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Selectivity of Almost Disjoint Families 
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Selective properties of almost disjoint families of subsets of a countable set are studied 
here. In particular, sufficient conditions for the existence of a + -Ramsey MAD family 
are presented. As an application it is shown that the existence of a +-Ramsey MAD 
family implies that two similar versions of a topological game on Frechet spaces, due to 
G. Gruenhage, are not equivalent in terms of existence of winning strategies. 

I. I n t r o d u c t i o n 

In the current note we investigate selective properties of MAD (maximal almost 
disjoint) families of subsets of co. Recall that an infinite family si _= [co]™ is 
almost disjoint (AD) if every two distinct elements of si have only finite 
intersection. A family si is MAD if it is almost disjoint and maximal with this 
property. Given an almost disjoint family si, J(si) denotes the ideal of those 
subsets of CD which can be almost covered by finitely many elements of si, J*(si) 
denotes the dual filter and J+(si) = £P{p)\J(si) the coideal of large sets. We 
denote by J++[st) = {A^co: \{Be si : \B n A\ = K0}| > K0} the family of 
"really" large sets. Note that for a MAD family J+(si) = J++(si). 

The notion of selectivity (Ramseyness) of filters, ideals and coideals has been 
stud ed extensively in recent decades. The notation connected with this concept is, 
however, quite far from being unified. Some authors talk about selective or Ramsey 
filters, ideals or coideals, some about Happy families, some about ideals having weak 
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or strong tree properties. We choose to refer to selective coideals as Happy families 
as it allows for the following pun: If we rid 8P(co) of a MAD family and its relatives 
(J>(s/)) the rest (J+(s$)) is Happy. This fact has been known for quite some time (see 
[BDS] or [Ma]). We will be studying the following strengthening of the notion of 
selectivity (see [Gr] or [La]), the name + -Ramsey is probably due to C. Laflamme. 

Definition 1.1. A filter 8F (an ideal J) is + -Ramsey if for every J^ + -branching 
tree (for every J+ -branching tree) T c co<w there is a branch b e [ T ] such that 
rng(b) e^+ (rng(b) eJ+). 

In particular, an almost disjoint family stf will be called -{--Ramsey if the ideal 
is + -Ramsey. 

Recall that a T ^ c O < w i s a tree if for every s e T and every t ^ s, t e T If <f is 
a family of subsets of co, a tree T is £f -branching if succT(t) = {neco: t^n e T} e ^ 
for every t e T Finally, [ T ] = {f e cow : Mn e co f \ n e T}. 

In the second section we introduce related cardinal invariants of the continuum 
and show that (at least consistently) + -Ramsey MAD families exist. It should be 
mentioned here that not all MAD families are + -Ramsey. In the third section we 
present an application to the theory of Frechet spaces. In particular, it will be 
shown there that two similar versions of a game due to G. Gruenhage (see [G]) are 
not equivalent in terms of the existence of winning strategies. 

II. Combinatorics and cardinal invariants 

Define the following cardinal invariant 
ra = min {\s/\: s# is an AD family which is not +-Ramsey} 

and recall the definitions of the following standard cardinal invariants of the 
continuum: 

cov(Jt) = min \\8ft\: 8ft is family of closed nowhere dense subsets of cow such 
that cow = \J@}, 
b = min {\3\: 3) is a dominating subset of cow}, 
t = min {|^H: 2T is a maximal decreasing chain (tower) of infinite subsets of co}, 
a = min {\s/\: s/ is a maximal AD family}, 
aT = min {|#|: ^ is a maximal AD family of finitely branching subtrees of co<w}. 

It is well-known an not hard to prove that t < cov(Ji) < b < a r . To see this note 
that aT is the minimal cardinality of a partition of the irrationals cow into compact 
sets and b is the minimal size of a family of compact sets covering cow. 

Proposition 11.1. cov(Ji) is equal to the minimal character of a filter on 
co which is not + -Ramsey. 

