USA 14

Gliceria Godini

Operators in normed almost linear spaces

In: Zdeněk Frolík and Vladimír Souček and Marián J. Fabián (eds.): Proceedings of the 14th Winter School on Abstract Analysis. Circolo Matematico di Palermo, Palermo, 1987. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 14. pp. [309]--328.

Persistent URL: http://dml.cz/dmlcz/702146

Terms of use:

© Circolo Matematico di Palermo, 1987
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
G. Godini

1. INTRODUCTION

The notion of normed almost linear snace (nals) is a generalization of the notion of normed linear space. Such a space satisfies some of the axioms of a linear space and the norm satisfies all the axioms of a norm on a linear space, as well as an additional one, which is useless in a normed linear space. An example of a nals is the set X of all nonempty, bounded and convex subsets A of a (real) normed linear space E for the addition $A_{1}+A_{2}=\left\{a_{1}+a_{2}: a_{1} \varepsilon A_{1}, a_{2} \varepsilon A_{2}\right\}$, the element zero of X the set $\{0\}$, the multiplication by reals $\lambda A=\{\lambda a: a \varepsilon A\}$ and the norm $\left|\left||A| \|=s_{p} a_{A}\right|\right| a|\mid$. Besides the axioms of an usual norm on a linear space, the above norm \|\|.\||| satisfies also the following condition: if $A_{1}=-A_{1}$ then $\||A|\| \leq\left\|\left|A+A_{1} \|| |\right.\right.$ for each $A \varepsilon X$.

The normed almost linear spaces were introduced in [3] as a natural framework for the theory of best simultaneous approximation in normed linear spaces. In [3] and the subsequent papers [4]-[6] we have also begun to develop a theory for the normed almost linear snaces similar with that of the normed linear spaces. It turned out that some results from the latter theory were true in our more general framework. Here we mention that we have introduced the "dual" of a nals X , denoted X^{*}, (where the functionals are no loncer linear but "almost linear"), which is also a nals, and when X is a normed linear space then X^{*} is the usual dual space of X (see [3], [4]). In a nals X for each $x \in X$ there exists $f \varepsilon X^{*},\| \| f\| \|=1$ such that $f(x)=$
 near space X, given a linear subspace $M \subset X$ and $f \varepsilon M *$ there exists a norm-preserving extension to X is not true if we renlace "linear" by "almost linear" (see examples in [4]). The main tool for the theory of normed almost linear snaces was given in ([6], Theorem 3.2) where we proved that any nals X can be "embedded". in a normed linear space E_{X}. Though the embedding mapping is not one-to-one, it has enough properties to permit us the use of normed linear spaces tech-

This paper is in final form and no version of it will be submitted for publication elsewhere.
niques to prove certain problems' in a nals.
The present paper is a continuation of the above cited napers, providing results from the theory of bounded linear operators in normed linear spaces which can be formulated and nroved in normed almost linear spaces.

When X and Y are two normed almost linear spaces, the definition of a bounded linear operator $T: X \rightarrow Y$ may be qiven as in the case when X and Y are normed linear spaces, but the set of all such operators may be the only operator $T=0$. Moreover, for $Y=R$ we do not obtain the dual space X^{*}. To avoid these unnleasant facts we shall work with bounded almost linear operators with resnect to a convex cone CCY (see Section 4). The set of all such onerators, denoted by $L(X,(Y, C))$, is $\neq\{0\}$ when $C \neq\{0\}, X^{*}=L\left(X,\left(R, R_{+}\right)\right)$and when X, \underline{y} are normed linear spaces, $L(X,(Y, C))$ is the set of all bounded linear operators $T: X \rightarrow Y$. Though $L(X,(Y, C))$ has some relevant nroperties, it is not a nals for arbitrary $C \subset Y$. For convex cones C having a certain property (P) in Y (see Section 3), $L(X,(Y, C)$) is a nals. Though property (P) of C is not necessary for $L(X,(Y, C))$ to be a nals, it is ${ }^{\text {in }}$ a certain sense the best nossible (see Theorem 4.15).

In order to prove the extensions of some results from the theory of bounded linear operators in normed linear spaces, the main tool is given in Theorem 5.6, where we "embed" $L(X,(Y, C)$) in the space of bounded linear operators $T: E_{X} \rightarrow E_{Y}$. As anplications we prove the Banach-Steinhaus Theorem and the inverse mapping Theorem in our more general framework (Section 6).

2. PRELIMINARIES

For an easy understanding of this paper, in this section we recall definitions and results from [3], [4], [6], which will be used in the next sections. Some notations and general assumptions can be also found here. The main assumption is that all spaces are over the real field R. Let us denote by R_{+}the set $\{\lambda \varepsilon P: \lambda \geq 0\}$ and by N the set \{1,2,....\}.

An almost linear space (als) is a set X together with two mappings $s: X x X \rightarrow X$ and $m: R x X \rightarrow X$ satisfying $\left(L_{1}\right)-\left(L_{8}\right)$ below. We denote $s(x, y)$ by $x+y$ (or $x+y$) and $m(\lambda, x)$ by $\lambda o x$ (or λx). Let $x, y, z \varepsilon X$ and $\lambda, \mu \varepsilon R$. $\left(L_{1}\right) x+(\underline{y}+z)=(x+y)+z ;\left(L_{2}\right) x+y=y+x ;\left(L_{3}\right)$ There exists an element $0 \varepsilon X$ such that $x+0=x$ for each $x \varepsilon X ;\left(L_{4}\right) 1 o x=x ;\left(L_{5}\right) 00 x=0$; $\left(L_{6}\right) \lambda \circ(x+y)=\lambda \circ x+\lambda \bullet y ; \quad\left(L_{7}\right) \lambda \circ(\mu \circ x)=(\lambda \mu) \circ x ;\left(L_{8}\right)(\lambda+\mu) \circ x=\lambda o x+\mu \circ x$ for
$\lambda, \mu \varepsilon R_{+}$.
In an als X the following two sets play an imnortant role:

$$
\begin{aligned}
& V_{X}=\{x \in X: x+(-1 o x)=0\} \\
& W_{X}=\{x \in X: x=-1 \circ x\}(=\{x+(-1 \circ x): x \in X\})
\end{aligned}
$$

They are almost linear subspaces of X (i.e., closed under addition and multiplication by scalars), and by $\left(L_{1}\right)-\left(L_{8}\right), V_{X}$ is a linear space. Plainly, an als X is a linear space iff $X=V_{X}$, iff $W_{X}=\{0\}$.

