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A theorem of Kaniewski states that given a partition of a coanalytic set in a Polish space there is,
under some assumptions, a coanalytic selector for this partition. We prove a similar theorem in the
non-separable case. As a corollary we obtain a simpler proof of the metric case of a uniformization
theorem of Rogers and Willmott and, using a theorem on measurable extensions of mappings, we also
obtain a theorem on the uniformization of mappings, that improves a classical theorem of Kondo.

1. Introduction

The uniformization is an important topic of descriptive set theory. We concern
ourselves about the co-Souslin uniformization of co-Souslin sets, although other
problems (the Borel uniformization of Borel sets) are also reasonable. The most
important result on the uniformization in Polish spaces is a theorem of Kondd
saying that a coanalytic set in the product of two Polish spaces can be uniformized
by a coanalytic set (see [Ku, §39 V]).

The following theorem of Kaniewski generalizes the previous one (see [Ka]):

Let C be a coanalytic subset of a Polish space Z. Let a partition Q of C be given
by an equivalence relation ~. Assume that 4(~) = (C x C) n A for some analytic
A < Z x Z. Then there is a coanalytic set S in Z which is a selector for Q.

In the case of non-separable metric spaces, the main known result is due to
Rogers and Willmott. Theorem 18 of [RW2] includes even more general topolo-
gical spaces:

Let X be a space in which open sets are Souslin. Let Y be a Hausdorff space
that is a continuous one-to-one image of some closed subset of NN, Let C be
a co-Souslin subset of X x Y. Then C can be uniformized by a co-Souslin set.

We will do some observations on the uniformization in non-separable metric
spaces. In Section 3 we prove that the theorem of Kaniewski holds, under certain
additional assumption, also in non-separable compete metric spaces.

*) Dept. of Math. Analysis, Charles University, Sokolovska 83, 186 75 Praha 8, Czech Republic
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In Section 4 we give a simpler proof of the theorem of Rogers and Willmott for
metric spaces using our generalization of [Ka].

Another theorem, due essentially to Kondo6 (see [Ku, §39 V]), says:

Let f be a continuous function defined on a coanalytic subset C of a Polish
space. Then there exists a coanalytic set S such that f (S) =f (C) and the partial
function fls is injective.

In Section 5 we give a non-separable analogue of it. For this purpose we need
a theorem on extension of extended Borel-measurable mapping to an extended
Borel set. Similar theorems on Borel mappings are in [Ha2], for the case of
separable spaces see [Ku, §35].

2. Definitions

A set S in a topological space is called Souslin if it is the result of the Souslin
operation performed on a system of closed sets, i.e. S = UieNN ﬂnSil... i, Where
Siy...i, is a closed set defined for each ne N and (ii... in) € N™.

A set whose complement is a Souslin set is called co-Souslin.

In Polish (i.e. separable completely metrizable) spaces the Souslin sets coincide
with the analytic sets. Those are defined as continuous images of NV (see [Ku §39
I1]), and also the empty set is analytic. The complements of analytic sets are called
coanalytic sets.

If A a co-Souslin set in the product of topological spaces X and Y, a co-Souslin
set B < A, for which nx(A) = nx(B) and such that for all x € nx(A4) the set
({x}x Y) N B is a singleton, is called a uniformization of A. (Here nx denotes the
projection of X x Y to X.)

If f is a mapping defined on a co-Souslin subset A of a space Y into a space
X, a uniformization of f is its restriction to a co-Souslin set B = A such that
f(A) = f(B) and f|s is injective.

The uniformization of a set C < X x Y is, in fact, the same as the uniformiza-
tion of the projection nx: C — X.

By a completely metrizable space we mean a space which admits a complete
metric compatible with its topology:

3. Uniformization of equivalence relations

The following definitions are taken from [Ka]:

A partition Q of a set C is a disjoint system of non-empty sets closed in C whose
union is C.