Proof. Let 3F be a filter on co and 8ft be its base of size less than cov(J{). Let 
T be an ^ - b r a n c h i n g tree. For Be 88 put AB = {be [ T ] : rng(b) n B = * 0}. 
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Each AB is a meager subset of [ T ] As \3$\ < cov(Ji) there is a be[T]\ 
[j{AB : B e &}. Hence rng(b) e J^ + , so J^ is +-Ramsey. 

For the other direction let ^ be a family of closed nowhere dense subsets of cOw 

covering the whole of cow. Our aim is to define a filter on co which is not 
+-Ramsey. The working copy of co will be co<w. For C e ^ let Fc = {oe co<w : 
VfeC o £ f}. The Fc's obviously form a base for a filter 2F on co<w. To see that 
it is not +-Ramsey define a tree T ,==(co<f0)<w as follows 

(1) 0 6 T, 
(2) Vs e T V(7 G cO<C0 s""cr G 7^+1 if and only if S(n — 1) cz cr, 

Now, T is an J^+-branching tree and Vb G [ T ] irJfG cOw such that rng(b) c= T(f). In 
particular, there is a C e %? such that rng(b) n Fc = * 0 so rng(b) is not in J^ + . • 

It should be noted here that + -Ramsey filters of uncountable character exist in 
ZFC. Recall that a pair of sequences {4*: a < coj , {Ba: a < co{} of subsets of 
co forms a Hausdorff gap provided that 

(1) Ba ^* Bp <=* Ap ^* Aa for all a < j8 < cOx and 
(2) there is no C .== co such that Ba c= * C .== * / l a for every a. 

A Hausdorff gap is tight if for every C c [co]"0 such that C <== * ,4a for every a < cOb 

there is a /? < CDX such that C n Bp #- * 0. 
It is a remarkable result of Hausdorff that the existence of a Hausdorff gap can 

be proved in ZFC alone. The existence of a tight Hausdorff gap is known to be 
equivalent to t = co^. Consider the following filter associated with a gap: 

& = <{A:a < cOJu {co\C:Va < col C n Aa+* 0 & C n Ba =*0}> . 

The following is essentially due to P. Nyikos (see [Ny]). 

Proposition II.2. $F is a + -Ramsey filter. 

Proof. It is very easy to see that 3F is really a filter and that it is uncountably 
generated. Note that 

^+ = {A c co : 3a < cox \A n Ba\ = K0} 

(if A n Ba = * 0 for every a then co\ A is in the filter, so A is not in J^ + ) . In order 
to prove that 3F is +-Ramsey let be an J r + - t ree . Fix for every t G T a Pt < co{ 

such hat \succT(t) n Bpt\ = K0. Let fi = sup{fit: t e T}.Then Bp intersects succT(t) 
in an infinite set for every t e T and constructing a branch b e [ T ] with 
rng(b) G 3F+ is now easy. • 

Corollary II.3. There is a + -Ramsey filter of character K^ 

Proof. If coi(Ji) > co{ then by Proposition II. 1 any filter of character Kj would 
do. If cov(Ji) = CO! then t = cox and by the aforementioned result there is a tight 
gap and the filter £F constructed from the gap has character Kj. • 
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Proposition II.4. cov(Jt) < xa < aT. 

Proof. cov(Ji) < xa follows immediately from the definition and Proposition ILL 
Let s/ = {Ta: a < aT} be a maximal almost disjoint family of finitely branching 

subtrees of co<(D. Define an infinitely branching tree T c (co<co)<0) by 0 e T and 
succT(t) = {seco<co:t <= s and \s\ = \t\ + 1}. Then T is an J+(s4)-\xzz as 
Ta n succT(t) is finite for every t e T and a < aT. However, every branch of T is 
a subset of 7̂  for some a by maximality of s/ so s/ is not + -Ramsey. • 

Corollary II.5. T/iere w a MAD family s/ which is not + -Ramsey. 

Proof. All we have to do is extend the almost disjoint family given in the 
construction to a maximal one preserving the fact that the branching sets of T will 
be in J+(s/\ which is very easy to do. • 

More interesting problem, of course, is to construct a +-Ramsey MAD 
family. Unfortunately, we do not know whether such a family can be constructed 
in ZFC alone, but the following propositions shows that in many models there is 
one. 

