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Praha, Bielsko-Biala*) 

Received 15. March 1995 

Let (Q, X, «) be a measure space such that w(Q) < 1. We give some general conditions for a bijection 
<p: [0, oo) i-> [0, oo), such that 

<P~l I I 9 O \x + y\ d/iij < q>~] (\ <p o \x\ da J + cp'1 (\ (p O |y| d/i 

for all w-integrable simple functions x, y: Q i-> R. This generalizes result from [1]. 

1. Introduction 

For a measure space (Q, E, p) such that p(D) < oo, denote by S(Q, S, p) the 
linear space of all p-integrable step functions x: Q \—> R+(:= [0, oo)). Let 
cp : R+ i—> R+ be an arbitrary bijection. Then the functional P(p: S(£l, E, p) \-> R+ 
given by 

Pj(x):-- <p~x(\(pO \x\dpV xeS(Q, I, p), 

is well defined. For cp(t) = cp(\)tp (t > 0) with p > 1, the functional P(p coincides 
with the ^-norm. In this note we prove the following generalization of Minkow­
ski's inequality: 

Theorem. Let (Q, E, p) be a measure space such that p(Q) < 1. Suppose 
cp : R+ i—> R+ satisfies the following conditions: 
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1°. (p is bijective, increasing, and differentiable; 
2°. (pf is strictly increasing, and locally absolutely continuous; 
3°. there exists a superadditive function g : R + i—> R + such that 

<P' g = —- a.e. in R + . 
<P 

Then for all x, y e 5(Q, E, tf), 

P,(x + y)<P^)+^W-
This generalizes a result from paper [1] of the second named author where (p is 

assumed to be of the class W2 and such that (p" > 0 and $ is superadditive in 
(0, GO). At the end of this paper we explain the assumption that fi{Q) < 1. 

2. Auxiliary lemma and the proof of Theorem 

The proof of the theorem is based on the following. 

Lemma. If (p : R+ i—> R+ satisfies the conditions 1°, 2°, 3° of the theorem, then 
there exists a sequence of functions (pn: R + i—> R + such that: 

a) for every n e N , (pn is bijective and of the class (^cc; 
b) for every n e N , (pn> 0, cpn > 0 m (0, oo), and the function ^ is super­

additive in (0, oo); 
c) for every a > 0, 

lim (pn = (p, lim <p,', = (p', uniformly on [0, a] ; 
H —> x n -> x 

d) 
lim —- = g a.e. m R + (and m JSfy 
« - > x <Pn 

where g is defined in the theorem; this convergence is uniform on every compact 
interval of the continuity of g contained in (0, oo). 

Proof. By 1° and 2° the function log o (p' is locally absolutely continuous. 
Consequently it is equal to a primitive of its derivative 

(1) (logo?')' = 5 = ;̂. 
Sr y 

Take a sequence gn: R i—> R + of ^ - s m o o t h even functions such that 

- n ny J _ 
(2) supp Qn 

and define gn : R + i—> R + by the formula 
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Qn = 1 > 



9n{t) = f g{ts)Qn{\ - s)ds, t > 0, и e N . 

Note that gn is increasing, bijective, superadditive, of the class ^ x , and 

lim gn = g a.e. in R+ . 

Since g is increasing, we have 

0(0 (3) Øл(t} > f бr(ťs) ^„(1 -s)ds> f g{t)gn(í - s)ds = -^ 

for all t > 0. 
Now we are going to define <pn9 n e N . First we define its derivative (pn in such 

a way that log o <p'n is the primitive of ^ for which <pf
n{l) = <p'(l)« The value (pn{0) 

is well-defined if Jo£ < oo; otherwise we put (pn{0) = 0. By (1), (3) and the 
Lebesgue majorization theorem, we have 

(4) l i m <p'n = <p' 
M-> X 

pointwise on (0, oo). As all functions here are continuous and increasing, it follows 
that the convergence (4) is uniform on every compact interval contained in (0, oo). 
For proving that (4) holds uniformly on [0, 1] too, we will distinguish two cases 
depending on (p'{0) > 0 or <p'{0) = 0. 

If <p'{0) > 0, then by (1) the function - is integrable on [0, 1], and using the 
Lebesgue majorization theorem, as above, we obtain that (4) holds pointwise, and, 
therefore, uniformly on [0, 1]. 

Now suppose that <p'{0) = 0. We know that <p' is continuous, increasing, (4) 
holds uniformly on [s, 1] for every e e (0, 1), and that (p'n is increasing and positive 
on (0, 1], Thus the convergence must be uniform on [0, 1], too. 

