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Typical ^ Sets and Typical Continuous Functions 

SHINGO SAITO 

London 

Received 20. March 2006 

We state a theorem that connects typical ^ sets and knot points of typical continuous 
functions, and give some remarks on related topics. 

1. Introduction 

This article is based upon the author's talk in the 34th Winter School in 
Abstract Analysis on his paper [Sa3], and deals with some related topics as 
well. The reader is reminded that the file used in the talk is available at 
http://www.ucl.acuk/ ~ ucahssa/eng/maths/talks.html. 

Let I denote the unit interval [0,1] and C(l) the Banach space consisting of all 
realvalued continuous functions on 7, equipped with the supremum norm || • ||. We 
say that a typical function feC(l) satisfies a property P if the functions feC(l) 
satisfying P form a residual subset of C(J). 

Many mathematicians have investigated Dim derivatives of typical continuous 
functions. 

Definition 1.1. Let fe C(7). For a e [0,1), we define 

D+f(a) = l i m s u p ^ " ^ and D+f(a) = lim inf ^ ~ ^ 
J v ; xia v x - a J v ' x\a x - a 

and if they are equal to each other, the same value is denoted byfj(a). We define 
D~f(a), D-f(a) andf-l(a) in a similar fashion for a e (0,1]. We call 0^(0) and 
D±f(a) Dini derivatives of f at a. 
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Here we shall look at knot points of continuous functions. 

Definition 1.2. Let fe C(l). A point a e (0,1) is called a knot point of / if 
D+f(a) = D~f(a) = oo and D+f(a) = D.f(a) = - o o . We write N(f) for the 
set of all points in (0,1) that are not knot point of/ 

Jarnik [Ja] showed that N (/) is Lebesgue null for a typical function / e C (I), 
and Preiss and Zajicek [PZ] completely determined how small N (/) is for a typical 
function / e C (I). To state the theorem precisely, we denote by J f the set of all 
closed subsets of I and equip it with the Vietoris topology. 

Theorem 1.3 ([PZ]). Let JFbe a o-ideal on I. Then N(f)e Jr for a typical 
function feC(l) if and only if Jf c\ CtC is residual in Jf. 

The main theorem in [Sa3] is a generalisation of this result. Observing that N (/) 
is an J? set for every / e C ( I ) , we shall give a complete characterisation for 
a family 3F of J? subsets of I to have the property that N(f)e 3F for typical 
functions feC(l)9 by using the concept of residuality of families of 2F<j sets 
introduced by the author [Sal]. We denote by XH the set of all sequences of 
members of Jf, and equip it with the product topology. 

Theorem 1.4 ([Sa3, Main Theorem]). Let 2F be a family of 3Fa subsets of I. 
Then N (/) e 2F for a typical function feC(l) if and only if the set of all sequences 
(Kn) e JfN satisfying \JZLiK„ e & is residual in XN. 

Acknowledgements. The author expresses his deep gratitude to his supervisor 
Professor David Preiss for invaluable suggestions and a lot of encouragement, and 
to Mr Hiroki Kindo for reading the manuscript. He also acknowledges the financial 
support by a scholarship from Heiwa Nakajima Foundation and by the Overseas 
Research Students Award Scheme. Special thanks are due to Professor Ludek 
Zajicek for sending an unpublished manuscript of [PZ]. The kind hospitality of the 
organisers during the conference was much appreciated. 

2. Residuality of families of 3Fa sets 

We write J? for the family of all J5 subsets of I. The author gave the following 
definition in [Sal]: 

Definition 2.1. A family & cz J£ is said to be residual if {(Kn) e JTN \ 
| [jSLx Kn e iF} is residual in XN. 

As in the case of continuous functions, we say that a typical 2Fa subset of 
/ satisfies a property P if the J^ sets satisfying P form a residual subset of J V 
It is natural to ask whether this residuality is induced by some topology. The 
answer is, rather surprisingly, yes. 
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Proposition 2.2. Let 3F be a a-filter on a nonempty set X. Then 3F u {0} fulfills 
the axioms of open sets, and J* is equal to the family of all residual subsets of 
X with respect to this topology. 

Proof It is obvious that 3F u {0} fulfills the axioms of open sets. We may 
readily verify that belonging to 2F is equivalent to being open dense, and so to 
being residual as well. • 

Since the collection of residual families of J? subsets of I is a a-filter on J£, it 
is true that this proposition gives us a topology that yields our residuality. However 
this topology is 'bad' (for example, it is not Hausdorff), and the author does not 
know whether there exists a 'good' topology on J£ that induced our residuality. 

3. Banach-Mazur game 

The Banach-Mazur game is of great use in the study of residuality. 

Definition 3.1. Let X be a topological space and 5 a subset of X. The 
(X,S)-Banach-Mazur game is described as follows. Two players, called Player 
I and Player II, alternately choose a nonempty open subsets of X with the 
restriction that they must choose a subset of the set chosen in the previous turn. 
Player II will win if the intersection of all the sets chosen by the players is 
contained in S; otherwise Player I will win. 

