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We prove that if ^ is a class of open bounded subsets of R" satisfying a simple geometric condition 
then the following Besicovitch-type covering property is true. For any s there exists an M such that 
from any subclass 01 c $ one can select M subclasses of disjoint sets such that the selected sets cover 
at least the 1 - £ part of \]0t. 

Thus we get sufficient geometric condition for the minimal density property and for the CVq covering 
properties introduced in [2]. 

During the proof we also get a reverse isoperimetric inequality for the union of star-shaped sets. 

1. The result 

In this note we prove a covering result (Theorem 3) that can be interesting in 
itself but also has connection with the following recently defined notions [2]. 
(Throughout the paper \A\ denotes the (Lebesgue) measure of A.) 

Definition 1. Let M be a class of nonempty open bounded subsets of Rn. 
The class ffl is said to have the minimal density property (MDP) if there exists 

a function Q : R+ -• R+ such that if H cz Rn is measurable with finite measure, 
01 a 2ft covers H and the density of H in [j 01 is d > 0 then one can find an R e 01 
in which the density of H is greater than g(d); that is, 

lUnffl ( \H\ 
> Q 

\R\ * V l U ^ 
The class 01 is said to have the complete covering property Vq (CVq) for a fixed 

1 < q < oo if there exists a function C: R+ -• R+ such that for any e > 0 and 
^ c ^ with \[\0t\ < oo we can find Rl9..., Rme0t such that 

(i) l l j? . A | > (1 - S) |u Я\ and (ii) V д J < C ( є ) | u 
k=í 

where |.||, denotes the Lq norm and XR is the characteristic function of R. 

*) Eotvos Loránd University, Department of Analysis, Muzeum krt 6-8, H-1088, Budapest, Hungary 
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Note that C% implies C%> if q > q'. It is proved in [2] that MDP and CVi are 
equivalent and also that MDP implies that C% is equivalent with the classical (and 
weaker) covering property Vq for any 1 < q < oo. (The covering property Vq is 
defined in [1], where — among others — the authors proved that % is equivalent 
with the weak type (p, p) property of the maximal operator associated to & if 
1 < q < oo and l/p + 1/p = 1.) 

Unfortunately, it is not easy to prove the minimal density property (even for the 
simplest classes, like the class of balls), which makes the applicability of this 
notion harder. (In [2] the MDP is proved only for the class of intervals of R" (i.e. 
H-dimensional axis-parallel rectangles)). It would be useful and interesting to have 
a weak sufficient geometric condition that guarantees the MDP. One can check 
(see [2] Example 4.7) that the class of sets in the plane that are the union of an 
open disc and an open sector with the same center and twice larger radius does not 
have the minimal density property. However, this is a regular class of sets (see 
Definition 7), which shows that the standard properties (regularity, V^ property 
(even for q = oo), weak (1,1) property of the maximal operator, density property, 
differentiating properties) cannot guarantee the MDP. In this example the too 
"sharp" "thorn" is the obstacle of the MDP. 

Our main result is the theorem below that shows that if the sets of 38 are 
"non-thorny" in the below defined sense then J1 has a much stronger property than 
the MDP or the CV^ properties: instead of (ii) of Definition 1, in this case, we have 
a better (Besicovitch type) control for the overlapping. 

Definition 2. By a drop we mean the interior of the convex hull of a ball and 
a point (not contained in the ball). The angle of the drop is the angle between the 
line through the point and the center of the ball and any tangent line. 

Let 0 < d < 1 and 0 < a < TT/2. We say that a bounded open set H cz Rn is 
(d, a)-non-thorny if H is the union of drops with angle at least a and diameter at 
least d - diam H. 

Theorem 3, Let 01 be a family of (d, a)-non-thorny sets in R" with bounded 
diameter. Then for any s > 0 one can choose sets Rl9..., Rm e 0t such that 

(i) 
lU?- i -** l ;M--e) |u -* | and 

(ii) the sequence Rh ..., Rm can be distributed in M families of disjoint set, 
where M depends only on n, d, a and 8. 