A partition Q of C can be given by an equivalence relation ~ between elements of C:

Xx ~ y < x and y lie in the same element of Q.
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A set S < C is called a selector for the partition Q of the set C, if S " R is
a singleton whenever R € Q.

Looking for a selector is a problem more general than uniformization. In fact,
a uniformization is a selector for the partition of C < X x Y into the sections
({x}x Y)n C.

3.1. Theorem

Let C be a co-Souslin subset of a completely metrizable space Z. Let a partition
Q of C be given by an equivalence relation ~. Let the graph of the relation
satisfies 9(~) = (C x C) N A with some Souslin A = Z x Z. Let the projection
pfrom Z x Z to Z, defined by p(x, y)‘= ¥, maps all Souslin subsets of A to Souslin
sets. Then there is a co-Souslin set S in Z which is a selector for Q.

This theorem is a generalization of the theorem of [Ka] to non-separable spaces;
only the assumption on projections of Souslin sets of A4 is added. In the separable
case every continuous mapping preserves Souslin sets, so this assumption is
automatically fulfilled.

The proof also follows that of Kaniewski. It begins with the following lemma.

3.2. Lemma
Let C be a co-Souslin subset of a completely metrizable space Z. Then there
exists a relation < in Z such that
(i) its graph {4(<) is Souslin in Z x Z,

(i) < restricted to C is a linear ordering of C (i.e. it is transitive and satisfies
the trichotomy law),

(iii) if x < yand ye C, then x € C,

(iv) in each non-empty set F < C, closed in C, there is the first element, i.e.
an a € F such that a < x for each x€ F, x % a.

Lemma 2 of [Ka] states the existence of a relation < with the same properties
as here under the assumption that Z is Polish. But its proof works also in the
non-separable case, so we omit it.

Proof of the theorem. Let < be as in Lemma 3.2. Let S be the set of the first
elements (with respect to <) of the equivalence classes of ~. According to (iv)
of the lemma, S is 4 selector for Q. It suffices to prove that S is a co-Souslin set.
The following characterization holds:

yeC\S <> yeCAIxeZ(x ~yAx=<y).
Since x ~ y means that x, y € C and (x, y) € A, we can write, using (iii),
yeC\S <> yeC AdxeZ((x,y)eA A (x,¥) e ¥<)).

In other words, C\S = C n p(4 N %(<)), hence S = C\p(4 N ¥(<)).
By (i), A N %(<) is Souslin in A4, and by the assumption on p, p(4 N %(<)) is
Souslin, hence S is a co-Souslin set. [
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4. Uniformization of sets

4.1. Theorem (Theorem 18 of [RW2] in the case of metric spaces)

Let M be a metrizable space and P a Polish space. Let C be a co-Souslin set
in M X P. Then there exists a co-Souslin set S = M x P which uniformizes C, i.e.
mm(S) = my(C) and for each m e my(S) the set ({m}x P) N S is a singleton.

Proof. 1. For M a complete metric space:

Let Z =M x P. A relation ~ on C let be defined as follows: if x = (xM, xp) eC,
Y= (Y yp) €C, then x ~ y<> Xy = ypr. Set A = {(x,y)€Z x Z; xps = yu}. 1t
is clear that ¢(~)=(CxC)nA and A is closed in Z x Z. The map h:
A — P x M x P, defined by h((ys Xp), (Va> ¥p)) = (Xps Yass yp)» is a homeomor-
phism. We denote by p the projection of ZxZ to Z, p(x, y) = y. Then
p| 4= qOh, where g is the projection of Px M x P to M x P defined by
q(xp, Yu> ¥p) = (yu» yp)- Such a g maps Souslin sets to Souslin sets (see [RW1]),
hence p maps all Souslin subsets of A to Souslin subsets of Z. Now, Z, C, ~ and
A satisfy the requirements of Theorem 3.1 and therefore there exists a co-Souslin
set S < Z which is a selector for the partition given by ~. Hence S contains
exactly one point from each equivalence class ({x}x P) n C, so it uniformizes C.