Fact 3.2 ([Ox, Theorem 1]). The (X,S)-Banach-Mazur game has a winning 
strategy for Player II if and only if S is residual in X. 

4. .yV-game 

Zajicek [Za] introduced a new game called J^-game to investigate knot points 
(and points defined similarly). A figure is a finite union of (at least one) 
nondegenerate closed intervals in I. The norm of a figure F = (J"=i [fl/,6/], where 
0 ^ a\ < b\ < ... < an < bn ^ 1, is defined as 

max{ai, bi - au a2 - bu ..., bn - an, 1 - bn] 

and denoted by v (F). 

Definition 4.1 (.yV-game). Far a family Jf of subsets of I, the J/'-game is 
described as follows. The players, called the e-player and the F-player, move 
alternately. For each positive integer n, the nth round consists of the e-player 
choosing a positive number sn and the F-player choosing a figure Fn with 
v (F„) = e„. The F-player will win if lim infn_+oo Fn = \Jk=i f]n=kFn e Jf\ otherwise 
the e-player will win. 
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Remark 4.2. Note that lim in^oo-Fn is always JV 

Theorem 4.3 ([PZ]). Let Jf be a family of subsets of I. 

(1) If Jf is hereditary (i.e. AeJfand B cz A always imply BeJf) and 
Jr n Jf* is meagre in some nonempty open subset of Jf, then the s-player 
has a winning strategy in the Jf-game. 

(2) If Jf is a a-ideal and Jf n Jf is residual in Jf, then the F-player has 
a winning strategy in the Jf-game. 

However the following proposition seems to suggest that the c/V-game might be 
of little use for a family Jf which is not hereditary: 

Proposition 4.4. Let 5 be a positive number less than 1, and write Jf for the 
family of all 3Fa subsets of I of measure at least 3. Then 3Fa\Jf is residual in 3FGi 

but the F-player has a winning strategy in the Jf-game. 

Proof It is easy to see that the null J£ sets form a residual family in J£ (see 
[Sa2] for the proof), which implies that J£ VV is residual. 

We shall describe a winning strategy for the F-player. Take a sequence (5n) of 
positive numbers less than 1 satisfying U%Li5n = S (set Sn = 52~n for instance). 
In the nth turn, dividing each component of f\j=i Fj (which is assumed to be I if 
n = 1) into so many intervals that each of them is of length at most en/3, the 
F-player chooses from each of these tiny intervals J a subinterval contained in J of 
length Snfi (J), where \i denotes the Lebesgue measure, and takes a figure Fn with 
v(F„) ^ sn as the nth move so that Q/LiF, is the union of these subintervals. 

The since fi(f]j=iFJ) = IIjLioj, we obtain 

(
00 v 00 

C\Fn )=Y\5n = S. D 
n=l / «=1 

For a figure F, put °ll{F) = {Ke C/f \K cz Int F}, which is an open subset of 
j r . 

Lemma 4.5. Let % be a nonempty open subset of JT. Then there exists 
a positive number s such that if F is a figure with v(F) ^ s> then %(F) ntfl ^ 0. 

Proof Take a finite subset Ko of I and a positive number r so that B (Xo, r) cz 
cz <%. We shall show that any s > 0 less than r will do. Let F be a figure with 
v (F) ^ s. For each xel, we may choose yxeB (x, r) n Int F. Then [yx \ x e 
eK0}eW(F) n B(K0,r) cz ^(F) n %. D 

The following proposition gives a relation between the F-player having a win­
ning strategy and our residuality of families of J£ sets: 

Proposition 4.6. Let Jf be a hereditary family of subsets of I such that 
the F-player has a winning strategy in the Jf-game. Then J^ n <% is residual 
in@o. 
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Proof By fact 3.2, it is enough to prove that Player II has a winning strategy 
in the (jfN, ^)-Banach-Mazur game, where XP = {(X) e XH \ \JSLX Kn e JT). 

To obtain the mth move %,, Player II defines a positive number sm by using the 
mth move °Um of Player I, and consider the figure Fw that in the J^-game, the 
winning strategy tells the F-player to reply wen the moves S\9 F\9 e2, F29..., sm are 
given. 

