also find 
fairly large k-colorable subgraphs in a graph by a linear-time algorithm. Details 
concerning this subject are given in the paper [11]. 

Graph theoretic notions not defined here can be found e.g. in [1]. 

1. Satisfiability of clauses 

Let <P be a Boolean formula on n variables xl9..., xn9 in conjunctive form, i.e. 
# = Aiei <i>i where <Pt = VJejit) ytj (|I| finite> KOI = n f o r a11 ieI> a n d -VIJ e 

e Ui^k^n{xk> "I**} f° r i e I and j e J(i)9 each xk occurring at most once in each<£,). 
If there are no restrictions on the clauses (j)i9 then it is NP-complete to decide whether 
or not a formula 0 is satisfiable; what is more, the satisfiability problem is NP-complete 
even on the class of those formulae in which evety clause has at most three variables 
[2]. For this reason we shall concentrate on the class &2 of formulae 0 with |^f | : = 
:= |J(0 | =- 2 for every i el. 

For the restricted class of 0l9 it is well-known (see e.g. [3]) that the satisfiability 
problem is polynomially solvable; in contrast, for a 0 e <P2 it is NP-complete to 
determine the maximum number m'(0) of clauses that can simultaneously be satis­
fied in 0, as proved by Garey et ah [6]. (The problem of finding m'(<P) is sometimes 
referred to as Maximum Satisfiability.) 

For 0 e <P2 we shall denote by m = m(<P)9 t = t(0)9 and s = s(<P) the number |/ | 
of clauses, the number of clauses with precisely two variables, and the number of 
clauses with a single variable, respectively (t + s = m). Throughout we shall assume 
that each pair of distinct variables defines at most one clause in 0 (i.e., for i 4= j at 
most one of xt v xj9 xt v 1xj9 1xt v xj9 and ~lxt v IXj may be a clause in 0); 
it is not necessary, however, to exclude clauses occurring more than once. 

Define a graph G = G(&) = (V, E) as follows. The vertex set V of G is [n] : = 
:= {1, 2 , . . . , n}; the edge set E consists of the unordered pairs {i,j} such that 
Uj e [n], i 7-- j , and the variables x( and Xj occur together in some clause of 0 
(hence, |V| = n and |£ | = 0- We denote by k = k($) the number of connected 
components in the graph G(0). 

In [12], Poljak and Turzik proved the following result which is sharp in infinitely 
many cases. (For a real number x9 [x\ denotes the least integer not smaller than x.) 

Theorem 1. ([12]) For every formula 0e02, 

m'(0) = 3*(<f>)/4 + s(0))2 + \(n(0) - fcf*))/2] J4. 
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Moreover, in [12] an algorithm of running time 0(n3) is given that finds a 0—1 
assignment of the variables xt (representing TRUE by 1 and FALSE by 0) which 
satisfies at least as many clauses as claimed in Theorem 1. 

In Section 3 we prove the extremal result of Theorem 1 by a method that leads 
to an algorithm whose running time is proportional to the length of #, i.e. it is 
optimal apart from a multiplicative constant. 

Theorem 2. There is an algortihm that finds a 0—1 assignment of variables 
in 0(m + n) time for an arbitrary function 0 e &2, such that at least 3t/4 + s/2 + 
+ l(n — k)/2]/4 clauses of <P are satisfied. 

Let us formulate a related result more general than Theorem 1 (valid for all 
Boolean functions, not only those in <P2) that can be proved by different methods. 

Theorem 1. [8,9]) If <P = Ai^j^m &J I5 a Boolean function in conjunctive 
form with m clauses, then at least m — £ i g j ^ m 2" '^ ' clauses of <P can be satisfied 
simultaneously. 

Also, a satisfying truth assignment (whose existence is guaranteed by Theorem 3) 
can be found in polynomial time. For a 0 e <P2, however, Theorems 1 and 2 yield 
a slightly stronger sufficient condition and a faster algorithm. 

2. Graph colorings 

In this section, recalling some results from [16], we illustrate the power of DFS 
in connection with graph colorings. The chromatic number %(G) of a finite un­
directed graph G = (V, E) (with vertex set Vand edge set E) is the minimum number 
of independent sets ( = sets of pairwise non-adjacent vertices) whose union is V. 
Call G k-colorable if %(G) ^ k. Although it is NP-complete to decide whether or 
not G is k-colorable (for any k ^ 3), there are some necessary and sufficient condi­
tions for k-colorability in terms of orientations of G. (A directed graph D = (V9 A) 
with arc set A is an orientation of G if for each edge eeE there is precisely one arc 
in A with the same two vertices as e, and vice versa.) 