2. For M metrizable, let N be the completion of any of its metrization. We can
find a uniformization in N x P and restrict it back to M x P. [

It is an open question whether one can find a uniformization in more general
cases. The answer is negative in the case of the product P x M of two metric
spaces, P being separable and M non-separable. (Here we mean the uniformization
with respect to the projection to P.) Otherwise the existence of a uniformization
would imply the existence of a reduction for every (uncountable) system of
coanalytic sets in P:

Let {Um}mE 4 be a system of coanalytic sets in a separable space P. Consider the
product P x M with M containing a discrete subspace {m,},e +. Then (J,e (U, x
{m,}) would be a co-Souslin set in P x M and its uniformization would give us
a disjoint family of co-Souslin sets { ¥}, s With V, = U, and | Jue aVa = Use aUs

But this is impossible because of the following example by G. Hjorth:

4.2. Example. Consider a coanalytic non-Borel set C in R and denote by C, the
set C x R. Let {t,}y<.<. be an enumeration of R, and let C, = R x {,}. (Thus
C, N Cyis non-Borel.) Let {D,; 1 < a < c} be the system of all the coanalytic sets
in R2.

We define a system {B, )<, <. of sets in R as follows: let By = C, and for o > 1 let

B — {Ca if C,n Cyn D, is non-Borel
* |0 otherwise.

Suppose that for each « there exists a coanalytic set B¥ < B, such that Ua eaB¥ =
(Jze 4B, and {B¥)o<, . are disjoint.
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Thus for the set By there exists o« > 1 such that Bf = D,. Also B¥ < B,, and
B, equals either to C, or to 0.

If B,=0, using |J,caBF = JsesB, we infer that (C,n Bf)u B¥ =
(C.n Bo) U B,, thus Bf > C,n B, = C,n C,. Since Bf = D,, we have C,n Cy N
D, = C, n C,, which is not Borel, as was mentioned above, and so B, = C, % 0,
a contradiction.

If B, = C,, using B¥ n Bf = () we obtain B¥ = C, \Bg. Using B¥ < C, we
obtain B} = C,\(Bf n C,n Co) = C,\(D,n C, N Cy). But this is analytic
non-Borel, hence B} cannot be coanalytic.

5. Uniformization of mappings

5.1. Definitions. A family {D,},. 4 of subsets of a topological space X is said
to be discrete if each x € X has a neighborhood U, such that U, meets at most
one of the sets {D,},c 4.

Countable unions of discrete families are called g-discrete families.

A family {Sm}me 4 1s called o-discretely decomposable (o-dd for short) if for every
o we can write S, = [ J,S% so that the family {S}, 4 is discrete for each n.

A mapping f: A < X — Y which maps discrete (in the induced topology of A)
families of subsets of A to o-dd families in Y is called o-dd-preserving. (Notice
that if X is metrizable and A is its subspace, then a family {B,} of subsets of 4 is
o-dd in A iff it is o-dd in X ([Hal, §1.3.]). So it makes no difference whether we
consider families that are discrete in 4 or in X the definition of o-dd-preserving
mapping.)

A mapping f: A = X — Y such that f~!(¥) is 6-dd whenever & is discrete is
called o-discrete. (It is easy to see that continuous mappings are o-discrete.)

A mapping f: A < X —» Y which is both g-dd-preserving and o-discrete is
called bi-o-discrete here.

The members of the smallest g-algebra containing the open sets and closed with
respect to unions of discrete subfamilies are called the extended Borel sets.

Extended Borel sets in a completely metrizable space coincide with the sets that
are both Souslin and co-Souslin (see [FH1, Corollary 1.4.]).

A mapping f is called extended Borel-measurable if f~'(U) is extended Borel
whenever U is open.

Every extended Borel-measurable o-dd-preserving map f: 4 < X — Y, where
X, Y are completely metrizable and A4 is extended Borel, maps Souslin sets to
Souslin sets ([Ha3, Theorem 7.3.]). Also preimages of Souslin or co-Souslin sets
by extended Borel-measurable maps are Souslin or co-Souslin, respectively.