Let us look at the mth round, so that we already know %9 sj9 Fj9 and fjforj = 1, 
..., m — 1. Given the mth move %m of Player I, take a positive integer nm and 
nonempty open subsets °Um\9 ..., °llmnm of X SO that °Um\ x ... x °llmnm x j f x 
x X x ... c ^ w . We may assume that n\ < n2 < .... In view of Lemma 4.5, 
choose sm > 0 so that if F is a figure with v (F) ^ ew, then fy (F) n °Umn ^ 0 for 
n = 1, ..., nm. Let Fm be the figure that the F-player, following the winning 
strategy, replies in the mth round of the c/f-game where the j'th move of the 
£-player is Sj for j = 1,..., m and the;th move of the F-player is Fj fovj = 1,..., 
m - 1. Set 

%, = (W(Fm) n ^w i) x ... x (W(Fm) n *Umnm) x X x Jf x ..., 

which is the mth move of Player II. 
Now we need to verify that this is a winning strategy for Player II. Let 

(Kjef)^"^. Note that if n ^ nm9 then Kne<%(Fm)9 that is Kn c IntFw. 
Consequently for every nei^lwe have 

oo oo 

K„c= 0 I n t F m c (J f ) In tF m c l iminfF r a 
m w i t h n m ^ n fc = lm = /c m-n•oo 

since m < n2 < .... Therefore ys°--iXn c= lim mfw-̂ oo Fw, and so (J^iKnGeyV 
because Jf is hereditary and lim infw_>oo e Jf. • 

5. Knot Points of Typical Continuous Functions 

As we defined in Section 1, a knot point of feC (I) is a point a in (0,1) at which 
D+f(a) = D~f(a) = oo and D+f(a) = D-f(a) = - o o , and we write IV(f) for 
the set of all points in (0,1) that are knot points of f 

5.1 Basic Propositions 

Proposition 5.1. If a e [0,1), then D+f(a) = oo for a typical function feC(l). 

Proof. For each positive integer n, let An denote the set of all functions feC(l) 
such that f(x) — f(a) > n(x — a) for some x e (a9 a 4- l/n) n /. Since all fun­
ctions fe f]n=\An satisfy D+f(a) = oo, it suffices to show that An is open dense 
for every neN. 
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Let n be any positive integer. 
We first prove that An is open. Take any f e An. We may find a point 

xe(a,a + l/n) n I with f(x) — f(a) > n(x — a), and then a positive number 
8 with f(x) — f(a) > n(x — a) 4- 2e. If g e B(f s), then we have 

g(x) - g(a) = f(x) - f(a) - 2s > n(x - a), 

which shows that g e An. Therefore An is open. 
Now we prove that An is dense. Let g e C(l) be any piecewise linear function 

and s any positive number. Take a piecewise linear function he C(l) satisfying 
|| A || < s and tix (a) > n — g'x (a). Then (g + h)+ (a) = g'+ (a) + h'+ (a) > n and 
so g + he An because g + h is piecewise linear. Since g + he B(g, s), this 
implies that An is dense, and the proof is complete. • 

Corollary 5.2. (1) For typical functions feC(l), we have D+f(0) = 
= D-f(l) = oo andD+f(0) = D-f(l) = -oo . 

(2) If a e (0,1), then a is a knot point of f for typical functions fe C(l). 

Proof. Immediate from Proposition 5.1 by symmetry. • 

Remark 5.3. It goes without saying that (2) in the above corollary does NOT 
imply that, for typical functions fe C(I), every point in (0,1) is a knot point of f 

Proposition 5.4. For every fe C(I), the set N(f) is 2Fa. 

Proof For positive integers m and n, let Amn denote the set of all points 
x e [0,1 — 1/m] such that f(x + h) — f(x) ^ nh for all h e (0,1/m). It is easy to 
see that Amn is closed for any m and n. Accordingly the set of all points x e [0,1) 
with D+f(x) < oo is J5 because it is equal to the union [jm,n=iAmn. Since 

N (f) = {xe [0,1) | D+f (x) < oo} u {xe [0,1) | D+f(x) > - oo} 
u {xe(0,1] | !>-/(*) < oo}uxe(0 , l ] |D_ f (x) > -oo} , 

we obtain the conclusion by symmetry. • 

5.2 Main Theorem 

Jarnik [Ja] showed that IV (f) is Lebesgue null for a typical function / = C(I). 
Accordingly we see from Proposition 5.4 that IV (f) is meagre for a typical function 
fe C(I), bearing in mind that any null J5 set is meagre because any null closed 
set is nowhere dense. Then a natural question is how small IV (f) is for a typical 
function fe C(I), namely for which notion of smallness it is true that IV (f) is 
small for a typical function fe C(I). Preiss and Zajicek [PZ] gave a complete 
answer to this question: 

Theorem 5.5 ([PZ]). Let Jf be a o-ideal on I. Then N(f)eJf for typical 
functions feC(l) if and only if' Jf n JT is residual in Jf. 
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Then it may well be asked for which family of subsets of I, not necessarily 
a (T-ideal, it is true that N (f) belongs to the family for a typical function feC (I). 
Proposition 5.4 allows us to consider only families of J? subsets of I without loss 
of generality. The main theorem in [Sa3] solves this problem completely: 

Theorem 5.6 ([Sa3, Main Theorem]). Let F be a family of 3FG subsets of I. 
Then N(f)e <F for typical functions feC(l) if and only if 3F is residual. 

Remark 5.7. The conclusion can be rephrased as follows: N(f)e3F for typical 
functions feC(l) if and only if F e 3F for typical J5 subset F of I. 
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