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1 Introduction

The aim of this paper is to suggest a direct Parametric method for solving some
optimization problems on attainable sets of so called max-separable operators.
Such problems in a less general form connected with the fuzzy set theory were
considered e.g. in [1], [4]. The problem considered in this paper is presented
independently of the fuzzy sets context as a non-linear nonconvex optimization
problem. Parametric approach to its solution suggested is flexible enough to allow
further extension and generalization, which are briefly discussed in the concluding
sections.

2 Notations and Formulation of the Basic Problem
In this paper, we shall consider the following system of equations and inequalities
R{(x) = max (a; A ri(x;)) = b, Vi:ieS
jeN
h < x;<H;, Vj:jeN (1)

where N={1,2,...,n}, S={1,2,...,m}, x=(xy,..., x,) € R", b=(by,..., b,) € R",
h=(h,.., h)eR", H=(H,..., H)eR", a; A ryx;) = min (ay, r{x)), R(x) =
(Ry(x), ..., Ry(x)), let us assume further that r;;: R — R are given strictly increasing
continuous functions Vi:i€ S, Vj:je N. Using the above vector notation we can
reformulate the system (1) as follows:

R(x)=b, h<x<H (2)
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Denote the set of all solutions of the system (1) (or (2)) by M(b). Each
component of R : E" — E™ is a function depending on n variables; this function is
expressed as the maximum » nondecreasing functions of one variable of the form
a; A 1;i(x;), so that these functions are separated by a max-operation. By similarity
with the additive separability, we call this prooperty of the functions R(x)
max-separability and R(x) is called a max-separable operator.

The vector b in the system (2) can be understood as a vector, which is attained
by the left hand side R(x) when an appropriate x € M(b) is chosen. Therefore those
b’s, for which M(b) % 0, are called attainable elements and the set

A = {b|M(b) * 0} (3)
is called the attainable set.

If an element b € A, then there exists a solution of the system (2) with b = b
which can be obtained using some of the methods described in the literature (see
e.g. [2], [3]). If b ¢ A, we want to find an approximate solution of the system (2)
with the right hand side b. For this purpose, we look for an element b € A, which
has in some sense the minimal distance from b and accept the elements of M(b*')
as appropriate approximate solutions.

In this article, we shall use the Tshebyshev distance, i.e. the following distance:

Ib = Bl| = max b, — b| (4)

The problem, we are going to solve here is thus in the following form:

|b — b|| > min subjectto be A (5)
Since if b € A4, it means that there exists x such that b = R(x) so that we can
reformulate the problem (5) as follows:

IR(x) — bll = max |R(x) — b] — min subjectto h < x < H (6)
ieS

The reformulation (6) shows that we minimize a continuous function of x on
a compact set, so that there exists always at least one optimal solution x°* of the
system (6); thus if we set b*** = R(x"”’), we will obtain an optimal solution of the
problem (5).

Let us define the set M(¢) for any ¢: ¢ € [0, o0) as follows:

M(t) = {x|h < x < H& |R(x) — b|| < t}. (7
The set M(t) is nonempty if and only if the following system of inequalities:
R{x)<b +t,ieS&R(x)>b—t,ieS&h<x<H, (8)

is soluble with respect to x; note that the set M(f) is the set of all solutions x of
(8). We can replace our original problems (5), (6) by the following problem:

t > min  subjectto  M(t) + 0. 9)
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We shall show in the sequel that there exists always the optimal solution t*”* > 0
of the problem (9) and also we will derive a direct numerical procedure for
determining t°”. If x° is an any element of M(t*), then |R(x*) — b| <
since the strict inequality can’t hold, the equality must occur i.e. b = R(x”) € A
is the optimal solution of the problem (5), and the vector x°” can be accepted as
an approximate solution of the system (2) in the case the b ¢ A4, since for any
solution x of the system (2), we have | R(x) — b| > 7.

In the next section we investigate some properties of the set M(t) where
t e [0, o). This will enable us to derive the direct solution method for the
system (5).

3 Properties of M(r)

We shall introduce the following notations Vi:i€ S, Vj:ie N, t € [0, co):
V) = {x|h < x; < H; and a;Aryfx)<b +1t}
V(e) = (V) & Wilt) = {x|l < x; < H; and ay A ryx) 2 b — t}.
ieS
For the illustration of these sets see the Appendix. The following theorem gives
the necessary and sufficient conditions for M (t) + 0.

Theorem 3.1.

