Acta Universitatis Carolinae. Mathematica et Physica

M. Machura; Szymon Plewik
Application of base tree theorem

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 41 (2000), No. 2, 61--68

Persistent URL: http://dml.cz/dmlcz/702070

Terms of use:

© Univerzita Karlova v Praze, 2000
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to

digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz



http://dml.cz/dmlcz/702070
http://project.dml.cz

2000 ACTA UNIVERSITATIS CAROLINAE — MATHEMATICA ET PHYSICA VOL. 41, NO. 2

Application of Base Tree Theorem

M. MACHURA and S. PLEWIK
Katowice

Received 11. March 2000

We consider combinatorical facts on [w]‘” which walk back and forth around Base Tree
Theorem. Ideals 2™ are introduced and their cardinal invariants are estimated. Known
facts about SN are adopted for [w]®.

1. Introduction. A family of infinite subsets of natural numbers is almost
disjoint if each two its elements have finite intersection. An infinite family
consisting of almost disjoint sets is called a maximal almost disjoint family,
whenever any infinite subset of natural numbers has infinite intersection with some
element of this family. Following shortened characters will be used: AD-family
instead of almost disjoint family; MAD-family instead of maximal infinite almost
disjoint family; A € [X]” instead of A is a infinite subset of X; and A meets B
instead of A4 has infinite intersection with B. Thus w denotes the set of all natural
numbers; and [a)]“’ denotes the family of all infinite subset of natural numbers. For
AD-families % and ¥~ we say that % refines ¥", whenever any element of % meets
at most one element of ¥". But for MAD-families % refines ¥~ if and only, if any
element of % is almost contained in some element of ¥~ — recall that X is almost
contained in Y, whenever the difference X \ Y is finite. We assume that our readers
are familiar with standard notions of set theory, i.e. with ordinal and cardinal
numbers. We need following less known facts from this theory.

Base Tree Theorem. There exists a family ©® = {2,: a < h}with the following
properties: every 9, is MAD-family; if « < B < h, then 9y refines 2,; for any
Xe [w]“’ there exists an ordinal o < h such that X almost contains continuum
elements of 9,; if o« < B < h, then every element of 9, meets continuum elements
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Base Tree Theorem was stated in B. Balcar, J. Pelant, P. Simon [2]. It had been
using in B. Balcar, J. Dockalkova, P. Simon [1], B. Balcar, P. Simon [3], B. Balcar,
P. Vojtas [4], A. Dow [6] and [7], R. Frankiewicz, P. Zbierski [9], Sz. Plewik [11],
S. Shelah, O. Spinas [12]. Assume that 4 is the minimal ordinal for which Base
Tree Theorem is valid, so h is a regular uncountable cardinal. In [2]: see Lemma
2.6, there was stated the following.

Lemma. If % has cardinality less than h and U consists of MAD-families, then
there exists a MAD-family which refines every family belonging to . 1

2. Ideals 2/ . Suppose o/ is some AD-family and « is a cardinal number such
that 2 < k < ¢, where ¢ stands for the cardinal 2“: this cardinal is called
continuum. Put

J () = {Xe[w]”: X meets at least k elements of ./}
and let 2~ be the ideal on [w]” generated by the family of sets
{J(«): o is AD-family}.

Since in ZFC every infinite AD-family is contained in some MAD-family,
one could say that 2™ is generated by the family of sets {J(): .o/ is MAD-
family}.

Lemma 1. If 2 <k <¢ and A < h, and a family {sf,:0 < A} consists of
MAD-families, then there exists some MAD-family % such that

{J(e) 10 < A} = JYD).
Proof. One could use Lemma from the introduction and consider some

MAD-family # which refines every family .7, O

Note that 272 is exactly the ideal of nowhere Ramsey sets, see Lemma 3 in [11]
or compare Claim on p. 352 in [3]. On the other hand /¢ is exactly the ideal of
all sets which have ADR. Indeed, following [1], [3] or [4] we say that a family
U < [w]” has ADR, whenever there is some AD-family .2/ such that for any
U €9 there is some A € o with 4 < U.

Theorem 1. A family of subsets of natural numbers has ADR if and only, if it
belongs to A"*.