In an als X we shall always use the notation λ ox for $m(\lambda, x)$, the notation λx being used onlv in a linear space.

An als X satisfies the law of cancellation if the relations $x, y, z \varepsilon X, x+y=x+z$ imply $y=z$.

In what follows a cone in an als X is a set $C \subset X$ such that $\lambda o x \in C$ for each $x \varepsilon X$ and $\lambda \varepsilon R_{+}$. The definition of a convex set in an als X is similar with that in a linear snace.

A norm on the als X is a functional $\|\|\cdot\|\|: X \rightarrow R$ satisfying $\left(N_{1}\right)-\left(N_{4}\right)$ below. Let $x, y \in X, w \in V_{X}$ and $\lambda \varepsilon R$. $\left(N_{1}\right) \||x+y|| | \leq|||x|||+$ $+\left\||y| H ;\left(N_{2}\right)\right\||x|| |=0$ iff $x=0 ;\left(N_{3}\right)\||\lambda o x|\|=|\lambda|\|x\| \| ;\left(N_{4}\right)$ $|||x||| \leq|||x+w|||$. By $\left(N_{1}\right)-\left(N_{4}\right)$ it follows that $|||x||| \geq 0, x \in X$. A normed almost linear space (nals) is an als X together with
 gave another equivalent definition for the norm, the above one being used in [6].

In a nals X the following inequality holds:
(2.1) , $||||x|||-|!| y||||\leq|||x+v||| \quad(x, v \in X)$
2.1. REMARK. Let X be a nals and $x, v \in X$. The function $\varphi(\lambda)=$

The next result is from ([3]).
2.2. LEMMA. Let x be a nals and $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.
(i) If $\mathrm{x}+\mathrm{y}=\mathrm{x}+\mathrm{z}$ then $|||\mathrm{y}|||=|||z|||$.
(ii) If $\mathrm{x}+\mathrm{y} \in \mathrm{V}_{\mathrm{X}}$ then $\mathrm{x}, \mathrm{y} \in \mathrm{V}_{\mathrm{X}}$.

Let X, Y be two almost linear spaces. A mappinc $T: X \rightarrow Y$ is called, a linear operator if $T\left(\lambda_{1} \circ X_{1}+\lambda_{2} o X_{2}\right)=\lambda_{1} o T\left(x_{1}\right)+\lambda_{2} o T\left(x_{2}\right), x_{i} \in X$, $\lambda_{i} \in R, i=1,2$.

The main tool for the theory of normed almost linear spaces
Knihovnou mat. fyz. fakulty UK odd. macematicke
18600 Praho-Karthin Sokielerxisíg 83
.
is the following theorem ([6], Theorem 3.2).
2.3. THEOREM, For any nals (X,III•\|II) there exist a normed Zinear space $\left(\mathrm{E}_{\mathrm{X}},\left||\cdot| \mathrm{I}_{\mathrm{E}_{\mathrm{X}}}\right)\right.$ and a mapping $\omega_{\mathrm{X}}: \mathrm{X} \rightarrow \mathrm{E}_{\mathrm{X}}$ with the following properties:
(i) The set $\mathrm{X}_{1}=\omega_{\mathrm{X}}(\mathrm{X})$ is a convex cone of E_{X} such that $\mathrm{E}_{\mathrm{X}}=\mathrm{X}_{1}$ -$-\mathrm{X}_{1}$, and X_{1} can be organized as an als where the addition and the multiplication by non-negative reals are the same as in E_{X}.
(ii) For each $\mathrm{Z} \mathrm{\varepsilon E}_{\mathrm{X}}$ we have:

$$
\begin{equation*}
\left.\|z\|\right|_{\mathrm{E}}=\inf \left\{| |\left|x_{1}\right||\ddot{+}|| | x_{2}| | \mid: x_{1}, \quad x_{2} \varepsilon X, \quad z=\omega_{X}\left(x_{1}\right)-\omega_{X}\left(x_{2}\right)\right\} \tag{2.2}
\end{equation*}
$$

and the als X_{1} together with this norm is a nals.
(iii) The mapping ω_{X} from X onto the $n a l s \mathrm{X}_{\mathrm{l}}$ is a Zinear operator and $\left|\left|\omega_{\mathrm{X}}(\mathrm{x})\right|\right|_{\mathrm{E}_{\mathrm{X}}}=\|||\mathrm{x}|| \mid$ for each $\mathrm{x} \in \mathrm{X}$.

In the sequel we shall not use the subscrint X (resp. E_{X}) for E_{X} and ω_{X} (resp. $\left||\cdot| \|_{E_{X}}\right.$) when these will not lead to misunderstandings.
2.4. REMARK. We have $\omega\left(\mathbb{N}_{\mathrm{X}}\right)=\mathrm{W}_{\mathrm{X}_{1}}$ and $\omega\left(\mathrm{V}_{\mathrm{X}}\right)=\mathrm{V}_{\mathrm{X}_{1}}$.
2.5. REMARK. If $\omega: \mathrm{X} \rightarrow \mathrm{X}_{1}$ is one-to-one then $\omega^{-1}: \mathrm{X}_{1} \rightarrow \mathrm{X}$ is a linear operator.