Relating the chromatic number with the orientations of a graph, the following 
results were established in the 1960s. Throughout, k _ 2 is an arbitrary integer. 
(1) A graph is k-colorable if and only if it has an orientation containing no directed 
path on more than k vertices. (Gallai [5] and Roy [13]) 
(2) A graph G is k-colorable if and only if it has an orientation D in which every 
cycle C of G has at least |C|/k arcs in each direction. (Minty [10]) 

These two results are complementary in the sense that the assumption in (2) ex­
cludes directed cycles, while (1) is fairly obvious for acyclic orientations and the 
more interesting part of its proof is when the orientation of the graph providing 
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minimum length for the longest directed path is not acyclic. Those classic results 
have the following common generalization. 

Theorem 4. ([16]) A graph G is k-colorable if and only if it has an orientation 
in which every cycle C of G with |C| = 1 (mod k) has at least |C|/k arcs in each 
direction. 

To show how DFS can be applied to prove results of this kind, we present the 
proof of an ,,undirected version" of Theorem 4. (It was verified independently by 
Dean and Toft [4] by another method not leading to a coloring algorithm but 
proving the existence of many cycles in a non-k-colorable graph.) 

Corollary 5. If an undirected graph G = (V, E) contains no cycle of length 
= 1 (mod k), then G is k-colorable, and a k-coloring of G can be found in 
0( | V| + \E\)time. 

Proof. Let T be a spanning tree in G (or in one of its connected components), 
with root r, found by a DFS algorithm. For v e V denote by d(v, r) the length of the 
(unique) v — r path in T. It is known (see e.g. [14]) that if v, v' e Vare two adjacent 
vertices and d(v, r) = d(v', r), then in fact d(v, r) > d(v', r') and v' is an internal ver­
tex of the path joining v and r in T Consequently, the assumption on cycle lengths 
implies that {v, v'} $ E whenever d(v, r) — d(v', r) is a multiple of k. Thus, assigning 
color d(v, r) (mod k) to each vertex veV, the monochromatic sets of vertices are 
independent, proving k-colorability of (each component of) G. Such a coloring can 
be found on-line, during the DFS algorithm, assigning the corresponding color to 
each vertex when it is reached by the procedure for the very first time. 

Variants of DFS in directed graphs provide us with a linear-time algorithmic proof 
of the Gallai-Roy theorem and a 0 (k . \E\ • \V\2) algorithm for Theorem 4 (and hence 
also for Minty's theorem). One reason why such results are of interest is that the 
(generally NP-complete) problem of finding the chromatic number of a graph 
becomes linearly solvable when a „good" orientation is available on the edge set. 
Of course, the time bound of 0(|V | + |K|) is optimal, but most probably 
0 ( k • \E\ • \V\2) is far from being best possible. 

3. A linear-time algorithm 

In this last section we sketch the proof of Theorem 2. The algorithm, applying 
several ideas also from [12] and [11], consists of the following basic parts. 

1. Construct the graph G = G(#) = (V, E) and define a 0—1 assignment / on its 
edges as follows. Say, e = {i,j} eE. If the clause <f)i corresponding to e is xt v Xj 
or ~]xt v ~lxythenlet/(e) = 0, andif^z = ~lxf v Xjorxt v ~]Xj then let f(e) = 1. 
2. In the connected components of G, find spanning trees Tl9..., Tk with arbitrarily 
chosen roots rl9 ..., rk, using DFS. In the record of each vertex v of Tt store the 
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distance of v from ri9 the list of its „sons" (immediate successors in T()9 and the 
number n(v) of sons that are not leafs (= endvertices distinct from the root) of Tt. 
If this number is 0 and v is not a leaf of Ti9 then v will be called a semi-leaf. 
3. Compile a two-way list Lt of semi-leafs for each Ti9 containing those v in in­
creasing order of their distances from rt. 
4. Find a decomposition of the Tf into vertex-disjoint stars by choosing the last 
element v of Lt as the center of the next star whose other vertices will be the sons 
of v. Delete this small branch from Ti9 and decrease n(v') by 1 at the father v' of 
v; if v' becomes a leaf (i.e. it had just one son v)9 then n(v") should be decreased 
by 1 at v"9 the father of v'. Of course, v has to be deleted from Lt and if n(v') or 
n(v") becomes zero then the corresponding vertex has to be inserted in Lt. 