Proposition II.6. (a < xa or xa = c) There is a + -Ramsey MAD family. 

Proof. If a < ra than any MAD family of size a is + -Ramsey by the definition 
of ra. 

So, assume that a = ra = c. Enumerate all subtrees of cO<w as {Ta:0 < a < c} 
and let [co]w = {Xa: 0 < a < c}. By induction on a < c construct an increasing 
sequence of almost disjoint families {s/a: a < c} so that 

(1) s/Q is an infinite partition of co into infinite sets, 
(2) s/a\J{s/p : p < a} is countable, 
(3) |Ka n A\ = K0 for some A e s/a and 
(4) if Ta is an J+(J{^:P < a})-tree then there is a b e [Ta] such that 

rng(b)el++(s/a\ 
If we can fulfill the promises (1) —(4) it is obvious that s/ = J{s/a: a < c} is 
a MAD family. To see that it is +-Ramsey note that if Ae I++(s/a) for some 
a < c then Ael++(srf\ 

So assume that the s/p has been defined for every /? < a. If Ta is not an 
J+(J{s/p:P < a})-tree, or if Ta is an J+(Js/p:p < a})-tree and there is 
a b e [Ta] such that rng(b) e I++(\J{s/p : jS < a}), extend \J{s/p : ft < a} to s/a so 
that (3) is satisfied. 

If Ta is an J+(J{s/p: (3 < a})-tree and no branch of Ta is in I+ +(J{s/p: p < a}), 
let b e [7^] be such that rng(b) contains an infinite subset A of co almost disjoint 
from every element of J{s/p: /? < a}. Split A into infinitely many infinite sets 
{Ai: i e co} and if Xa is almost disjoint from every element of J {s/p : P < a} u 
{Ai:ie co} let s/a = J{s/$ : p < a} u {A,: i e co} u {Xa} otherwise let s/a = 
J{s/p : P < a} u {A,•: i s co}. It is obvious that this works. • 
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III. Games people play 

Let X be a regular topological space, x e X. We will consider the following two 
variations on a game introduced by G. Gruenhabe in [G]. 

Two players, the hero and the villain take turns, at the n-th inning the hero 
playing Un a neighborhood of x and the villain responding with xn e Un\{x}. After 
co-many steps we declare a winner. The hero wins a round of the game if the set 
{x„: n e co} of points chosen by the villain contains x in the closure. Otherwise the 
villain wins. This game will be denoted by G(x, X). 

A slight modification of the above game is the game G(x, X) in which the hero 
and the villain play as before but the hero wins if the sequence <xM> converges to 
x, the villain winning otherwise. 

As usual a strategy for the hero is a map p : (X\ {x}Y°J -> Ux (where Ux denotes 
the set of open neighborhoods of x) and a strategy for the villain is a map 
o : U < w \ {0} -> X\ {x}such that \/n e co Vs e (Ux)

n o(s) e s(n - 1). A strategy p for 
the hero is a winning strategy if for every f e X03 such that f(n)ep(f \ n) for 
every neco xe rng(f) (in case of G(x, X)) or f(n) -> x (in case of G(x, X)). 
Similarly, o is a winning strategy for the villain if for every fe(Ux)

wx<£ 
{o(f \ n):neco} (resp. o(f \ n) -/> x). 

As the topology outside the given point x is completely irrelevant to the outcome 
of the game we may assume that every point other than x is isolated. The most 
interesting cases seem to occur when X is a countable space, so we restrict 
ourselves to spaces of the form co u {^} , where 3F is a free filter on co and is 
treated both as the distinguished point x and the filter of its neighborhoods. In this 
case we refer to the games as G(3F) and G(3F). 

The following lemma can be found in [La]. We include the proof for the sake 
of completeness. 

Lemma III.l. (Laflamme) Let $F be a filter on co. Then the following are 
equivalent: 

(1) The hero has a winning strategy in the game G(3F) 
(2) The hero has a winning strategy in the game G(3F) 
(3) x(&) = co. 

and the villain has a winning strategy in the game G(#^ if and only if the filter 
£F is not + -Ramsey. 