1) ) 0, VieN
M(t) + 0 < {2) Vie S3ji)e N such that Wt) n Vi(t) + 0.

Proof. Define the interval I; = [h;, H;] and introduce the following notations:
aly = a;— (b + 1), a2y = a; — (b: — 1) & rlyfx) = ryx) — (b; + 1),
r2i{x) = rifx) — (b — 1)

Sufficiency.

Assume that we have a point x = (X, ..., X,) which satisfies the right hand side
of the <-relation.

x;€V(t), VieN - x;e ﬂ Vi), Vie N
- (al,-,-‘j\srl,.,(xj) <0,VieS;xel),VjeN
~ max (aly A r1i{x) < 0), Vie S; Vx e I,
X € Wylt) = a2y A 125)(x) 2 0; x4 € I

- rJnEaA),c (@2, A r2{x) = 0; Xi) € Ly
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Then we can deduce that x € M(t).

Necessity.

xeM(t)—»xjte,VjeN&(maxal A rlylx X) < 0VieS)

(maxa2 A r2;(x X) > 0 Vie S)
je

- (x;e I, and al; /\rl( ;) <0VieS), VieN
&Vies EI]()eN such that aZi A r2;(x;) > 0; X € Iigy

- 1) Vt) = 0,VjeN
2) Vie S 3j(i)e N such that Wet) N Vit) + 0.
Thus the proof of the theorem is complete. O

4 Properties of V(t) & W()

We shall investigate here the conditions for Vi(t) + @, V(z) + @, W(t) + 0.
Define the following variables:

= min (max {q; — b, 0}, max {ry() — b, 0}), # = max?,
n = 1]1163.13( # and t¥ = max (0,b; — ay b, — ry(H,). ) (10)
For the illustration of these variables see the appendix.
Theorem 4.1. For each je N, 3n7 > 0 such that Vi(t) = 0 <t > y".
Proof.
Vi) =0 < a; Ary(x) > b+t Vxel
< b+t <ryx)<ayor b +t<ay<ryx) itis further t > 0
<> ¢t min (max {r;(h) — b, 0}, max {a; — b, 0}) = »"
where 7" is given by (1); this completes the proof of the theorem. O
Theorem 4.2. For each je N, Vj(t) + @ <> t > n/; where v/’ is given by (10).

Proof. V(f) = 0 equivalent to the fact V,(t) = @ for some i, € S; since Vj;, are

nested!) sets for fixed j,€ N; which means that t < n” < 5/ which is the
maximum of #” on S. O

Corollary 4.1. For each je N, Vj(t) + O <> t > n; where 1 is given by (10).

1) Since for each j,1 <j < n, there exists a permutation {i,..., i} such that V;; = V;; = ... < V,,
because of the fact that a;; A r,(x;) are nondecreasing in x;.
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Proof. The proof is obviously derived from theorem 4.2.
Corollary 4.2. M(t) + @ <t > 1.

Proof. The proof is obviously derived from theorem 3.1, theorem 4.2 and
corolary 4.1, where 7 is given by (10).

Theorem 4.3. For each i€ S, j € N; 317 such that Wy(t) + § <>t > 7'
Proof.
Wit)=0 < a;aryx) <b —t Vxel
< a; <ryx) < b, —t or ryx) < a; <b —t; it is further t > 0
< t < —min (0, a; — b, ry(H,) — b)
<> t < max (0,5, — a;, b)ry(H)) = 1

ijs

where 1V is given by (1); this completes the proof of the theorem. O
Corollary 4.3. For each je N, i€ S; 317 > 0 such that

Vt:t < max min max (1, ) = M(f) + 0.
ieS jeN ieS

Proof. It is clear from corollary 4.1, 4.2 and theorem 3.1, where " is given
by (10).

Let us define the following sets: Py(t) = Wi(t) 0 Vi/(t); Vi,keS, jeN. To
investigate the necessary and sufficient conditions for Py;(t) # @, assume that the
variable 1, satisfies the following equation r;'(bx + na;) = ri' (b — n4;) for
some, i, k € S, j € N and define the variables &y, {i; and yy; for some i, k € S and
j€ N as follows:

Nitj if max (¥, nY) < n,k, < min (a; — by, b; — r,(h)
ézkj ak] - bk if rk] (bk + t) < r (b ) < H (11)
max (1%, %)  otherwise

_ ) M if max (7%, #%) < fuy < min (r(H)) — by, b — rii(hy))
by = { max (<%, n") otherwise (1)
Yay = max (z7, 1) (13)
For the illustration of these variables see also the appendix.