Proof. Let .o/ be some MAD-family. For any U e J() choose ¢(U) € &/ such
that ¢(U) meets U and ¢ : J(o/) — < is some one-to-one function. The family

{Un o(U):U e J(«)}

is some AD-family which shows — since the intersection U n @(U) is always
contained in U, that J ‘(42/) has ADR. Because of the definition every element of
A ¢ has to have ADR.
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Let o7 be AD-family which shows that a family % has ADR. Split any element
of o/ onto continuum almost disjoint and infinite pieces and denote the family of
those pieces by «/*. We have U € J(«/*), i.e. Ue A O

Directly from the definition one concludes the following inclusions
A*2AP .. 2H°D ... DA
Some of them are proper.
Theorem 2. If n and m are different natural numbers, then A" &= A ™.

Proof. Let 2 < m < n < w. Since #™ < A™, we shall show that the family
J"(<Z) does not belong to A for every MAD-family /. Suppose % is some
MAD-family. Choose sets A;, A,, ..., 4,, which belong to ./ and sets B, B,, ..., B,
which belong to 4 such that A, meets B,, whenever 1 < k < m. The union

AinBiu4d,nB,u.. UA,Nn B,

belongs to J™(./) — because it meets any set A;, A, ..., A,, — and does not belong
to J'(%) — because it meets less than n elements of 4. By the definition of ™
one concludes that 2#™ is not contained in ™. O

Theorem 2 implies that 2#"“ is a proper subfamily of any ™", where n is some
natural number. In [3] — see Theorem 4.18, there was given set-theoretical
assumptions which imply J#“ = 2. However the validity of this equality remains
still open, compare also [1] p. 82. Note that we have showed the following: If
2 <n<wand o is some MAD-family, then J'(/)\J(sZ) has not ADR. So,
we have obtained some examples which were in search by S. H. Hechler [10]
p- 109.

3. Additivity and covering numbers for ™. If S is a set, then [S] denotes its
cardinality. Recall that the additivity number of family </ is the cardinal

add(/) = min{|¥|: ¥ < o/ and | )& ¢ o};
but the covering number is defined by
con() = min{|#|: S < o and | Jo = () F}.

For every non-empty family .o/ the covering number cov(=/) is always well
defined But additivity number add(</) is well defined, if ( ). does not belong to
/. Directly from the definitions it follows that for 2 < x < ¢ the family of all
infinite subset of natural numbers does not belong to A%, ie. [w]” ¢ A ™. So,
cardinal numbers add(% ") and cov(%f ") are well defined. In [11] — compare [3]
p. 352 — there was observed that add(#?) = cov(#%) = h. Let us generalize
those facts.

Lemma 2. If 2 < k < ¢, then add(#"*) > h.
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Proof. Consider some family
(FM(st) o < 1)

If 2 < h, then — by the Lemma from Introduction — there is a MAD-family
&/ which refines every family .«/,. By the definition we have

U)o < 2} < JN).

This means that every family of less that h elements of £ has union which has
to belong to . O

Lemma 3. If 2 < k < ¢, then cov(A™) < h.

Proof. Consider some family ® = {Z,: « < h} of MAD-families with proper-
ties as in Base Tree Theorem. Since, for any X € [w]® there exists an ordinal
o < h such that X almost contains continuum elements of &, and by the
definitions one concludes that

V@) 5o < By =[]
and the family {J{2,): « < h} consists of elements of #*. O

The next theorem generalizes [10] p. 97 Theorem 2.8, and answers the problem
4, see [10] p. 109.

Theorem 3. If 2 < k < ¢, then cov(X ™) = add(A*) = h.

Proof. Since [w]” ¢ #™ one concludes that add(# ™) < cov(#™™). By Lemmas
4 and 5 one infers

h < add(A™) < cov(A™) < h.
This means that add(#™) = cov(A™) = h. O

4. Cofinality number for 7. Recall that for a family .o/ the cofinality number
cof (/) is the least cardinal |#| for families & < . which fulfill the following
condition: for any A € o/ there exists S € & such that A < S.

Theorem 4. If 2 < k < ¢, then cof (#) > c.

Proof. Suppose {7, :« < ¢} are MAD-families and let &/, = {V}:a < c}. For
every ordinal o < ¢ choose some B, € </, which meets V,. Let {C;: 8 < ¢} be
some AD-family which consists of subsets contained in B, NV, If & is
a MAD-family which contains all above defined families {C;: f < c}, then J¥(/)
is contained in no J<(Z,): in fact

B, A Ve J(L)\JL,).