The proof of the following lemma is contained in the proof of ([6], Theorem 3.2, (iv), fact (I)).
2.6. LEMMA. Let (X,\|\|•\|\|) be a nals and $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{X}$ such that $\omega(x)=\omega(y)$. Then for each $\varepsilon>0$ there exist $x_{\varepsilon}, y_{\varepsilon}, u_{\varepsilon} \varepsilon X$ such that

A consequence of Theorem 2.3 is the following result ([6], Corollary 3.4).
2.7. COROLLARY. For any nals (X. III•I\|I) the function

$$
\rho(x, y)=\rho_{X}(x, y)=\||\omega(x)-\omega(y)| \mid \quad(x, v \varepsilon X)
$$

is a semi-metric on X and we have:

$$
\begin{equation*}
p(-l o x,-l o y)=p(x, y) \quad(x, v \in X) \tag{2.3}
\end{equation*}
$$

In a nals X the semi-metric ρ generates a tonology on X (which is not Hausdorff in general) and in the sequel any topologi-
cal concept such as closeness, completion, continuity, will be understood for this topology. Clearly p is a metric on X iff ω is one-to--one. Notice that even when ρ is not a metric on X we can use seauences instead of nets. Moreover the topology on the normed linear space $\left(V_{X},|l| \cdot| | \mid\right)$ generated by ρ is the same as the topology generated by the norm.
2.8. REMARK. If A is a closed subset of the nals (X,|||l|l) then $\omega(A)$ is a closed subset of the nals $\left(X_{1},||\cdot| 1)\right.$.

Ne recall now the definition of the dual space of a nals X and some of its properties used in the next sections.

Let X be an als. A functional $f: X \rightarrow R$ is called an almost Zinear functional if f is additive, positively homogeneous and $f(w) \geq$ ≥ 0 for each $w \in W_{X}$. Let X^{\sharp} be the set of all almost linear functionals on X. Define the addition in $X^{\#}$ by $\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x), x \in X$ and the multiplication by reals $(\lambda \circ f)(x)=f(\lambda \circ x)$, $x \varepsilon X$. The element $0 \varepsilon X^{*}$ is the functional which is 0 at each $x \in X$. Then $X^{\#}$ is an als. When X is a nals, for $f \varepsilon X^{\not t}$ define $|||f|||=\sup \{|f(x)|:|||x||| \leq 1\}$, and let $X^{*}=$ $=\left\{f \varepsilon X^{\#}:|||f|||<\infty\right\}$. Then X^{*} is a nals ([3]) called the dual space of the nals X. The dual space X^{*} is $\neq\{0\}$ if $X \neq\{0\}$ since the corollary of Hahn-Banach Theorem extends to a nals (see the introduction and the reference cited there). The next corollary is an immediate consequence of the above mentioned result and ([4]. Proposition 3.15). We give another direct proof using only the extension of the corollary of Hahn-Banach Theorem.
2.9. COROLLARY. If X is a nals such that $\mathrm{X} \neq \mathrm{V}_{\mathrm{X}}$ then $\mathrm{W}_{\mathrm{X}}{ }^{*} \neq\{0\}$.

Proof. Let $w \in W_{X}, \|||w||=l$ and let $f \varepsilon X *, \|||f|| \mid=1$ such that $f(w)=|||w|||$. Define for $x \in X, f_{l}(x)=f(x+(-l o x)) / 2$. Then $f_{1} \varepsilon N_{X *}$ and

We conclude this section with some examples from [3], [4] which will be used in the next sections.
2.10. EXAMPLE. Let $X=\left\{(\alpha, \beta) \in R^{2}: \beta \varepsilon R_{+}\right\}$. Define the addition and the multiplication by non-negative reals as in R^{2} and define $-10(\alpha, \beta)=(-\alpha, \beta)$. The element zero of X is $(0,0) \varepsilon R^{2}$. Then X is an als and we have $V_{X}=\{(\alpha, 0): \alpha \varepsilon R\}$ and $W_{X}=\left\{(0, \beta): \beta \varepsilon R_{+}\right\}$. Define for $(\alpha, \beta) \in X$, $|||(\alpha, \beta)|||=|\alpha|+\beta$. The als x together with this norm is a nals.
2.11. EXAMPLE. Let $X=R_{+}$. Define $x+y=\max \{x, y\}$ and for $\lambda \neq 0$, $\lambda 0 x=x$ and $0 \circ x=0$. The element $0 \varepsilon X$ is $0 \varepsilon R_{+}$. Then X is an als such that $W_{X}=X$. There exists no norm on X.
2.12. EXAMPLE. Let $X=R$. Define the addition and the element $0 \varepsilon X$ as in R and define $\lambda 0 x=|\lambda| x$. Then X is an als such that $W_{X}=X$.

There exists no norm on X .
If otherwise not stated, an als (nais) X will be supposed $\neq\{0\}$.
3. CONES WITH PROPERTY (P) IN A NORMED ALMOST LINEAR SPACE

3.1. DEFINITION. The convex cone C has property (P) in X if the relations $x, y \in X, x+y \varepsilon C$ and $c \varepsilon C$ imply that

```
max {|||x|||,|||y|||}\leqmax{|||x+c|||,|||y+c|||}
```

Note that if C^{\prime}, C are convex cones of $X, C^{\prime} C C$ and C has property (P) in X then C^{\prime} has also property (p) in X.

Clearly the cone $C=V_{X}$ has property (D) in X. The next result gives more information about the existence of cones with property (P) in a nals X.
3.2. PROPOSITION. In any nals X there exists a maximal convex cone $\mathrm{C} \neq\{0\}$ having property (P) in X and such that $\mathrm{N}_{\mathrm{X}} \subset \mathrm{C}$.

Proof. Suppose $\mathbb{N}_{X} \neq\{0\}$. As we observed above \mathbb{N}_{X} has pronerty (P) in X. Let F be the set of.all convex cones $C \subset X$, having pronerty (P) in X and such that $\|_{X} \subset C$. It is a partially ordered set, ordered by set-inclusion, and by Zorn's Lemma the conclusion follows.

Suppose $\mathbb{W}_{X}=\{0\}$. Then X is a normed linear snace. Let $X_{o} \varepsilon X_{\text {. }}$ $\left\|\left\|x_{0}\right\|\right\|=1$ and let $C_{0}=\left\{\lambda x_{0}: \lambda \varepsilon R_{+}\right\}$. Then C_{o} has property (P) in X. Indeed, let $x, y \varepsilon X$ such that $x+y \varepsilon C_{o}$ and let $c \varepsilon C_{o}$. If $x+y=0$ then (3.1) is obvious. If $x+y=\lambda_{0} x_{0}, \lambda_{0}>0$, suppose $\|||v||\left|\leq|||x|||\right.$. Let $c=\lambda_{1} x_{0}$. $\lambda_{1} \varepsilon R_{+}$and let $\lambda=\lambda_{1} / \lambda_{0}$. We have $|||x|||=(1+\lambda)| ||x|| |-\lambda| ||x|| | \leq$ $\leq(1+\lambda)| ||x|| |-\lambda| ||y|| | \leq|||(1+\lambda) x+\lambda y|||=|||x+c|||$, whence (3.1) follows. As in the case $W_{X} \neq\{0\}$ (replacing W_{X} by C_{o}), the assertion from the proposition follows by Zorn's Lemma.