Proof. If the character of J27 is countable then hero has a obvious winning 
strategy in G(3F). He simply plays all sets from a countable local base. 

A winning strategy for the hero in G($F) is obviously also a winning strategy in 
G(J^) and if o : a><(° -+ ^ is a. winning strategy for the hero in the game G(3F) 
then it is easy to see that cr[co<co] is a base of # \ 

If there is a tree witnessing that 3F is not + -Ramsey the villain can just play 
along the tree. That is his winning strategy. 
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If o: # '< c o —> OJ is a winning strategy for the villain, construct a tree T by 
induction by 0 e T and if 5 e T then there is a sequence se 2F<0i such that 
dom(s) = dom(s) and for every n in dom(s) s(n) = o(s \ n) and s \ n = s \ n. Then 
s""y e T if and only if there is a U e 3F such that o(s^U) = y. Fix this U and put 
s^n = s^U. Obviously T is an J^+-tree as o was a strategy and it does not 
contain a branch in #"+ since o was a winning strategy. • 

We further restrict our attention to Frechet spaces. A space X is Frechet if 
whenever x e A, there is a sequence <^> c yl such that xn -» x. Consequently, 
a filter $F is Frechet if the space OJ u {J^}is Frechet, in other words, if for every 
A G J^+ there is a B 1= A such that for every F e ^ : B c * i \ Let C^ = 
{B: VF G J^ 5 !=* F} denote the set of all convergent sequences in co u { f j . W e 
show that (perhaps not in a very natural way) the notion of +-Ramseyness fits 
into the hierarchy of a rspaces introduced by Archangelskii in [Ar]. 

Definition III.2. Let X be a regular space and let x e X. The point x is said 
to be a + -Ramsey point if the villain does not have a winning strategy in the game 
G(x, X). 

Definition III.3. (Archangelskii) Let X be a Frechet space, x e X. We say that 
x is an a -point (for i e {1,2, 3, 4}) if for every countable collection of sequences 
converging to x there is a sequence converging to x intersecting: 
a{: each of them in a cofinite set 
a2: each of them in an infinite set 
a3: infinitely many of them in an infinite set. 
a4: infinitely many of them. 

The arproperties have proved to be very useful in determining when the product 
of Frechet spaces is Frechet. They have been studied by many mathematicians, 
most notably by Archangelskii, Nogura, Nyikos, Dow and Steprans, and Simon. It 
is well known and not hard to see that: 

Proposition III.4. Let X be Frechet space and let x e X. Then x is an a2-point 
if and only if the villain does not have a winning strategy in the game G(x, X). 

It follows from the definition that if x is an arpoint it is also appoint for every 
j > i. It is not hard to see that the filter !F used in the proposition II.2 is a Frechet 
uncountably generated a2-filter. It is even consistent that J^ is a{. In fact, it has 
been shown by A. Dow and J. Steprans that there are no honest (ZFC) examples 
of countable a rspaces which are not first countable, nor there are ZFC examples 
of a2-spaces which are not a^ 

Proposition III.5. Let X be a Frechet space and let x e X. Then: 
(1) If x is a + -Ramsey point then x is a appoint. 
(2) If x is an a2-point then x is a + -Ramsey point. 



Proof. For (1) suppose that the villain does not have a winning strategy in the 
game G(x, X). That means that for every U^-tree there is a branch in U+. Given 
a set of sequences {on:ne m} construct a tree branching everywhere on a level n to 
rng(on). By the assumption there is a branch in U+ and since the space is Frechet 
there is a subsequence of this branch converging to x. 

For (2) consider the contrapositive and recall that a winning strategy for the 
villain in game the G(x, X) is also winning in the game G(x, X). • 

We conclude by showing that the property of being + -Ramsey is incomparable 
with a3, assuming the existence of a + -Ramsey MAD family. In particular, this 
shows that under the assumption there is a countable Frechet space X and a point 
x e X such that the villain has a winning strategy in the game G(x, X) but not in 
the game G(x, X). 