This implies that no family of cardinality ¢ which consists of elements of 2™ could
be considered in the definition of cof (#7). O
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Theorem 5. If % contains no AD-family of cardinality «, then U € K.

Proof. For any A€ [w]® there is ¥, = A such that ¥, almost contains no
element of %. Indeed, if {sz o < ¢} is some AD-family consisting of subset of A4,
then some C, one could take as V. In the opposite case, for every « < ¢ one takes
some element of % which is almost contained in C,. By this way one would choose
AD-family which could not exist because of the assumptions. If % is
a MAD-family which consists of subsets of sets ¥, — where 4 € [w]® — then
U < J(B). U

We do not know if the above theorem holds for some ¢, where k = 2. In [3]:
Theorem 4.16, there was stated that a union of less than continuum ultrafilters has
ADR. This fact follows that any set of cardinality less than continuum belongs to
A%, in fact has ADR.

5. JY(</) and AD-families of large cardinality. Consider some AD-family
&/ = {A,:a < ¢}.For every ordinal a < ¢ put

B, = [ J{{m}x {0,1,..., m}:me A,}.

Lemma 4. The family {B,: o < ¢} < [w x @]” consists of almost disjoint sets
and any set B, meets each set w x {n}.

Proof. By the definition B, is some infinite union of non-empty pairwise
disjoint sets, so every B, is infinite. Also

B, By = [ J{{m}x {0,1,..., m}:me 4, n A4}.
If « + B, then B, N By has to be finite because of 4, N Ay is finite. Since
B, (wx {n})= {(mn):n <meAd,},
then this intersection has to be infinite. O

Theorem 6. If o/ is infinite AD-family, then J*(s/) contains some AD-family of
cardinality c.

Proof. Take different sets Ay, 4;, A,, ... which belong to 7. Let
fiiox{n}>A\N(Ayu A vAU... UA, )

be one-to-one functions and put fy U fi U ... = F.If {B,:a < c}is a family as in
Lemma 4, then F(B,)e J*(/) for every o < c. Therefore the family of images
{F(B,): o« < ¢} is a desired one. O

6. Sets which have to belong to ‘. For some infinite and countable
AD-family {R,,:n < w} denote by Z#, the filter which is generated by sets
w\(Ry U R; U ... UR,), and put

I(FR) = J({R,:n < w}).
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Recall that # < [w]”is a filter, whenever: — it is closed under finite intersection,
ie. Ae ¥ and Be %, then A n Be #; — if A is almost contained in B <  and
Ae 7, then Be Z. A family % consists of generators of a filter #, if % is the
intersections of all filters which contains %. A filter & is countably generated, if
there exist sets Fy, Fy, F,, ... such that &% is generated by those sets and
Fy,o> F, o F, o ..., and F,, |\ F, are always infinite. Next lemmas explain when
J*(s/) = J”(4), for infinite and countably AD-families .2/ and 2.

Lemma 5. If Fy > F, o F, o ... are generators of a filter & such that
F, . \\F, is always infinite, then

JU({R\Fy, F\F,, F,\Fs, ...}) = I(F).

Proof. Suppose that H,, H,, H,,... and Gy, G;, G,... are two collections of
generators of # such that for each natural number k there hold: G, almost contains
H,; and H, almost contains G,,;; and G,\H, is infinite; and H;\G,, ;. This
follows that H,\H,,, is almost contained in G\ G, ,,_;. To obtain

J({R,:n < w}) € JU{R\F,, F\Fy, F,\F;,...})

one could consider generators H, on the form w\(RO UR{U... U R,,), and
generators G, on the form F,. But to obtain

J({R,:n < w}) 2 JY{R\F,, F\Fy, F,\F;, ...})

one should consider generators G, in the form w\(RO UR,UR,... U R,,), and
generators H, in the form F,. O

Lemma 6. If 7, ¢ &, < %, C ... is a sequence of countably generated filter
and always M € 1(3?,,), then M belongs to I(U{fn n< a)})

Proof. This is immediately consequence of the following property: If M € I (,27" )
then for any G € F there is # € F such that M meets G\ H. One concludes this
property directly for the definition of I(F). O

Let {g‘ :k < b} be some fixed, unbounded and increasing family of sequences
of natural number. This means that: g* = {g, g%, ...} for every ordinal x; if
B < Kk < b, then g/ < g¥ for all but finite many n < w; no sequence of natural
number fy, fi,... fulfills g¢ < f,, for all but finite many n < w and for every
f < b. Assume that the cardinal b is minimal ordinal for which there exists
unbounded and increasing family of sequences of natural number. More details
about b one can find in [5].