The next proposition yields a necessary condition for a convex cone to have property (P) in x.
3.3. PROPOSITION. If C is a convex cone having propertụ (P) in the nals x then:

$$
\begin{equation*}
\left|\left|\left|c_{1}\right|\right|\right| \leq\left|\left|\left|c_{1}+c_{2}\right|\right|\right| \tag{3.2}
\end{equation*}
$$

$$
\left(c_{1}, c_{2} \varepsilon C\right)
$$

Proof. Let $c_{1}, c_{2} \varepsilon C$. We can sunpose $0 \neq\left\|\left|c_{2}\left\|\left|\leq\left\|\mid c_{1}\right\| \|\right.\right.\right.\right.$.
Case 1. $\left|\left|\left|c_{2}\right|\right|\right|<\left|\left|\left|c_{1}\right|\right|\right|$. Choose $0<\lambda<1$ such that $(1+\lambda)$.

- $\left\|\left|c_{2}\left\|\left|<\left|\left|\left|c_{1} \|\right|\right.\right.\right.\right.\right.\right.$. Since $c_{1}+c_{2} \varepsilon C$, by property (P) of C in x we have:

$$
\left|\left|\left|c_{1}\right|\right|\right| \leq \max \left\{| |\left|c_{1}+\lambda o c_{2}\right|| |,\left|\left|\left|c_{2}+\lambda o c_{2}\right|\right|\right|\right\}
$$

By the choice of λ we must have $\left\|\left|c_{1}\right|\right\| \leq\left\|\mid c_{1}+\lambda o c_{2}\right\| \|$, and (3.2) follows now by Remark 2.1 .

Case 2. $\left\|\left\|c_{2}\right\|\right\|=\left\|\mid c_{1}\right\| \|$. Let $0<\mu<1$. Then $\left\|\left\|\mu c_{2}\right\|\right\|<\left\|| | c_{1}\right\| \|$ and by the above case we get $\left\|\left\|c_{1}\right\|\right\| \leq\| \| c_{1}+\mu o c_{2}\| \|$. Aadain by Remark 2.1 we obtain (3.2).

The necessary condition for propertv (D) given above is not sufficient as the following example shows.
3.4. EXAMPLE. Let X be the nals described in Example 2.10. Let $C=\left\{(\alpha, \beta) \varepsilon X: \alpha, \beta \in R_{+}\right\}$. Then (3.2) is satisfied for $C_{1}, c_{2} \varepsilon C$ but C has not property (P) in X. Indeed, let $0<\varepsilon<1 / 2$ and let $x=(-\varepsilon, 1), y=c=$ $=(\varepsilon, 0) \varepsilon C$. We have $x+y \varepsilon C,|||y|||<|||x|||=1+\varepsilon,|||x+c|||=1$ and $\||y+c|| |=2 \varepsilon<l$ and so (3.1) fails.

Let $\left(X, \|\left|\left||| |)\right.\right.\right.$ be a nals and $(E,\|\cdot\|), \omega, X_{1}$ and ρ be given by Theorem 2.3 and Corollary 2.7.
3.5. LEMMA. Let (X,|||-|||) be a nals satisfying the law of cancellation and let $C c x$ be a convex cone having pronerty (P) in X and such that $\mathrm{N}_{\mathrm{X}} \subset \mathrm{C}$.
(i) $C_{1}=\omega(C)$ is a convex cone having pronerty (P) in X_{1}.
(ii) The closure $\overline{\mathrm{C}}$ of C in X is a convex cone having pronerty (P) in X .

Proof. (i). By the properties of ω given in Theorem 2.3, C_{1} is a convex cone. Let now $\bar{x}, \overline{\mathrm{y}} \varepsilon \mathrm{X}_{1}$ such that $\overline{\mathrm{x}}+\overline{\mathrm{v}}_{\mathrm{V}} \overline{\mathrm{C}}_{1} \varepsilon \mathrm{C}_{1}$ and let $\overline{\mathrm{C}}_{\varepsilon} \mathrm{C}_{1}$. Let $x, y \in X, c, c_{1} \varepsilon C$ such that $\omega(x)=\bar{x}, \omega(y)=\bar{y}, \omega(c)=\bar{c}$ and $\omega\left(c_{1}\right)=\bar{c}_{1}$. Then $\omega(x+y)=\omega\left(c_{1}\right)$. By Lemma 2.6 and since X satisfies the law of cancellation, for each $\varepsilon>0$ there exist $x_{\varepsilon}, y_{\varepsilon} \varepsilon X$ such that $\left\|\left\|x_{\varepsilon}\right\|\right\|+$ $+\|\left|y_{\varepsilon}\right|| | \leq \varepsilon$ and $x+y+y_{\varepsilon}=C_{1}+x_{\varepsilon}$. Hence, using the hynothesis $W_{X} C C$, we get $x+y^{+} y_{\varepsilon}+\left(-10 x_{\varepsilon}\right) \varepsilon C$, and by (2.1) and the pronerty (p) of C in X we obtain

