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Let B be a Baire topological space and O a minimal upper semicontinuous 
compact valued map defined on B with values in T. Define F(O) to be the 
collection of subsets of T defined by E e F(O) if and only if 
(i) {b e B: 4>(b) n E * 0} is a Baire Property subset of B and 

(ii) \b e B: &(b) n £ ?- 0 and 0(b) n (TVE) * 0} is a set of the first catego­
ry-
In [SI] the following is proved. 

Theorem 0. The collection F(3>) is a o-algebra that contains the Borel subsets 
of T and is stable under the Souslin operation. 
Here we prove that: 

Theorem I. If T is a compact space, F ~\ T and F e F(O) for any 3> then 
F is a Baire property subset of T. 
Necessary to the proof of the above, other than a few easy permutations of old and 
easy results, is the following result (also in [SI]). Actually, as pointed out in [M], 
the relevant property of the mapping g is that if IV Q R is nowhere dense then 
g_1(IV) is also nowhere dense; the proof in [SI] does this also. In our applications 
here, we make take C = T and p the identity. If, in addition, all spaces are 
completely regular, we know that H is Cech-complete and is a Gd subset of R. 

Theorem II. Suppose that C is Cech complete and p: C — T is perfect onto 
and T is a dense subspace ofS. Suppose g: S -»• R is continuous, open and onto. 
Then there exist a Gd subset D of C,a closed subset F of C and a dense G6 subset 
H of R such that f:D<^F^H is perfect onto where f(c) = (g ° p)(c). 

An elementary fact is: 

Lemma. Suppose that q: S -> T is a minimal perfect (onto) map. If N is 
nowhere dense subset of T then q~\N) is a nowhere dense subset of S. 

*) Institut für Mathematik, Johannes Kepler Universität, A-4040 Linz, Austria 
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Proof. If IV is closed and C— S\ (int q~\N)) ¥> S then q(C) is a proper 
closed and dense subset of T which is impossible. 
We do not have time to consider all multivalued mappings <t>\ of course, we only 
consider 

(1) <*>: C(K) - fp(K) 

defined by 

(2) <P(x) = {,-/?: x(t) - sup x(8) = ex)}. 

Of course, C(K) is the Banach algebra of continuous functions on the compact 
Hausdorff space K with the supremum norm. It is well known and quite easy to 
check that the projection from the graph {(x, k): k e <P(x)} onto C(K) is a mini­
mal perfect mapping. It follows that for any open subset U of C(K) the projection 
from 

{(x, k): ke &(x) and x e U} 

onto U is also a minimal perfect mapping. Observe that for any open subset 
W S C(K) the set 

U *(*) 
xeW 

is an open subset of K; if £ > 0 then 

{t: x(t) > Q(X) - a} £ * ( * /, (<>(*) - c)) 

and || x — (JC ^ (t?(*) "" £))|| -̂  £. Observe, also, that if IV .S K is closed and 
nowhere dense then 

{xe C(K): &(x) n IV * 0} 

is a closed and nowhere dense subset of C(K). 

Proposition. Let K be a compact Hausdorff space and W ^ 0 be an open 
subset ofC(K) and let L £ C(K) be first category. Then®(W\ L) differs from 
the open set <!>( W) by a set of the first category and so <!>( W\ L) is a Baire property 
set. 

Proof. Let L £ [}Nn where each IVrt is closed and nowhere dense and let G — 

= W\ [)Nn. Define 
n 

(i) s = {(*, k): x e W and x(k) - £(*)}; 
(ii) R = {A:: there exists x e W such that *(&) = p(ar)} which is the projection of 

(iii) g is the projection from s to R and 
(iv) T={(x,k):ke G and *(£) = £<*)}. 
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It is totally routine to show that T £ S is dense (the Lemma above) and is a Cech 
complete space (see [E]) and g: S -* R is continuous, open and onto. Theorem 
II above says considerably more than that O(G) contains a dense Gd subset of 
4>(W). 
Now, we go to the main result. Suppose that E e F. The first case to consider is 
that 

{xe C(K): <E>(x) n E * 0} 

is first category (the assumption is that it is a Baire Property set). It follows from 
the Lemma above that 

G = {*e C(K): <&(x) n E - 0} 

contains a dense Gd subset of C(K). Hence, (J &(x) differs from K by a set of the 

first category (Theorem II). This proves that E is first category. Now, suppose that 
{x 6 C(K): <*>(*) n £ ^ 0} - WAN 

where W ^ 0 is an open set and N is first category. We have assumed that 

TV- - {x e C(K): <£(;t) n £ ^ 0 and <Z>(jt) n (T\ E) * 0} 

is also a set of the first category. Let {Pn} be a sequence of closed nowhere dense 
subsets of C(K) such that 

./Vu Nx u (W\ W) S U p » " P -

Let W. - C(K)\ W. We have that 

<P(W\P) S £ , 

^(W^P) n £ = 0 and 

K\ (<P( W\ P) u <P( W.\ />)) is first category. 

This proves that £ is a Baire property set. 

Theorem III. Let K be a compact Hausdorff space and tf> defined as in (1) and 
(2). Then F(3>) is exactly the Baire property sets ofK. In particular, E is in F(<&) 
if and only if E has the representation 

<£(W\ F ) £ £ S $(W) u N S <p(W\ P)u N 

where W is an open subset of C(K), P is first category in C(K) and N is first 
category in K. 
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Corollary. If K is a compact Hausdorff space then E £ K is first category 
(respectively, E contains a dense Gd subset of K) if and only if 

{x e C(K): <P(x) n E * 0} is first category 

(respectively, {x <= C(K): O(JC) £ E] contains a dense G6 subset of K). 

Of course, we could play the same games for spaces K that are Baire spaces and 
Baire property sets in their Stone-Cech compactifications (see [SI]). The main 
result of [S2] combined with Theorem 6.11 of [SI] yields the following result. 

Theorem. Let A £ T £ K where A is an a-favorable topological space dense 
in K, K is compact, T is a Baire property set in K and T is in a class of topological 
spaces introduced by us (see [SI],). Then A contains a dense Gd subspace 
homeomorphic to a complete metric space. 
If, in the result above, A is only a Baire space then A contains a dense G<j subset 
that is metrizable. The following is how Theorem 8.12 of [SI] should be stated. 

Theorem. Let T be a compact and convex subset of some Hausdorff topological 
vector space and let E ben the extreme points of T. Suppose that there exists a space 
F such that E £ F £ /3E where F is a Baire property set in fiE and is in a class 
of topological spaces introduced by us (see [Sl\). Then E contains a dense Gd 

subset that is metrizable. 

Proof. Since E is a-favorable (a theorem of Choquet) it is a Baire space and it 
follows that F is a Baire space. As pointed out in [SI] this means that F contains 
a dense Gd subset G of fiE. It is very easy to check that G contains a dense Gd 

set M that is completely metrizable; this is in [SI] and the topology is in [E]. Thus, 
M n E is dense in E. 
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