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We re-read Reclaw's proof from [6] on invariant CCC cMdeals of subsets of reals and 
obtain a reasonably stronger corollary for such ideals on the Cantor space. 

1. Preliminaries. In 1998 Reclaw in [6] investigated cardinal invariants of CCC 
cj-ideals of subsets of reals. In particular, he showed that if such a cr-ideal f is 
invariant, then p < non(d/), where p is a pseudointersection number (cf. [8] for 
more details). In this paper we analyze his proof and get an apparently stronger 
result for o - ideals of subsets of the Cantor space 2W. 

We use standard set-theoretical notation and terminology derived from [1]. Let 
us remind that the cardinality of the set of all real numbers is denoted by c. The 
cardinality of a set X is denoted by \X\. By [co]60 we denote the family of all 
infinite subsets of a>. If <p : X -> Y is a function then rng (cp) denotes the range of 
cp. 

Let (G, +) be an abelian Polish (i.e. separable, completely metrizable, without 
isolated points) group and let / be a o - ideal of subsets of G (we assume from 
now on that # is proper and contains all singletons). We will consider that / is 
invariant, that is for every A <= G and g e G we have A + g = 
= [a+ g:ae A}e f and — A = { — a: a e A}e f). Moreover, we will assume 
that the o - ideal f has a Borel basis i.e. every set from f is contained in a certain 
Borel set from the ideal. 

We say that f is CCC (countable chain condition) if the quotient Boolean 
algebra 38(G)// in CCC, where 3&(G) is the a-algebra of all Borel subsets of G. 
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We define the following cardinal invariants of / . 

non ( / ) = min {|B|: B = G A B i / } , 

cov, ( / ) = min {|71: T = G A (3A G / ) A + T= G). 

We define also an operation on the o - ideal / (it was introduced by Seredynski 
in [7], who denoted it by / * ) 

s(f) = {A^G:(\/Bef)(3geG)(A + g) n B = 0}. 

If we apply these operations to the o - ideals of meagre sets Jt and of null sets 
Jf we obtain strongly null sets s(Jt) and strongly meager sets s(Jf). The 
following is well-known 

non(s ( / ) ) = c o v t ( / ) . 

We define 

Pif = {f:f is a function A dom (f) e [co\w A rng (f) c= 2}. 

If f G Pif then we put 

[f] = {x6 2»: fsx}. 

Let S2 denotes the a-ideal of subsets of the Cantor space 2W, which is generated 
by the family {[f] :fePif}. It was thoroughly investigated in [2] and [4]. We 
recall some properties of S2, which were proved in [2]. 

Fact 1.1 § 2 is a proper, invariant o-ideal which contains all singletons and has 
a Borel basis. Every AeS2 is both meager and null. Moreover, there exists 
a family of size c ofpairwise disjoint Borel subsets of 2™ that do not belong to S2. 
Hence S 2 is not CCC. • 

Let A, S be two infinite subsets of co. We say that S splits A if 
\A n S| = \A\S\ = co. Let us recall a cardinal number related with a notion of 
splitting, introduced by Malychin in [5], namely 

K0-s = min {\&\:Sf <= [co]™ A (V-stf e [[ft)]w]ffl)(]S e 9)tyA e s/)S splits A}. 

More about cardinal numbers connected with the relation of splitting can be found 
in [3]. 

2. Rectaw's proof revisited. In [6] Reclaw proved a theorem, which can be 
generalized as follows. 

Theorem 2.1 Let«/ and / be two o-ideals of subsets of an abelian Polish group 
G, which are invariant and have Borel bases. If J is CCC then 

/ ns(f) ^J. 

Proof. (Reclaw) Let X e / n s ( / ) . Assume that X $ J>. We construct a se­
quence {Fa: a < cOi} of Borel sets from / and a sequence {ta: a < cox) of elements 
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of G. Let t0 = 0 and F0 be any Borel set from f containing X. Suppose that we 
have constructed Fp and tp for fi < a. Then from the definition of s (f) there exists 
ta e G such that 

(X + ta)n UI> = 0-
/3<a 

As Fa we take any Borel set from $ containing [Jp<0CFp u (X + £a). 
Let Ga = Fa\{Jp<aFp. Thus {Ga: a < a^} is a family of pairwise disjoint Borel 

sets such that none of them belongs to «/, as Ga 3 X + ta and -/ is invariant. 
Hence */ is not CCC, a contradiction. • 

Corollary 2.2 Let«/ and # be as above. If J is CCC then 

min {non(f\ cov, (/)} < non (J>). 

Proof. It is enough to observe that # ^ J implies non (f) < non (J). • 

Corollary 2.3 Let J be a 0 -ideal of subsets of the Cantor space 2™ (endowed 
with a standard group structure), which is invariant and has a Borel basis. If J is 
CCC then 

K0-s < non (J). 

Proof. In [2] it was proved that non (S2)
 = ^V* ai1d in [4] it was proved that 

covf (S2) = c. So it is enough to apply Corollary 2.2 for G = 2W and f = S2. • 

Question. Let J be an invariant CCC a-ideal of subsets of the real line U. Is 
the inequality K0-$ < non (J) still true? 
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