$$
\begin{aligned}
& \max \left\{|||x|||-\left|\left|\left|y_{\varepsilon}\right|\right|\right|,|||y|||-\left|\left|\left|x_{\varepsilon}\right|\right|\right|\right\} \leq \\
& \leq \max \left\{| |\left|x+y_{\varepsilon}\right|| |,\left|\left|y+\left(-1 o x_{\varepsilon}\right)\right|\right| \mid\right\} \leq \\
& \leq \max \left\{| |\left|x+y_{\varepsilon}+c\right|| |,\left|\left|\left|\underline{+}\left(-10 x_{\varepsilon}\right)+c\right|\right|\right|\right\} \leq \\
& \leq \max \left\{| ||x+c|| |+\left|\left|\left|y_{\varepsilon}\right|\right|\right|,|||\underline{c}|||+\left|\left|\left|x_{\varepsilon}\right|\right|\right|\right\}
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$ we get (3.1), and the conclusion that C_{1} has pronerty
(P) in X_{1} follows by the pronerties of $\boldsymbol{\omega}$.
(ii) Clearly \bar{C} is a convex cone of x. Let now $x, y \in X$ such that $x+y \varepsilon \bar{C}$ and let $c \varepsilon \bar{C}$. For $\varepsilon>0$ there exist $c^{\prime}, c^{\prime \prime} \varepsilon C$ such that $\rho(x+y, c ")<\varepsilon$ and $\rho\left(c, c^{\prime}\right)<\varepsilon$. Since $\left|\left|\omega(x)+\omega(y)-\omega\left(c^{\prime \prime}\right)\right|\right|<\varepsilon$, by (2.2) there exist $x_{1}, y_{1} \varepsilon X$ such that $\omega(x)+\omega(v)-\omega\left(c^{\prime \prime}\right)=\omega\left(x_{1}\right)-\omega\left(y_{1}\right)$ and $\left|\left|\left|x_{1}\right|\right|\right|+\left|\left|\left|v_{1}\right|\right|\right|<$ $<\varepsilon$. Then $\omega\left(x+y+y_{1}\right)=\omega\left(x_{1}+c "\right)$ and as in (i) above we find $x_{\varepsilon}, y_{\varepsilon} \varepsilon X$ with
 $+y_{\varepsilon}+\left(-l o x_{1}\right)+\left(-1 o x_{\varepsilon}\right) \varepsilon C$. Using pronerty (p) of C in X and (2.1) we get:
$\max \left\{\|\|x\|\|,\left\|||y| \|\}-2 \varepsilon \leq \max \left\{\left|\left\|x+y_{1}+v_{\varepsilon} \mid\right\|,\| \| y+\left(-1 o x_{1}\right)+\left(-1 o x_{\varepsilon}\right)\| \|\right\} \leq\right.\right.\right.$
(3.3) $\leq \max \left\{| |\left|x+{\underset{y}{l}}_{1}+v_{\varepsilon}+c^{\prime}\right|| |,\left|\left|\left|v+\left(-1 o x_{l}\right)+\left(-1 o x_{\varepsilon}\right)+c^{\prime}\right|\right|\right|\right\} \leq$
$\leq \max \left\{| |\left|x+c^{\prime}\right|| |,\left|\left|\left|\underline{y}+c^{\prime}\right|\right|\right|\right\}+2 \varepsilon$

Now $\left|\left|\left|x+c^{\prime}\right|\right|\right|-|||x+c|||=\left|\left|\omega(x)+\omega\left(c^{\prime}\right)\right|\right|-||\omega(x)+\omega(c)|| \leq\left|\left|\omega\left(c^{\prime}\right)-\omega(c)\right|\right|=$ $=\rho\left(c^{\prime}, c\right)<\varepsilon$ and similarly $\left|\left|\left|\underline{y}+c^{\prime}\right|\right|\right|-|||\underline{̣}+c|||<\varepsilon$. By (3.3) we obtain:
$\max \{|||x|||,|||y|||\}-2 \varepsilon \leq \max \{| ||x+c|| |,|||v+c|||\}+3 \varepsilon$

Letting $\varepsilon \rightarrow 0$ we obtain (3.1), i.e., \bar{C} has property (D) in X.
We have not an example to show that the assumntion on X to satisfy the law of cancellation is not superfluous in the above lemma.

We conclude this section with the following remark.
3.6. REMARK. Let $C_{1} \subset X_{1}$ be a convex cone having mronertv (P) in X_{1}. Then $\omega^{-1}(C)=\left\{x \varepsilon X, \omega(x) \varepsilon C_{1}\right\}$ is a convex cone having property (P) in X.

4. ALMOST LINEAR OPERATORS

Let X, Y be two almost linear snaces and C a convex cone of Y.
4.1. DEFINITION. A mapping $T: X \rightarrow Y$ is called an almost linear operator with respect to C if the following three conditions hold:

$$
\begin{equation*}
T\left(x_{1}+x_{2}\right)=T\left(x_{1}\right)+T\left(x_{2}\right) \quad\left(x_{1}, x_{2} \varepsilon X\right) \tag{4.1}
\end{equation*}
$$

$$
T(\lambda \circ x)=\lambda \circ T(x) \quad\left(x \in X, \quad \lambda \varepsilon R_{+}\right)
$$

$$
\begin{equation*}
T\left(W_{X}\right) \subset C \tag{4.3}
\end{equation*}
$$

We denote by $L(X,(Y, C))$ the set of all $T: X \rightarrow Y$ satisfvinc
(4.1)-(4.3). We organize $L(X,(Y, C))$ as an als in the following way: for $T_{1}, T_{2}, T \varepsilon L(X,(Y, C))$ and $\lambda_{\varepsilon} R$ we define $T_{1}+T_{2} \varepsilon L(X(Y, C))$ and $\lambda_{0} T \varepsilon$ $\varepsilon L(X,(Y, C))$ by

$$
\begin{aligned}
& \left(T_{1}+T_{2}\right)(x)=T_{1}(x)+T_{2}(x) \\
& (\lambda \circ T)(x)=T(\lambda \circ x)
\end{aligned}
$$

The element $0 \varepsilon L(X,(Y, C))$ is the onerator which is zero at any $\mathrm{X} \varepsilon \mathrm{X}$. It is straightforward to show that $L(X,(Y, C)$) is an als.
4.2. REMARK. If C^{\prime}, C are convex cones of Y such that $C^{\prime} \in \mathbb{C}$ then $L\left(X,\left(Y, C^{\prime}\right)\right)$ is an almost linear subspace of $L(X,(Y, C))$.