The definition of the function (pn, for which (pn{0) = 0, is obvious. Evidently, 
lim,,.^ (pn = (p uniformly on [0, a\ for every a > 0, and the lemma is proved. 

Now we give the 
Proof of theorem. Let <pn, n e N, be the sequence of functions constructed in the 

lemma, and let x,y eS{Q, E, fj) be arbitrary. Then by Theorem 3 in [1] we have 

<P»l[\ <PnO\x + y\dii) < (pn
l( f 9nO\x\dji\ + (pn

l(L(pno\y\dfiy 

Letting n -* oo here and making use of the lemma, we get 

<P-1(f <PO\x + y\dii) ^ (p~[( f (po\x\dfi) + (p'l( f (po\y\dfi\, 

which, by the definition of ij,, completes the proof. 
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3. Additional remarks and proposition about geometrically convex functions 

Remark 1. Suppose that (Q, S, p) is a measure space such that there exist 
A, B e E satisfying the condition 

0 < p(A) < 1 < p(B) < oo. 

In [1] it is shown that if (p : R+ i-> R+ is bijective, (p~l continuous at 0, and 

P9(x + y) < Pv(x) + P(p(y) holds for all x,ye S(Q, Z, p), 

then (p(t) = (p(l)tp (t > 0), for some p > 1. This shows in particular that the 
assumption p(Q) < 1 is essential. 

In this connection let us also mention the following 

Remark 2. Suppose that (Q, S, p) has the following property: for every A el, 

p(A) = 0 or p(A) > 1. 

Under this assumption it is proved in [2] that if cp:R+i-»R+ is a convex 
homeomorphism of R+ such that (p is geometrically convex in (0, oo), i.e. that 

(p(yfst) < y/(p(s) (p(t) for all 5, t > 0, 

then 

P9(x + y) < P(p(x) + Pv(y) for all x,ye S(0, S, p), 

In the proof of this result the one-sided derivatives and Zygmund's lemma are 
used. It turns out that the argument can be simplified if we work with smooth 
functions (p. The following result permits us to do it. 

Proposition. Suppose that (p is a convex and geometrically convex homeo­
morphism of R+ onto itself Then there exists a sequence <pni n e N , of W™-smooth 
convex and geometrically convex diffeomorphisms of R+ onto itself such that 

lim (pn = (p 
71-* X 

uniformly on [0, a] for every a > 0. 

Proof. Taking the function Qn given by (2) in the previous proof, we define 
(pn as follows 

<pn(t): = exp J Qn(u) log <p(t e~u)du, t > 0, 

and (pn(0) = 0 to have <pn continuous at 0. Since {cpn} converges to (p pointwise on 
R+ , the monotonicity of (pn and (p implies that the convergence is uniform on 
[0, a] for every a > 0. 
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Now we have for all 8, t > 0 

(pn(y/si) = exp fQn(u) log (p {Jste~u)du < exp f Qn(u) log y/<p(se-u)<p(te-u)du = 

exp ^Qn(u) -(log (p(se~u) + log (l)(te"M)) \du = y/(pn(s)(pn(t) 

which shows that (pn is geometrically convex. 
Now we shall show that (pn is convex. As cp is convex with (p(0) = 0, the 

function ^ is increasing, too. For 0 < s < t we have 

(pn(s) = exp f Qn(u)\og (p(se~u)du < exp f e,,(u)log - (p(te~u) = 

exp fgn(u) log - + log (p(te~u) \du = - <pn(t), 

which was to be shown. 
For showing that (pn is convex, we use the following known property of 

geometrically convex functions (p: if the function ^ is increasing, then (pn is 
convex. Let us show it briefly. Suppose that (pn is not convex; then there are points 
0 < s < u < t and a linear function / such that 

(5) (pn(s) - l(s) = (pn(t) - l(t) = 0 and (pn(u) - l(u) > 0. 

The points s, t can be changed without changing / so that (5) holds for all u e (s, t). 
For u = yfst we get from (5) by a simple calculation 

<Pn(yfst) > (pn(s) -j^L—-= + (pn(t) vS . 
y/s + y/t yJS + yjt 

Thanks to the geometrical convexity of </>,„ it follows 

(yjs + 7 0 ^<Pn(s)(pn(t) > <Pn(s)Jt + (pn(t)yjt9 

(77 + v/7) /^^>^7- + ^ V 7 , 
\ st s t 

We see that the inequality ^/^P + ^/^ = 0 is not possible, so the function ^ 
could not be increasing if (pn were not convex, the proposition is proved. 
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