Remark 4. This covering property is similar to the Besicovitch property, the 
only difference is that, instead of all the centers, we cover a big part of the 
union. But, as the earlier mentioned example showed, in our case the Besicovitch 
property itself is not enough. However, we shall use the classical Besicovitch 
covering theorem (for balls) in the proof but we will also need estimate for the 
"edge" of the union of drops. This estimate will give us a reverse isoperimetric 
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inequality for the union of star-shaped sets (Corollary 12), which can be interesting 
in itself. 

Corollary 5. For any 0 < d < 1 and 0 < a < TC/2, any class of 
(d, A)-non-thorny sets in Rn has the CV^ property and consequently the CVq 

property for any 1 < q < oo and the minimal density property as well. 

Therefore this non-thornity is a sufficient condition for the MDP but it is in fact 
too strong. However, as we shall see below, quite large and important classes 
satisfy it. 

Definition 6. A set II cz Rn is said to be star-shaped at x if xy cz II for every 
y G II, where xy denotes the closed segment between x and y. 

The hub of II (hub(II)) is the set of all points at which II is star-shaped. 
Let r > 0. We say that II is r-star-shaped if hub(II) contains an open ball with 

radius r • diam II. 

Definition 7. A set II cz Rn is r-regular if there exists a cube Q that contains 
II such that |II|/|Q| > r. 

It is not hard to see (and probably well-known) that if II is a convex r-regular 
set in Rn then H is r'-star-shaped, where r' depends only on n and r. It is easy to 
see that any r-star-shaped set is (d, a)-non-thorny, where d and a depend only on r. 
Thus Theorem 3 has the following consequences: 

Corollary 8. If 01 is a class of convex r-regular open sets or a class of 
r-star-shaped open sets then for any s > 0 one can select M subclasses of disjoint 

• sets such that the selected sets cover the 1 — s part of (J^?, where M depends 
only on n, r and s. 

Corollary 9. Any class of convex r-regular open sets or of r-star-shaped open 
sets in Rn has the CV^ property and consequently the CVq property for any 
1 < q < oo and the minimal density property as well. 

2. The proof of the result 

Notation 10. Let xeRn, H <zzRn and 5 > 0. Let S(x9 d) denote the open ball 
with center x and radius d. We denote the open neighborhood of II with radius 5 
by S(II, (5); that is, 

S{H,d)=[JxeHS{x,5). 

We also introduce the 5-interior by the following definition: 

int(H,S) = {x:S(x,S) c H]. 

We denote the diameter of a set H by diam (H). 
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Lemma 11. Let Jf be a family of r-star-shaped sets in Rw with diameter D and 
let A = [JJ^. Then for any 8 < D we have 

\S(A,S)\A\<C(n,r)^\A\, (1) 

where C(n, r) depends only on n and r. (In fact, we can choose C(n, r) = 
((1 + >±i)»_ l)(____tip 

Proof. By homogeneity we can assume that D = 1. 
For any He M there exists a ball 5(OH, r) cz hub(H). Consider a cubic lattice 

with side —_-r— and for a lattice point P let SP = S(P, -J-—). Let PH be the nearest 
V» + - _ v V« + l 7 

lattice point to 0H. Clearly, PH0H < y/n-J—, so SPfI cz S(0H, r) cz hub(H). On 
V» + -

the other hand, the balls SP are disjoint. 
For a lattice point P let 

KP = [j{He yf:SPc: hub(H)}. 

Then A = (J_?f = (JPXP and only for those P for which KP #- 0 we have KF cz 
5(P, 1). 

One can show (see e.g. [3] p. 286) that if __ cz S(P, 1) and 5(P, a) _ hub(K) 
then the magnification of __ with center P and ratio 1 + (S/a) contains S(K, 6). 
Then clearly 

\S(K, 6) \K\ < ((l + 0" _ l) |„| < ((l + 0" _ l) |5(0,1)|. 