Let us älso denote by $L(X, y)$ the $\operatorname{set} L(X,(\underline{Y},\{0\}))$ and by $\Lambda(X, Y)$ the set of all linear operators $T: X \rightarrow Y$. Bv Remark $4.2 L(X, Y)$ is an almost linear subspace of $L(X,(Y, C)$) for every Cey. It is easy to construct examples of $T_{\varepsilon} L(X,(X, C))$ which are not linear operators (see Example 4.7 below). Clearly if $T_{\varepsilon} L(X,(Y, C)$) then we have $T \varepsilon$ $\varepsilon \Lambda(X, Y)$ iff $S=-1 o T$ where $S: X \rightarrow Y$ is defined by $S(X)=-l o(T(X)), X \in X$. Here we also note that the inclusion $\Lambda(X, Y) \in L(X,(Y, C))$ can fail, but we always find cones CeY. when it holds, as the following remark shows.
4.3. REMARK. The set $\Lambda(X, Y)$ is an almost linear subspace of $L\left(X,\left(Y, W_{Y}\right)\right)$.
4.4. REMARK. We have:

$$
\begin{equation*}
\Lambda\left(X, V_{Y}\right) \subset V_{L(X,(Y, C))}=L(X, Y) \tag{4.4}
\end{equation*}
$$

$$
\begin{equation*}
\Lambda\left(\mathrm{V}_{\mathrm{X}}, \mathrm{~V}_{\mathrm{X}}\right) \subset L\left(\mathrm{~V}_{\mathrm{X}},(\mathrm{Y}, \mathrm{C})\right) \tag{4.5}
\end{equation*}
$$

$$
\begin{align*}
& \Lambda\left(\mathrm{V}_{\mathrm{X}}, \mathrm{~V}_{\mathrm{Y}}\right)=L\left(\mathrm{~V}_{\mathrm{X}},\left(\mathrm{~V}_{\mathrm{Y}}, \mathrm{C}\right)\right) \tag{4.6}\\
& L\left(\mathrm{X},\left(\mathrm{R}^{\prime}, \mathrm{R}_{+}\right)\right)=\mathrm{X} \tag{4.7}
\end{align*}
$$

Formula (4.5) shows that Definition 4.1 generalizes the notion of a linear operator between two linear spaces and (4.6) shows that when X and Y are linear spaces then the cone C is superfluous and Definition 4.1 is equivalent with the definition of a linear operator $T: X \rightarrow Y$. Formula (4.7) shows that Definition 4.1 generalizes the notion of an almost linear functional on an als x.
4.5. REMARK. Let $T \varepsilon L(X,(Y, C))$. We have $T \varepsilon \mathbb{V} L(X,(Y, C))$ iff $T(X)=$ $=T(-10 x)$ for each $X_{\varepsilon} X$. Conseruently if $\mathbb{T}_{\in \mathcal{F}}^{L}(X,(v, C))$ then $T(X) \subset C$.
4.6. REMARK. If $T \varepsilon \Lambda(X, Y)$ then $T(X)$ is an almost linear subspace of Y. If $T \varepsilon L(X,(Y, C))$ then $T(X)$ is a convex cone of v which can be not an almost linear subspace of y as the following example shows.
4.7. EXAMPLE. Let $y=\left\{(\alpha, \beta) \varepsilon R^{2}: \beta \in R_{+}\right\}$be the als described in Example 2.10 and let X be the almost linear subsnace of Y defined by $X=\{(\alpha, \beta) \in Y: \beta \geq|\alpha|\}$. We have $V_{X}=V_{Y}=\left\{(0, \beta): \beta \varepsilon R_{+}\right\}$. Let $T \varepsilon L\left(X,\left(Y, V_{Y}\right)\right)$ be defined by $T((\alpha, \beta))=(\alpha, \alpha+\beta),(\alpha, \beta) \in X$. Then $T(X)=\{(\alpha, \beta) \varepsilon \underline{v}: \beta \geq 2 \alpha\}$ which is not an almost linear subspace of \underline{y} since $(-1,0) \varepsilon T(X)$ and $-1 \rho(-1,0)=(1,0) \notin T(X)$. Clearly $T \notin \Lambda(X, \underline{v})$.

When Y is a nals then we can improve some of the above statements.
4.8. REMARK. When Y is a nals, condition (4.2) in Definition 4.1 can be given only for $\lambda_{\varepsilon} R_{+} \backslash\{0\}$. The fact that it holds for $\lambda=0$ is an immediate conseruence of (4.1) and Lemma 2.2 (i). This is no more true when Y is not a nāls.
4.9. EXAMPLE. Let $X=R_{+}$be the als described in Example 2.11. Let $Y=C=X$ and define $T: X \rightarrow X$ by $T(x)=\max \{1, X\}, X \in X$. Then T satisfies (4.1), (4.3) and (4.2) for $\lambda \neq 0$ but $T \notin L(X,(X, X))$ since $T(0)=1$.
4.10. REMARK. Let Y be a nals. TVe have:

$$
\begin{equation*}
L(X, Y)=\Lambda\left(X, V_{Y}\right) \tag{4.8}
\end{equation*}
$$

$$
\begin{equation*}
\left\{T \mid \mathrm{V}_{\mathrm{X}}: \mathrm{T} \varepsilon L(\mathrm{X},(\mathrm{Y}, \mathrm{C}))\right\} \subset \Lambda\left(\mathrm{V}_{\mathrm{X}}, \mathrm{~V}_{\mathrm{Y}}\right) \tag{4.9}
\end{equation*}
$$

$$
\begin{equation*}
\Lambda\left(\mathrm{v}_{\mathrm{X}}, \mathrm{v}_{\mathrm{Y}}\right)=L\left(\mathrm{v}_{\mathrm{X}},(\underline{\mathrm{Y}}, \mathrm{c})\right) \tag{4.10}
\end{equation*}
$$

The formulas (4.3)-(4.10) are not true when Y is not a nals. 4.11. EXAMPLE. Let X be the linear space R and let $y=R$ be the als described in Example 2.12. Since $\mathrm{V}_{\mathrm{Y}}=\{0\}$ we have $\Lambda\left(\mathrm{X}, \mathrm{V}_{\mathrm{Y}}\right)=\Lambda\left(\mathrm{V}_{\mathrm{X}}, \mathrm{V}_{\mathrm{V}}\right)=$ $=\{0\}$. Define $T: X \rightarrow Y$ by $T(x)=x$. Then (4.8)-(4.10) do not hold for this T .