The stars (some of which possibly consist of just one vertex) obtained by this 
procedure will be denoted by Sl9 S2,... 
5. In each Sj split the vertices into two sets Xj and X) (some of them may be empty) 
in such a way that the following property is satisfied; if f(e) = 0, then e meets both 
of Xj and X'y, iff(e) = 1, then e is contained in Xj or in X'j. 
6. Define a preliminary 0—1 assignment c on the vertices as follows. In Sl9 let 
c(v) = 0 for veXt and c(v) = 1 for veX[. Having fixed the assignment of St_l9 

try a c' in St with c'(v') = 0 or 1 according as v' e Xt or v' e X'(. Scan the edges 
joining St with V\ St. If the other endpoint of an edge is in \Jj>i Sj9 then count it 
with weight 0; otherwise, if an edge e = {v9 v'} (v' e Si9 ve(Jj<i Sj) has c(v) + 
c'(v') + f(e) = 1 (mod 2) then count e with weight + 1 and if c(v) + c'(v') + f(e) = 0 
(mod 2) then count e with weight —1. If the total sum of those weights is nonnega-
tive, then we put c(v) = c'(v) for all v e St; if the total is negative, then we put c(v) = 
= 1 — c'(v) for all of those vertices. Having fixed the values of c on Si9 we mark 
the edges of weiht + 1 , as well as the edges of 5£. Denote by <!>' the set of clauses 
belonging to the edges marked, and by #" the clauses of # \ $' (hence, the s clauses 
with a single variable are in <P"). 
7. Check whether or not the assignment c satisfies at least half of the clauses in <P"; 
if it does, then the algortihm assigns c(v) to each vertex v; otherwise it assigns 
1 — c(v) to each v. 

Proof of correctness 

From the following simple claims, we shall deduce that the 0 — 1 assignment 
provided by the above algorithm indeed satisfies at least 3i*/4 + s/2 + \(n — k)j 
/2]/4 clauses of $. 

Claim I. The leafs in each star St are pairwise non-adjacent. 
(Since each Tt has been found by DFS.) 

Claim 2. Every clause is satisfied in 0'. 
(This follows from the definition off) 

Claim 3. At least half of the clauses of <P" are satisfied. 
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(If a clause is not satisfied by c(v) then it always is satisfied by 1 — c(v).) 
Claim 4. The stars St have at least \(n — fc)/2] edges in all. 

(Each of the k components of G can contain at most one star of just one vertex, 
and in any other star St on st vertices there are precisely st — 1 ^ s£/2 edges.) 
Claim 5. Denoting by q the number of star-edges, $' has at least (t + q)/2 clauses. 

(Applying induction on i, one can prove that — in accordance with the appropriate 
modificalion done in c' when it was necessary — in the subgraph induced by \Jj^ t Sj 
at least half of those edges will be marked which are in G but not in any Sj. For 
i = m this yields (t — q)J2 clauses for <P'9 plus those q clauses from the Sj.) 

By Claims 1 through 5, denoting by m" the number of clauses in <P\ we obtain 
that m'(<2>) = (m - m")/2 + m" = m\l + (t + q)/4 = 3t/4 + s/2 + \(n - fc)/2]/4 
as stated. 

Time analysis 

Steps 1, 2, 6, and 7 require 0(m + n) time, and steps 3, 4, and 5 can be executed 
in 0(n) time. Hence, the total running time is a linear function of the input size. 
Notes on implementation and complexity 
Step 2: Distance from the root can be recorded on-line; to determine n(v), add 1 
each time when returning to v from a leaf son. 
Step 3: In order to speed up insertions in Li9 maintain a pointer vector vt of length 
n, the / h coordinate of which tells the location of the last semi-leaf contained in Lt 

whose distance from rt is j . 
Step 5: A list of star-edges can contain at most n — 1 records, yielding time com­
plexity 0(n) for this step. 

Step 6: During the recursive definition of c, each edge of G is visited at most three 
times (twice when the algorithm arrives at its two endpoints, and once when the 
edge is marked). This fact implies the bound of 0(m + n). 
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