Lemma 7. Let & be some countably generated filter. There exists a family
{5‘; o< b} consisting of countably generated filter such that: ¥ < #, for every
ordinal o; if o % P, then there are A€ F, and B € F such that A does not meet
B; if M € I(F), then M € I(#,) n 1(F,) for some o + P.
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Proof. Let F;, o F; o F,... be some generators of & such that F,\F, ; is
always infinite. For any ordinal k < b put

Y(7, k) = J{{ne F,\F,.,:n < g&}:m < w}.
Let #, be filters generated by families

F U {Y(Z, )\Y(Z,(,): lim {, = af,
where all sets Y(Z, {,,1)\Y(Z, {,) are always infinite.

IfMel (9” ), then there are different filters % and s which have been defined
by the above formula, and M € I(%) N I(). Indeed, put {, = 0, and suppose that
we have defined (, Since M eI(#) there exists an increasing sequence
Mg, My, My, ... such that M n F, \F,  is always infinite. For each j < w choose
kie M n F,\F,,  such that gi < k;. Consider the sequence of natural number
fo, f1, ... such that: f; = ko whenever i < mg; and f; = k; whenever m;_; < i < m;
Since {¢*:k < b} is unbounded one could take an ordinal {,,; > {, such that
fi < gi»=* for infinitely many i < w. If m;_; <i<m; and f; < gi"*', then
ki = fi < gt < gm+t, ie. kj < g+, because of the sequence g*+' is in-
creasing. Therefore the set M N Y(&#, {, )\ Y(Z,{,) is always infinite. Put
n = sup {{,:n < w}. This is possible since b is a regular cardinal number. The
filter ¢ is generated by the family

F o {Y(Z,\Y(Z,(,): lim {, = n},
such that M € I(9). A next filter # one defines similarly, but with the starting
point {, = . In fact one could define filters #, such that M € I(#,) for b many
ordinals, where a < b because of b is a regular cardinal. O

Theorem 7. If a family {R,:n < w} consists of infinite and parwise disjoint
sets of natural numbers, then J°({R,:n < w}) belongs to A".

Proof. We construct a tree Ty U T; U T,... — where T, denotes the n-th level
of the tree — of height w consisting of countably generated filters. Let Ty = {ﬁf’R},
i.e. it consists of the filter generated by sets @ \(R, U R, U ... R,). Suppose that
the level T, has been defined. If & e T, then the immediately successors of
& could be filters which exist by Lemma 7. For any M € I (ﬁR) choose some filter

gMZ U{j‘;:n<a}},

where %, ¢ #, ¢ &, — ..., such that: always %, € T;; and always M € I(fk); and
if N = M, then 9y + %,,. This is possible because of by Lemma 6 for any M one
could choose %), between continuum filters. For every filter %,, fix a sequence
F, > F, o F, o ... such that M always meets F,\F, : this is possible because of
Lemma 6. Choose some m;, € M N F,\I',,; and put /(M) = {mo, m,, ms, ... }. The
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family {/(M): M € J°({Ry, Ry, R,, ...}) = I(Fy)} is AD-family: by the definition
&d(M) is almost contained in any element of %,; and if N + M, then there are
Ge %y and H € 9,, such that G n H is finite. We have proved that the family
J°({R,:n < w}) has ADR. It has to be J*({R,:n < w})e A because of
Theorem 1. O

Theorem 7 or Lemma 7 are combinatorical roots which had been considered in
[1]: Lemma 2.1, in [3]: Lemma 4.15, in [4]: Theorem A, in R. Frankiewicz [8]:
Lemma 2.2, and in [9]: Lemma 3.2 on p. 101. Our proof of Lemma 7 does not use
Base Tree Theorem, but in quoted papers this theorem was used.
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