Therefore in our case we have 

\S(KP, S)\KP\ < (U + - Y _ l) |5(0,1)|. 
\\ r/yn + 1)/ / 

Thus, denoting by N the number of those lattice points P for which KP is 
nonempty, we have 

\S(A,S)\A\< Z\S(KP, 3)\KP\<N ( ( l + _ _ _ - + _ ) J _ 1 j |5(0,1)|. 

On the other hand the balls SP are disjoint subsets of A, hence 

|.4| > Y j S p | _ J v ( - _ _ _ Y | 5 ( 0 , i) | . 
p \Jn + 1/ 

Therefore, using that S < D = 1, we get 
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Is(л,á)\лi /V« + iVVV г ' " 
< 

5\A\ ~\ r ) 5 

£±AXÍ(l + £±±X_1] = c( r). D 

Corollary 12. IfE is the union of r-star-shaped sets in Rn with diameter D then 
we have 

A+{E) C{n,r) 
\E\ ~ D ' 

where -^+(-E) denotes the upper outer surface area in the sense of Minkowski, that is 

\S(E96)\-\E\ 
A+(E) = hm sup — '- . • 

5-0+ ^ 

Remark 13. If the diameters are not the same but between Dx and D2 then the 
same proof gives A[+(£)/|£| < C(n, rDl/D1)/D1. 

Remark 14. As a special case of Corollary 12, for example, we have that the 
ratio of the perimeter and the area of any finite union of (not necessary 
axis-parallel) unit squares is at most an absolute constant. 

The author does not know the best constant. Is it 4? 

Facts 15. Let D be a drop (see Definition 2) with angle 0 < a < TT/2 and with 
diam D = d. Let Ea = -— + 1 and 8 < d/E„. Then 

sin a 

1. the radius of the "ball part" of D is D/Ea. 
2. the set D is l/Ea-star-shaped, 
3. the set int(D, 5) (see Notation 10) is a drop with angle a and with diameter 

d — Ead, 
4. we have S(int(D, 8), Ea5) => S(D9 3) and 
5. for any 0 < d' < d and 0 < a' < a, D can be written as the union of drops 

with angle a' and diameter d!. • 

Lemma 16. Let X be a family of(d, oc)-non-thorny (see Definition 2) sets in Rn 

with diameter between A and 2A, let K = \J Jf and let 8 < d/2Ea. Then one can 
choose sets Ku ..., Km e Jf such that 

| S ( K , M ) \ U ? = i ^ l < C 5 | K | , (2) 

and the sequence Ku ..., Km can be distributed in M(8) families of disjoint sets, 
where C depends only on n, d and a and M{8) depends only on n and 8. 

Proof. By homogeneity, we can assume that A = 1. 
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Let 2 be the family of those drops with diameter d and angle a that are 
contained in at least one of the sets of Jf. Let 88 consist of the balls with radius 5 
contained in any drop of 3). Put 

Qi* = {int(D,6)\De9) and K* = \J9* . 

Note that, by definition and Fact 15.5, K = {JjT = [JS> and that K* is 
covered by the centers of the balls of J*. Thus, applying the classical covering 
theorem of Besicovitch, we get balls Bu..., Bme0l that cover K* but no point of 
Rn is covered more than Cn times. For k = 1,..., m let Kk be one of the sets of 
Jf that contain Bk. Then we have [JKm => K*. 

We claim that every set Kk intersects at most Cn(4/8)n sets of the sequence 
Kh..., Km (including itself). Indeed, for a fixed k the sets Kh that intersect Kk, 
are contained in a ball with radius 4 (since each set has diameter at most 2), but 
on the other hand, they contain balls with radius 8 that cover each point at most Cn 

times, hence the number of sets that intersect Kk is at most Cn|5(0,4)|/|5(0,5)\ = 
c„{4/sy. 