The problems of uniformization of sets and of continuous mappings are
equivalent, as we mentioned in Section 2. But in non-separable spaces we can
uniformize some sets only. Thus we will uniformize some mappings only — those
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bi-g-discrete. (In separable metric spaces any map is bi-o-discrete, since every
discrete family is countable there.) We will not uniformize continuous mappings
only, but also extended Borel-measurable ones.

We need the following theorems on extensions of mappings.

5.2. Theorem

Let C be an arbitrary subset of a metrizable space X and [ a continuous
o-dd-preserving map of C into a completely metrizable space Y. Then f can be
extended to a continuous o-dd-preserving F defined on a G5 set B > C.

Proof. Consider a fixed metric on X. Let A be a Gsset, C = A < C, such that
we can extend f onto A to a continuous map f (see [Ku §35 IJ).

Let 4 be a basis for the topology of 4, # = | J,%, with %, discrete (in A) for
all n (see [Ku §21 XVI]). We can suppose that for each n all the elements of
4, have the diameter at most 1. For each n, k e N set #* = {Be #; diam B < i}
and 4% = {Be 4,; diam B < ).

Let B, B,, B, B be the families of sets of #, B, H*, B respectively,
intersected with C. Now for every n, k the families 4, and 2} are discrete in C and
B, B* are bases for the topology of C.

Let {B ,};c 4., be an enumeration of %%, thus {B;,};c 4, , is an enumeration of
2. The mapping f maps each % to a o-dd family in Y. In other words, for
Ae A, we have f(BE)) = UnenTium where {Tf; nlic s, , is discrete for each
m,n, k. Set B, ,, = [~ (T¥ym) O B,

For fixed m, n, k, the family %, = {B 1 n}ic 4, is discrete in C. Its image by
f, the family 7%, = {T¥; .} 4, ., is discrete in Y. We replace each set Ty, ,, with
an open set Uk, > TF,, in such a way that the family %, = {U:,
T m€ I} remains discrete. (This is possible since every metric space is
collectionwise normal.) Define for each B, ,, € S, aset

Clrcl,l,m = U{BE .@k, B N Blri,}.,m :’: ®9 f(B) < Uﬁ,l,m}

It is an open subset of 4. Put D¥,, = B%, n Cf ;. This D%, is also open in
A and the family 2%, = {Df; 3 Bl 1 n € S} is discrete in A, because {B;;}; 4, ,

is discrete. Set

G = | UZt..
Each G*isopenin 4; A = A N (),cnG" is of type Gs and C = 4 = C. Now we
extend f to F = f],.

For each m,n k, A set Ey;, =D};,NnA and let & = {E, }ic A mnken
This & is o-discrete in A and it is a basis of the topology of A. Indeed, for fixed
k, for each point x of A there are some n,, A,, m, such that x € D’,‘,x, 1om,- ThiS set
is open in 4, thus Ef_; ,,_is open in 4, and the diameter of D¥_, ,, is at most 3
(because of the way we defined D%, ). Hence E} i.m»k=1,2,... form a basis
of neighborhoods for x.
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F maps & to a o-discrete family. Indeed, f(E%,,) = f(Ck,.) = Uk, and

U, is discrete. Thus F maps & to a o-dd family. According to Corollary 3.9 of
[Ha3], F maps every discrete family to o-dd. [

5.3. Theorem

Let X be a metrizable space, Y a completely metrizable space, A a subset of
X and f: A — Y an extended Borel-measurable o-discrete mapping. Then f can
be extended to an extended Borel-measurable F defined on an extended Borel set
A*. If X is completely metrizable, then F will be c-discrete.

Remark. This is a non-separable analogue of Theorem 1 of [Ku §35 VI]. In
[Ha2] there is Theorem 9 saying that a o-discrete Borel mapping of nonlimit class
o defined on a subset of a paracompact space X into a complete metric space Y can
be extended to a Borel mapping of the same class defined on a Borel set of
multiplicative class a + 1.