Suppose now that X and Y are two normed almost linear snaces. For $T \varepsilon L(X,(Y, C))$ define
and let $L(X,(Y, C))=\{T \varepsilon L(X,(Y, C)): \mid\|T\| \|<\infty\}$. It is easy to show that $\left\|\|\right.$ - |l| defined by (4.11) satisfies $\left(N_{1}\right)-\left(N_{3}\right)$, whence $L(X,(Y, C))$ is an als. It is not always a nals for arbitrary convex cones CeY (see Proposition 4.14 or the example given in the proof of Theorem 4.15 below). Though we shall avoid the word "norm" when (N_{4}) does not hold, in the sequel we shall always consider the als $L(X,(\underline{y}, C)$) eqquiped with the $|||\cdot|| l$ defined by (4.11).
4.12. REMARK. If $C \neq\{0\}$ then $L(X,(Y, C)) \neq\{0\}$. Indeed, let $C \varepsilon C \backslash\{0\}$ and let $f \varepsilon X * \backslash\{0\}$. Define $T(x)=f(x) c, X \varepsilon X$. Then $T \varepsilon L(X,(Y, C))$ and $|||T|||=|||f|||| | c| | \mid<\infty$ and $\||T| \mid \neq 0$, i.e., $T \varepsilon L(X,(Y, C)) \backslash\{0\}$. If $C=\{0\}$ then $L(X,(Y, C))$ may be $\{0\}$ (e.q., when $X=\left\{H_{X}\right.$). We. also note. here that if $C=\{0\}$ then $L(X,(Y, C))$ mav be $\neq\{0\}$ (e.g., when X and Y are normed linear spaces).
4.13. REMARK. It is easy to show that if $T \varepsilon L(X,(Y, C))$ and T is continuous then $T \varepsilon L(X,(Y, C))$. The converse will be proved in Remark 5.5 in the next section.

We conclude this section with some necessary and (or) sufficient conditions on the convex cone Cey in order that $L(X,(Y, C))$ be a nals. As we observed above, if X is a linear snace then the cone $C \in Y$ is superfluous and up to the end of this section we suppose $X \neq V_{X}$. 4.14. PROPOSITION. Let C be a convex cone of the nals Y. In order that $L(X,(Y, C))$ be a nals it is necessary that the elements of C satisfy (3.2). If $\mathrm{X}=\Gamma_{\mathrm{X}}$ then this condition is also sufficient.

Droof. Suppose $L(X,(Y, C))$ a nals and supnose there are $c_{1}, c_{2} \varepsilon C$ such that $\left\|\left\|c_{1}+c_{2}\right\|\right\|<\| \| c_{1}\| \|$. By Corollary 2.9 there exists $f \varepsilon W_{X *},|||f|||=l$. Define $T_{i}(x)=f(x) c_{i}, x \in X, i=1,2$. By Remark 4.5, $T_{1}, T_{2}{ }^{\varepsilon V_{L}(X,(Y, C))}$ and we have $\|\left|\left|T_{1}\right|\right|\left|=\left|\left|c_{1}\right|\right|\right|$, $\left\|\left|\mid T_{1}+T_{2}\| \|=\| \| c_{1}+c_{2}\| \|\right.\right.$ and so $\left(N_{4}\right)$ is not satisfied, contradicting the hypothesis that $L(X,(\underline{Y}, C))$ is a nals.

The other statement is obvious, since if $Y=V_{X}$ then for each $T \in L(X,(Y, C))$ we have $T(X) \subset C$ and $\left(N_{4}\right)$ follows by (3.2).

Now we show that pronerty (P) of C in Y introduced in Section 3 is a sufficient condition in order that $L(X,(\underline{Y}, C))$ be a nals. Though this condition is not always necessary (see examnle below), it is in a certain sense the best possible, as one can see in the next result.
4.15. THEOREM. Let C be a convex cone of the nals Y. $\mathrm{L}(\mathrm{X},(\mathrm{Y}, \mathrm{C})$) is a nals for each nals X iff C has pronerty (P) in Y .

Proof: Suppose C has pronerty (D) in Y. Let $T \varepsilon L(X,(Y, C))$. $T_{1} \varepsilon W_{L}(X,(Y, C))$ and $X \varepsilon X,|||x||!\leq 1$. By Remark 4.5 we have
$T_{1}(x)=T_{1}(-10 x) \in C$. Since $T(x)+T(-f \circ x) \in C$ and by hypothesis we ret

$$
\begin{aligned}
& \max \{\|\|T(x)\|\|,\| \| T(-1 o x)\| \|\} \leq \\
& \leq \max \left\{\| \| T(x)+T_{1}(x)\| \|,\| \| T(-1 o x)+T_{1}(x)\| \|\right\} \leq\left\|\mid T+T_{1}\right\| \|
\end{aligned}
$$

whence $\left(\mathrm{N}_{4}\right)$ follows, i.e., $\mathrm{L}(\mathrm{X},(\mathrm{Y}, \mathrm{C}))$ is a nals.
If C has not propertv (D) in Y, there exist $y_{1}, y_{2} \varepsilon Y$, $\left\|\left\|y_{2}\right\|\right\| \leq\left\|\mid y_{1}\right\| \|$ and $c_{\varepsilon} C$ such that $y_{1}+y_{2} \varepsilon C$ and $\max \left\{\left\|\left\|y_{1}+c\right\|\right\|\right.$, $\left.\left\|\left|y_{2}+c\right|\right\| \mid\right\}<\left\|y_{1}\right\| \|$. Let x be the almost linear subsnace of the als described in Example 2.10, "defined by $X=\left\{(\alpha, \beta) \varepsilon \mathbb{R}^{2}: \beta \geq|\alpha|\right\}$. Define $\|\|(\alpha, \beta)\|\|=\beta$ for $(\alpha, \beta) \varepsilon X$. Then $(X,\| \| \cdot\| \|)$ is a nals. Let $T \varepsilon L(X,(Y, C)$, $T_{1} \varepsilon W_{L}(X,(Y, C))$ be defined by

$$
\begin{array}{ll}
T((\alpha, \beta))=\frac{\alpha+\beta}{2} v_{1}+\frac{\beta-\alpha}{2} y_{2} & ((\alpha, \beta) \varepsilon X) \\
T_{1}((\alpha, \beta))=\beta c & ((\alpha, \beta) \varepsilon X)
\end{array}
$$