Concerning the definition of the sets V,(t) & W(t), if we assume that

rih) < a; <ryH,) forall ieS, jeN

ij =
then it is easy to recognize the following remarks:

Remark 1.

If the two sets [ry(h) — by, ay; — bi] & [b; — ay, b; — r,(h)] have an empty
intersection, then we can deduce the following:
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® if a;; — b, < b, — a; = 1/ = max (1%, "), for some k € S, then Vi,(t) 0 W(t) = 0
if t < b, — a;; and if t > b, — a; the intersection equals Wj{(t).

®if b — ryh) < ry(h) — b = #¥ = max (i, #), for some ke S, then

Vk,()n W()=Q) if t<rh)— bk, and if ¢t > ryj(h) — b, the intersection
equals V(1)

Remark 2.

If the two sets [ry;(h) — by, ai; — bi] & [B: — ay, b; — ryy(h)] have a single
point in their intersection, then we can deduce the following:

® if the point of intersection is x = b; — ry(h) = ryj(h) — by = n” = max (z¥, nY),

for some k€ S, then V,(t) n W(t) = 0 if ¢ < x; and if t > x the intersection
equals V;(t).

® if the point of intersection is x = a;; — b, =b, — a;;, for some k € S, then we
have the following two cases:

Vii(t) N Wy(t) = 0 if t < x, given that r;'(h, — t) < rig'(bx + t) < Hj; and if
t > x the intersection equals W() X = ay —

Vii(t) 0 Wi(t) = 9 if t < x, given that rj; (bk + t) <rj'b - t) < H;; and if
t > x the intersection equals V,j(t); x = b, — a; = 1/ = max (<%, ).

Remark 3.
Let

zy = ni(h) — by, y1=a; — by
z, = b, — a;, y2 = b, — ry(h).
Assuming that [z, y] = [z, 1] n [22 ¥2] one can find the following cases:
® if [z, y] = [z, y1], then there exists some ¢, such that
<=z <ty<y <y and ri'(be + to) = r;j'(bi — to);
ie. max (1, 1) < to < min (y;, y2)»

then V() N W(t) = @if t > t, the intersection is nonempty, (similarly the case
[zy] = [z y)-

® if [z, y] = [20, ¥1], Z0 = z1 = 2, then there exists some ¢, such that
TU = 11ij =z <l <y <) and rk_jl(bk + to) = TJl(bi - t()),
i.e. max (¢%, ) < ty < min (y;, y2)

then V(t) N Wj(t) = @ if t < to; and if ¢ > ¢, the intersection is nonempty,
(similarly the case [z, y] = [z, y2)).

o if [z, y] = [z;, Yo)» Yo = y1 = » then there exists some ¢, such that

<=z <to<y and rg (b + to) = ri' (b — to);
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ie. max (7%, %) < t, < min (y1, ),
then V;;(t) n W;(t) = @ if ¢t < to; and if ¢ = ¢, the intersection is nonempty,
(similarly the case [z, y] = [z o))

® if [z, y] = [z, y,], then there exists some t, such that
W<ni=z<to<yy<y and rg'(be + to) = rj' (b — to);

ie. max (%, 1Y) < t, < min(y;, y2),
then ¥;(t) n W;(t) = @ if ¢ < ty; and if ¢ = ¢, the intersection is nonempty,
(similarly the case [z, y] = [z, 1))

Theorem 4.4. Let i,k €S. je N; r(h) < a; < r;(H) for all i€, je N; then
aéikj ; 0 such that Plkj(t) = ® <t g éikj'

Proof. The proof is obviously derived from the above remarks and from the
definition of &,; which is given in (11).

Theorem 4.5. Let i,k €S, je N; ri{h) < ri{H)) < a; for all i€ S, j € N; then
3u; = 0 such that Py (t) £ O <=t 2 {y;.

Proof. The proof is obviously derived from the above remarks and from the
definition of {;; which is given in (12).

Theorem 4.6. Let i,ke S, jeN; a; < rifh) < r; (Hj) for all i€, jeN; then
Fyay = O such that Pyy(t) + 0 <>t = vy,

Proof. The proof is obviously derived from the above remarks and from the
definition of y;; which is given in (13).

To generalize the above three theorems we introduce the following lemmas and
remarks.

