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Countably splitting number cannot exceed the maximum of boundedness number and 
splitting number. 

Let us recall three well-known cardinal invariants of continuum: 
A family Sf ^ [cO]'° is called splitting, if for every X e [co]w there is some 

SeSf such that \X n S\ = \X\S\ = co. Define then 

s = min{|^| : Sf c [co]w is splitting}. 

Order wco by / < * g iff the set {ne co: f(n) > g(n)} is finite, and call a set 
F c= wco unbounded, if for every g ewco there is some / e F with ~~i (/ < * g). A set 
D c= wco is called dominating, if for every g e wco there is some / e D satisfying 
g < * / Define then 

b = min {|F|: F ^ wco is unbounded} 

b = min {|D|: D ^ wco is dominating}. 

The next definition is, up to our knowledge, due to Bogdan W§glorz. A family 
ST c= [co]w is called countably splitting, if for every countable 9S £= [co]w there is 
some Te 2T such that T splits all members of SS, i.e., for every X e 9C, \X n T\ = 
= \X\T] = co holds. Define then 

K0-s = min{|^ | : ST ^ [co]w is countably splitting}. 
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It is well-known (cf. [Va]) that s < b and b < b. Also, it is easy to show that 
s < K0-s < b. In an attempt to give a sharper bound, we prove in this short note 
the following. 

Theorem. K0-
$ -̂  max{s,b}. 

Proof. Fix a splitting family Cf .= [&>]" of size s and and unbounded set 
F c wco of size b. We may and shall assume that for every fe F,f(0) = 0 and the 
mapping f is strictly increasing. For S e Cf and / e F, put 

T(SJ) = [j{[f(n),f(n+l)):ne^} 

Clearly, \&~\ < s • b, so it remains to show that the family 2T is countably 
splitting. To this end, fix a countable family 3C = {Xn: n e co) of infinite subsets 
of co. Define a strictly increasing mapping g e a)co by putting g(0) = 0 and next, by 
induction, g(k + 1) = min {Ce co : (Vi < k)K, n [g(k),C) ^ 0}. The set F is 
unbounded and so for a mapping /z, defined by h(n) = g(2n), there is some feF 
with {ne co : h(n) < f(n)} infinite. 

Let n be such that f(n) > g(2n). The initial segment [0,g(2rz)) is covered by 2n 
intervals [g(k),g(k +1)) and contains at most n points /(/). Consequently, the 
number of intervals [g(k),g(k + 1)) such that [g(k),g(k + 1)) is not a subset of any 
[f(j), f(i + 1)) is less or equal to n. All the remaining intervals [g(k),g(k + 1)) 
must be contained in some [f(i),f(i + 1))- So, \{keco: (3i < n)[g(k),g(k + 1)) ^ 

= UiW + -))}l * n. 
Since the set of those n's which satisfy f(n) > g(2n) is infinite, we conclude that 

the set {keco: (3i 6 co)[g(k),g(k + 1)) c [/(i),/(f + 1))} is infinite. Therefore, also 
the set Y = {neco: (3k e co)[g(k),g(k + 1)) c [/(n),/(n + 1))} is infinite. 

The family Cf is splitting, thus there is some S e Cf such that 
\YnS\ = \Y\S\ = co. 

Let us conclude the proof by showing that for this / and S, the set T(S,f) splits 
all Xn e 3C. Whenever i e Y is such that | Y n i\ > n, then for keco with [/(/), 
f(i + 1)) =2 [g(/c),g(k + 1)) we have k > n and so, using the definition of the 
mapping g, 

[f(i),f(i + 1)) n K„ =2 [g(k),g(k + 1)) n l ^ f ) . 

But if ieY\S, then [/(/),/(/+ 1)) ^ co\T(S,/), while if ieYnS, then 
[/(/),/(/ + 1)) .= 7tS,/). So |T(S,/) n Xn\ = \Xn\T(S,f)\ = co. D 

References 

[Va] VAUGHAN, Jerry, E., Small uncountaЫe cardinals and topology, Open Pгoblems in Topology, (ed. 

by J. van Mill and G. M. Reed), Elsevier 1990, 195-218. 

82 


		webmaster@dml.cz
	2012-10-06T04:18:27+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