Proof. Consider a fixed complete metric p on Y. Let {B}c, s AE A}, k=1... be
discrete families of open sets of the diameter at most ; that form a o-discrete
covering of Y. For each k e N, let us do the following: Put C, ; = f~(B} ) for
each A€ A. Since f is o-discrete and extended Borel-measurable, each C, ; is
extended Borel in 4 and {C, ;; A € A} is 0-dd and disjoint in 4. We need to find
sets {Gk, sAE /1} that are extended Borel, disjoint and o-dd in X, and such that
Gy, N A = Cy; for each A

We can find extended Borel sets {Dk, LAE A} in X such that D, ;" 4 = Cy;
for each A. Since {C ;A€ A} is o-dd, we can write Cy, = | JnCy1n With
{Ci1m A€ A} discrete in X for each m. Let Ey 3, © Cy ;. be open in X and such
that {E ; ,; A € A}is discrete. Put E; ; = | ),Ex1mand F; = E, ; 0 Dy ;. The sets
F, ; A€ A, are extended Borel and o-dd in X and F, ; n 4 = C,, for each A. Put
Gy = F; \U{F.» o + 4}. Now the family {G ;€ 4} has all the properties we
required.

Finally, set H}, = G,; and H}; = G ;\|Jj<k UaeaH}o for k> 1. Now
{Hi 5 A€ A, ke N} is disjoint. Take yj, € By, and put f; = yi, on Hj, So
p(f(x), filx)) <3 on A. Set A, = |J{H} ;A€ A, keN}. It is clear that f; is
extended Borel-measurable on A,.

Proceeding inductively, using o-discrete coverings {B‘k sAed ke N} of Y by
open sets of diameter at most 2", we obtain o-dd families {Hj, 5 k€ N, A € A} of
disjoint extended Borel sets. It can be so arranged that {H;5"; ke N, A€ A} will
be a refinement of {H;; ke N, AeA}. Set A, = (J{His keN, Ae A} and
Ju = yiaon Hi,, where yj , € B; ;.

Thus {4,} is a decreasing sequence of extended Borel sets, A4, > 4, and each
f, is an extended Borel-measurable mapping on A, such that p(f(x), fi+1(x)) <
2-"*1 on A,,,. To see this, consider a point x € 4, ;. So x € Hi i, = Hy, ;, for
some kj, ks, Ay, 4,. There is some z € A N H}*L,. For this z, p(f(2)s Juri(2) < 271
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and p(f(2), fi(z)) < 27" Since f,(z) = f,(x) and f,.,(z) = fo+1(x). the inequallity
follows.

Put A* = (),A, and F = lim f, on A* With the obvious modifications, it
follows from [Ku, §31 VIII] that the limit of a sequence of extended Borel-measur-
able mappings is extended Borel-measurable. Also F|, = f.

If X is completely metrizable, let {UA}AE 4 be a discrete family of open sets in
Y. Since the union of each its subfamily is open, the union of each subfamily of
{F7(U))},c 4 is extended Borel. The family {F~'(U,)},. 1 is disjoint and therefore,
using Theorem 2 of [Hal], it is o-dd. Hence F is o-discrete. []

5.4. Theorem

Let C be an arbitrary subset of a metrizable space X and f an extended Borel-
measurable bi-a-discrete map of C into a completely metrizable space Y. Then
f can be extended to an extended Borel-measurable F defined on an extended
Borel set B o C so that F will be o-dd-preserving. If X is completely metrizable,
then F will be bi-o-discrete.

Remark. In [Ha2] there is Theorem 10 on extension of bi-o-discrete Borel
isomorphisms between complete metric spaces.

Proof. Let X be the completion of some metrization of X. According to
Theorem 5.3., we find an extended Borel set E > C in X and an extended
Borel-measurable o-discrete extension f of f defined on E. The graph of f is
extended Borel in X x Y (see Lemma 6.4. of [Ha3]).