Lemma 4.1. Let i,k€S, je N; then 369 2 0 such that V;(t) n W;(t) + ¢ =
t > oY

Proof. Let 6/ = max (7Y, #); assume that for some fixed i € S, j € N (say iy, jo);
no > gloko; then t < 5l =t < o =V (1) N W, (t) = 0 (th. 4.2). Similarly we
can treat the other case, and then the proof is complete. O

Lemma 4.2. Let i,k€ S, je N; then 3B 2 0 such that V(t) n W;(t) + ¢ =
t=p.

Proof. Let f = max;s min;.y 67.

Assume that t < B = for some fixed i€ S, je N (say iy, jo) we have t < §ojo
— t < max (to’, yo)
= Vi(t) 0 W,;(t) = 0 (th. 4.1),

and then the proof is complete. O
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Remarks.
® From lemma 4.1 and lemma 4.2 we have
Vi(t) & 0 and W(t) + 9 if t > Bie. te[p, ).
® If t > max (%, #), then V(t) + 0 and Wj(t) + 0.
® From th. 4.1 and th. 4.2 we have:
V(t) + @ and W(t) + 0 if t < b, — r;(h) and ¢t < max (79, #) i.e.
t € [max (9, ), b; — r;(h)).
If we redefine &u;, (i; and yy; by replacing #” by #’ and then by 7 in (11), (12),
(13), then from theorems 4.1 & 4.2, lemmas 4.1 & 4.2 and also from the above

remarks, we can prove again the generalized form of theorems 4.4 & 4.5 & 4.6
which obtained by the new formulas of &, {i; and yu;.
Now let us define the following maximum variables:

¢V = max &y;, (Y= max{y; and 7Y = max yy,. (14)
keS keS kes

The following three theorems give another sufficient and necessary conditions for
0) & Wild) + 9.
Theorem 4.7. Let i€ S, je N; ry(h) < a; < rj(H) for all i€, je N; then

l]—

3E9 > 0 such that V(t) N W(t) + O <t > &; &Y is given by (14).

Proof. The assertion follows immediately from theorem 4.4 and the definition
of V(1).

Theorem 4.8. Let i€ S, je N; ry(h) < r(H) < a; for all i€S, jeN; then
309 > 0 such that Vj(t) n W(t) + @<t > {J; (Y is given by (14).

Proof. The assertion follows immediately from theorem 4.5 and the definition
of W(t).

Theorem 4.9. Let i€ S, je N; a; < ryh) < ry(H)) for all i€S, jeN; then

l] -_

39 > 0 such that V(t) n W(t) + O <t > y; yV is given by (14).

Proof. The assertion follows immediately from theorem 4.6 and the definition
of ¥(t).

From the above results we conclude that there exist some values, say ! & TY
for which the relations V(t) = @<t > ¢ and W(t) n ¥(t) = 0 <t > T? hold
Vi:ieS, Vj:je N; where TV is equal to one of the values &, {¥ or y¥ according
to which of the conditions from Theorems 4.7, 4.8 and 4.9 are satisfied and ¢t/ is
the same as »’ which defined in (10). Then the optimal value of t(t""‘) is calculated
according to the following formula:

t° = max (max #, max min TY). (15)
jeN ieS jeN
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Consequently we can deduce that, the optimal value of t(t"P‘) is calculated
according to the following theorem:

Theorem 4.10. If ¢t is the solution of problem (9), then t holds one of the
following relations:

If ry(h) < a; < ry(H) for all ieS, je Nj; then
t > t°" = max min &V, (16)
ieS jeN
If ry(h) < ry(H) < a; forall ieS,jeN; then
t > t°” = max min (V. (17)
ieS jeN
If a; < ry(h) < ry(H) forall ieS,jeN; then
t > t°"" = max min y7. (18)
ieS jeN

Where &Y, { and YV are given in (14).

Proof. In our proof we will concentrate on the first case. Let £/ = max min &v
and assume that t < &/, then from theorem 4.7 we can deduce that: = <"

Wol) A V() =9;  VieN,

hence, according to theorem 3.1; M(t) = (; this complete the proof of the
theorem. O

5 Algorithm for Calculating ¢t
Step 1:
Find Y, #/, n and 1Y from relations (10), for each i € S and each j€ N.
Step 2:
Calculate n;; from the equation
rk_jl(bk + r'lkj) = rk—jl(bk - "Iikj)
for each i,i € S and each j € N.

Step 3:
Find &,;, {u; or yu, from relations (11), (12), (13) for each i, k€ S and each
jEN.