First recall the standard construction of an AD family of size c. Consider the 
Cantor ree 2<w and let si = {Af : f e 2W}, where Af = {/ \ n : n e m}. We will 
show that J* (si) is Frechet, a3 and not +-Ramsey. For s e 2 < w let u(s) = 
{te2<w:s c t}. 

Proposition III.6. The filter J*(si) is a Frechet a3-point which is not 
+ -Ramsey. 

Proof. To see that J*(si) is Frechet note that every set in ^ + contains an 
infinite antichain and that every infinite antichain is in C^. 

In order to show that J* (si) is oc3 let {4. : n e m} be a set of infinite antichains 
in 2<w. The aim is to find an antichain A in 2<w having infinite intersection with 
infinitely many Ans. To do this find a b e 2W such that \u(b \ n) n At\ = K0 for 
every nem and infinitely many i e m. Then either 

or 

3 / e [a>]ra Vn e co Vi e / \u(b \ n) n A,\ = K0 

V/ e [cof 3i e / 3n e co \u(b \ n) n A,\ < K0. 

In the first case fix a bijection (j): m -+ mx I and by induction following the branch 
b choose sn e 2<w so that for every n,sn <£ b, sn n b g sn+l n b and if (j)(n) = (ij) 
then sn e Ar Then A = {s„: n e m} is as required. 

In the latter case go along the branch and choose whole infinite blocks of A/s 
in a similar manner. 

The filter J>*(si) is not +-Ramsey as the villain has an obvious winning 
strategy in G(J^) by playing an increasing chain. • 

Next it will be shown how to use + -Ramsey MAD families to construct Frechet 
filters which are +-Ramsey and not a3. The construction depends heavily on ideas 
of P. Simon. Recall that an AD family si is nowhere MAD if for every X e J+(sJ) 
there is a Y cz X almost disjoint from every A e si. 
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Theorem III.7. (Simon) For every MAD family si there is an X e J+(si) such 
that si \ X = {An X : Ae si and \A n X\ = K0} can be partitioned into two 
nowhere MAD subfamilies six and si2. 

Proposition HI.8. Let sibe a -{--Ramsey MAD family. Then there is a -{--Ramsey 
Frechet filter £F which is not a3. 

Proof. Let si be a + -Ramsey MAD family. Find X, and si{ and si2 as in the 
above theorem. Note that si \ X is a + -Ramsey MAD family (of subsets of X) 
and let & = Jf*(six) ._; 0>(X). 

Then J^+ = {B _= X: 3A e J(si2) \B n A\ = X0} and C^ = J ^ 2 ) n [X]w . So 
#" is Frechet and not a3. To see that ^ is + -Ramsey let T be an J r + -tree. WLOG 
succT(t) n 5uccr(.s) = 0 for every £ #= 5 e T. Hence for every n e (JtGrSuccr(t) 
there is a unique sne T such that n e succT(sn). Define a new tree T' by letting 
0 e T', 5uccr(0) = (Jr6r5WCCT(^ ar1d f° r ^ f succT(t) = U{succT(s): 5r(f _!) _= 5}. 
Note that succT(t) _= 5uccT(5) whenever 5 _= t. 

If T' is not an tf
+(s/ \ X)-tree then there is a t e T such that {jt^ssuccT(s) e 

J (si \ X). Then there exists a b e [ T ] such that t _= b and rng(b) e ^(^/2) and it 
is easy to find one with infinite range. 

If T is a <f+(si \ X)-tree then let b e [T r ] be such that rng(b) e J+(si \ X) 
and note that there is a branch b' e [ T ] such that rng(b) _= rng(bf). This finishes 
the proof. • 

Open problems. The following is a list of questions the author does not know 
the answer to: 

(1) Is there a + -Ramsey MAD family in ZFC? 
(2) Is there (in ZFC) a Frechet filter on co which is + -Ramsey and not a2? 

In other words, is there a Frechet filter on co such that the villain has 
a winning strategy in the game G(2F) but not in the game G(?F)? 

(3) Is cov(Ji) < xa consistent ? 
(4) Is b < aT consistent ? 

Acknowledgment. The author would like to thank to Jianping Zhu for many 
hours of interesting conversation on the subject. 
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