Thus the sequence Kl9..., Km can clearly be distributed in M(5) = Cn(4/5)n 

families of disjoint sets: the greedy algorithm easily gives a proper distribution. 
Now we prove (2). Using Fact 15.4 we get 

S(K*, EaS) = UD^S(int(D, 5), Ea5) .o \JDeafi(D, 3) = S(\j9, d) = S(K, S). 

Thus, using that \Jk=1Kk => K*, we have 

S(K, 3) \ Ur-i-K* c S(K*, Ea5)\K*. 

According to Facts 15.2 and 15.3, Q)* consists of l/£a-star-shaped sets 
(in fact, drops) with diameter d — Ead. Therefore, using Lemma 11 for 
(&*, K*, l/E„ d - EJ>, Ead) as (^f, A, r, D, 5) and that 5 < 5/2Ea, we get 

\S(K*, Ead) \ K*\ < C(n, l/Ea) j^Yd | K*' 

<C(n,\/E^\K\ = C6\K\, 

\ F 

where C = C(n, l/£a) —| depends only on n, d and a. This completes the proof of 
Lemma 16. • 

Proof of Theorem 3. Let N be a positive integer which will be defined later. 
By homogeneity, we can assume that each set of 01 has diameter at most 1/2. Let 
0lk (k = 1, 2,...) denote the family of sets of 01 with diameter between l/2fc+1 and 
l/2fc, and let 

& = Mj u @N+j u <%2N+j u ... (j = 1,..., N). 

Clearly 9t = ^f1 u ... u tfN. 
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Fixf Let Jfi = Sky If Jfi, ..., Jfi is already defined then let Jfj+1 be the family 
of those sets of 9lm+J which intersect no set of Jfi, ..., Jfj. Then the diameters of 
the sets of X\ are between l/2"(<-i)+I+i and l/2N«~V+j ( /= 1,2,...). Let 
Kt = |Jjfi and (5, = 1/2N/+;. 

We claim that 
[j^cz[jr=lS{Kh5). (3) 

Indeed, if x e (Jjf ; \ U/^iK/ then for an index i we have x e R e Stm+J. On the 
other hand R cannot be contained in Ki+U so there must be an / < i for which 
R intersects Kh Since R e Mm+J we have diam R < \/2Ni+i < 5b Thus x e S(Kh <5,), 
which completes the proof of (3). 

If we choose IV such that \/2N~l < d/2Ea then we can apply Lemma 16 for 
X = Xh A = l/2N(/-i)+I+ij $ = 1/2""* to get K[,..., KL, such that this sequence 
can be distributed in M(1/2N_1) families of disjoint sets and 

\S(Khd^\[JTi1KTi\<C^--\Kl\9 

where C depends only on n, d and a. 
Since the sets of Jfj do not intersect the sets of C/Cx (if / 4= I'), the sets {KJ: / e IV, 

i = 1,..., m/} can also be distributed in M(l/2N_1) families of disjoint sets. On the 
other hand, we have 

lU-*y\U,.*il *- lUz-i-^^XUt/J-il =- lU'-i^^^UKi^-Ol 
00 1 00 

< xi(s(̂ ,̂ )\uriiK[i < c^-'m 
i=i - \=\ 

--2^llU-*!1--2^TlU-«l-

Until this moment j was fixed. Now let Rl9 R2,... be the union of the families 
{K|} we get for; = 1,..., IV. Then these sets can be distributed in IVM(1/2N_1) 
families of disjoint sets and 

NC 

lU^U l̂̂ l̂U l̂-
Therefore, if IV is an integer such that -^-- < s and \/2N~x < d/2Ea (depending 
only on n, d, a and e) and M = IVM(1/2JV_1) (depending also only on n, d, a and 
s), then (i) and (li) of Theorem 3 are satisfied if m is large enough. • 
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