Step 4:
Find &Y, (Y or y¥ from relations (14) for each i€ S and j € N.

Step 5:
Find t°” from relations (16), (17), (18).
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Example.
Here we want to solve the following problem

Ri = max (a,} A r,}(x])) = b,‘ Vi € S
jeN

and
h < x;<H; VjeN
where
N ={1,2,3,4}; S={1,2,3}; x=[x%%x3%4]";
b=[573]T; h=[1 20 l]T; H=[5643]T;
rll(xl) r 12(x2) r 13(x3) r14(x4) 4x, 7x, 6x; x,+1
r21(x1) r22(x2) r23(X3) r24(X4) = 2x1 X2 6X3 +1 ZX4
r 31(x1) 7'32("2) r33(x3) r 34(x4) Xsg+1 x—12x—1x,—3
and
a;; Ay Qg3 Qg 7 15 4 2
Ay Ay Qy3 Qx| = 3 41 4
a3 Q3 Q33 Az 3 321

Note that this problem has no solution in general.
It is clear that r;(h) < a; < ry(H,)Vie S, je N. Using the relations (10) we can
deduce that

this gives that
(v w7 n*]=1[0900]
which implies that n < 9.
Also we get from (10), the following

’C“ 112 ,’:13 114 0 0 1 3
2 B M| =14363
3 732 33 g3 0014

From the equeality

rk_jl(bk + ”Iikj) = ri}_'l(bi - nikj)
We can calculate 1y, for each k€ S; i€ S and je N, then the application of the
above relation will give us the following three matrices:
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atk =1

111 M2 Mz Na 000
N2 Motz M3 Naa| = |3 l_21 37—1 —Tl
N3 M312 N313 M314 % 2:s3 % 1
atk =2
—’1121 Mi22 M23 ’1124-} -3 :% _Tsl %
M1 Moz Maxs N2a|=| 0 0 0 O
LN321 322 M323 1324 | —1 :22 _Ts %
atk =3
-71131 N3z N33 '11347 -:5‘3 —T23 _T7 -1
Maat M2 Mz Mosa| = | 1 % % %

[ M331 M332 M333 N334 LO 0 0 0

Now from equation (11) and the values of the above parameters, we can obtain the
following matrices

atk =1
9 ! ) 2 3
S Sz Sins Sia 2 if0<t<3 {101f I<t<x {—llf 2<t<7
S oz oz S| = - 3 otherwise 6 otherwise
& G2 Gz Gaua 3/5 {IOif 0<t<? {—lif 0<t<i 4
0 otherwise 1 otherwise
at k =2
C121 &1z 123 &roa 0913
Eom Com &3 Eos|=1(4363
E321 &3 o3 s 0014
atk =3

0 9 1
Cin €32 &z Ciaa 0if1<ts% {—1if2<ts§

=l0if0<t<1 {
Ean1 Cama Ea33 oz 1 3 otherwise 6 otherwise
Ein Eann Eaaz o 0 0 1 4

From the definition of £/ given in (14), it is easy to obtain the following
0 9 13
g g g g {10if1<t$171 6 3

gL ey = 3 otherwise

31 32 £33 34 . 23
S SE a4 3/5{101f0<'t3814
0 otherwise
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Hence t°r* which given by equation (15) will be
t? = max (9,3) =9
Take any point (say x*) from the set
' M(b)={x:h<x<H, |[Rx)—b|<t, t>09)],

then x* will be accepted as an approximate solution of our problem.
In the original case V;, = @ {since 15 A 7x, > 5, x,€[2, 6]},

Vo=0-2V,=0->M=0
i.e. there is no solution for the original problem.

In the modified case, if we take t = 9, then we try to solve the following
problem

—4 <max7 Adx;, 15ATxy 4A6x3 2A(xg+1) <14
—2<max3 A2x, 4A X, LA(Xs+ 1), 4A2x,<16
—6<max3A(x;+1),3A(xx—1),2A2x—1), =1 A (x4 —3) <12

13x1$5, 2<x,<6, 0<x3<4, lsx4S3.

Then

i=[15] w={2} »n=[04] V.=[L3],
and

VlﬁVVu#(b, VZ("VVn:F@, %nm3=i=¢
where

Wi =[1,5] Wnp=[2,6] Wi;=][04]

then choose any x such that
x = (X1, 2, X3, X4)
where
x1€[1,5] x3€[0,4] x,e(1,3]

will be an approximate solution for the original problem.
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