Since f is o-dd-preserving, the projection wy:(x, f(x)) f(x) is also
o-dd-preserving (see e.g. [FH2, Lemma 2.5.]). Consider %(f), the graph of f, as
a metric space. We find a G; set G in %(f) with 4(f) = G such that my will be
g-dd-preserving on G (Theorem 5.2.). Hence G is extended Borel in the complete
space X x Y.

The projection 7 restricted to G is one-to-one and continuous. It is also g-dd-
preserving. Indeed, mgls = /'O my|g, where [ is o-discrete and my|s is
o-dd-preserving. Thus B = mg(G) is extended Borel in X (Theorem 7.3. of [Ha3]),
and B = B n X is extended Borel in X.

Denote [ |B by F. Then F is extended Borel-measurable on B. It is also
o-dd-preserving. Indeed, if {B,};c, is a discrete family in B, then {(B,x Y)n
€§(F)},1E 4 1s discrete in B x Y, the set f (Bi) coincides with the Y-projection of
(Bix Y) N %(F) and this projection is ¢-dd-preserving on %(F).

Similarly to the proof of Theorem 5.3. we observe that, if X is a completely
metrizable space, then F is g-discrete, hence bi-o-discrete. []

5.5. Theorem

Let E be a co-Souslin subset of a completely metrizable space X and f an
extended Borel-measurable bi-c-discrete map of E into a metrizable space Y. Then
there is a co-Souslin set U < E such that f(U) = f(E) and |y is injection.
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Remark. This is an analogue of a theorem of Kond6 ([Ku §39 V, Remark 5]).

Proof. Let ¥ be the completion of any metrization of Y. According to Theorem
5.4., we can extend f to an extended Borel-measurable F: B — Y, where B is an
extended Borel set and F is bi-o-discrete. Let Z = X x Y. According to Lemma
6.4. of [Ha3], the graph %(F) is extended Borel in Z. Thus the set C = 4(f) =
9(F) n (E x Y) is co-Souslin in Z. A relation ~ on C let be defined as follows:
if a =(ax,ay)eC, b= (bx,by)eC, then a ~ b<>ay = by < f(ax) = f(bx).
Let A = {(a,b} € 4(F) x 4(F); ay = by}.1tis clear that 4(~) = (C x C) " A and
A is an extended Borel set in Z x Z.

Now we will show that the projection p of Z x Z onto the second coordinate
maps Souslin subsets of A to Souslin sets. Similarly to the proof of Theorem 4.1.,
p|l4 is composed from the projection g of A to ¥ x X x Y defined by
g(ax, by, bx, by) = (by, by, by), and from the homeomorphism between the set
{(by, bx, by); by € ¥, by € X} and X x Y defined by h(by, by, by) = (bx, by).

So it suffices to investigate q. The map F is o-dd-preserving and so is
ny: 9(F) > Y ([FH2, Lemma 2.5.]). Since g(ax, by, by, by) = (ns(ax, by), bx, by),
it follows that q is o-dd-preserving. Since it is also continuous, it maps Souslin
sets to Souslin sets ([Ha3, Theorem 7.3.]).

Thus the requirements of Theorem 3.1. are satisfied for Z, C, ~, and A. So there
is a co-Souslin selector S for C and ~.

Similarly to the proof of Theorem 5.4., the projection my of %(F) is
g-dd-preserving. So it is an extended Borel isomorphism ([Ha3, Theorem 7.4.]).
Thus it maps co-Souslin sets to co-Souslin sets, hence U = mx(S) is a co-Souslin
set such that f|y uniformizes f. [

5.6. Remark. We do not know whether it is possible to replace the requirement
“f is extended Borel-measurable and bi-g-discrete” in Theorem 5.5 by “f maps
Souslin subsets of E to Souslin subsets of f(E)”.

Acknowledgement. I would like to thank to P. Holicky for the encouragement
and advises he was giving me throughout the writing of this note.
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