Since $\beta \geq|\alpha|$ for $(\alpha, \beta) \varepsilon X$, we have:

$$
\left.\left\|\left|T((\alpha, \beta))\left\|\left\|\leq \frac{\alpha+\beta}{2}\right\|\left|y_{1}\right|\right\|+\frac{\beta-\alpha}{2}\left\|\left|v_{2}\right|\right\| \leq \beta\right|\right\| y_{1} \right\rvert\, \|
$$

and since $\|\|T((1,1))\|\|=\| \| y_{1}\| \|$ it follows that $\|\|T\|\|=\| \| y_{1}\| \|$. Furthermore.
whence $\left\|\left\|T+T_{1}\right\|\right\| \leq \max \left\{\| \| y_{1}+c\left|\|\|,\left\|v_{2}+c \mid\right\|\right\}<\| \| v_{1}\| \|=\| \| T \| \mid\right.$ which shows that $L(X,(Y, C))$ is not a nals.

We give now the example promised before Theorem 4.15.
4.16. EXAMPLE. Let x be the nals described in Examnle 2.10 and let $C=\left\{(\alpha, \beta) \varepsilon R^{2}: \alpha, \beta \in R_{+}\right\}$. In Example 3.4 we showed that C has not property (P) in X. Let $v=(1,0) \varepsilon V_{X}, w=(0,1) \varepsilon V_{X}$. For $(\alpha, \beta) \varepsilon X$ we have $(\alpha, \beta)=\alpha 0 v+$ Bow. Let $T_{1} \varepsilon L(X,(X, C))$ and $T_{2} \varepsilon W_{L}(X,(X, C))$. By (4.9) and Remark 4.5 we get $T_{i}((\alpha, \beta))=\alpha \circ T_{i}(v)+\beta \circ T_{i}(w), T_{i}(v) \varepsilon V_{X}, i=1,2$ and $T_{2}(v)=0$. Let $T_{1}(v)=\left(\gamma_{0}, 0\right)$ and $T_{i}(w)=\left(\gamma_{i}, \delta_{i}\right), \gamma_{i}, \delta_{i} \varepsilon R_{+}, i=1,2$. Then $T_{1}((\alpha, \beta))=\left(\alpha \gamma_{0}+\beta \gamma_{1}, \beta \delta_{1}\right)$ and $T_{2}((\alpha, \beta))=\left(\beta \gamma_{2}, \beta \delta_{2}\right)$. Let $(\alpha, \beta) \varepsilon X$, $\|\|(\alpha, \beta)\|\| \leq 1$. If $\alpha \gamma_{0} \geq 0$ then $\left\|\left\|T_{1}((\alpha, \beta))\right\|\right\|=\alpha \gamma_{0}+\beta \gamma_{1}+\beta \delta_{1} \leq$
 and by the above case we get $\left\|\left\|T_{1}((\alpha, \beta))\right\|\right\| \leq\| \| T_{1}((-\alpha, \beta)) \| \mid \leq$

4.17. REMARK. Bỵ Pronosition 4.14 and Theorem 4.15 we immediately obtain another proof for Pronosition 3.3.

5. MAIN RESULT

Let X and Y be two normed almost linear spaces and C a convex cone of Y. Up to the end of this paper we shall use the followinc notation:

$$
\begin{aligned}
& X_{1}=\omega_{X}(X) \\
& Y_{1}=\omega_{Y}(Y) \\
& C_{1}=\omega_{Y}(C)
\end{aligned}
$$

Even when $L(X,(Y, C))$ is not a nals, it has certain nronerties which we give below.
5.1. LEMMA. (i) For each $T \in L(X,(Y, C))$ there exists (a unique) $\tilde{T} \varepsilon L\left(X_{1},\left(Y_{1}, C_{1}\right)\right)$ such that $\omega_{Y} T=\tilde{T} \omega_{X}$ and $||\tilde{T}||=||T||$,
(ii) The mapping $\mathrm{I}: \mathrm{L}(\mathrm{X},(\mathrm{Y}, \mathrm{C})) \rightarrow \mathrm{L}\left(\mathrm{X}_{1},\left(\mathrm{Y}_{1}, \mathrm{C}_{1}\right)\right)$ defined by $\mathrm{I}(\mathrm{T})=$ $=\tilde{T}$, is a linear operator such that $\|I(T)\|\|=\| \mid T\| \|, T \varepsilon L(X,(\mathbb{Y}, C))$.
(iii) If $L\left(\mathrm{X}_{1},\left(\mathrm{Y}_{1}, \mathrm{C}_{1}\right)\right)$ is a nals, then $\mathrm{L}(\mathrm{X},(\mathrm{Y}, \mathrm{C}))$ is a nals.
(iv) If ω_{Y} is one-to-one then I is one-to-one and onto $\mathrm{L}\left(\mathrm{X}_{1},\left(\mathrm{Y}_{1}, \mathrm{C}_{1}\right)\right.$) and $\mathrm{L}(\mathrm{X},(\mathrm{Y}, \mathrm{C}))$ is a nals iff $\mathrm{L}\left(\mathrm{X}_{1},\left(\mathrm{~V}_{1}, \mathrm{C}_{1}\right)\right.$) is a nals.
(v) We have $\mathrm{I}(\mathrm{L}(\mathrm{X},(\mathrm{Y}, \mathrm{C})) \cap \Lambda(\mathrm{X}, \mathrm{Y})) \subset \mathrm{L}\left(\mathrm{X}_{1},\left(\mathrm{Y}_{1}, \mathrm{C}_{1}\right)\right) \cap \Lambda\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right)$ and the equality sian hol.ds if ω_{Y} is one-to-one.

Proof. (i) Let $T \varepsilon L(X,(Y, C))$. For $\bar{x} \varepsilon X_{1}$ let $\tilde{T}(\bar{x})=\omega_{\underline{Y}}(T(x))$. $x \varepsilon \omega_{X}^{-1}(\bar{x})$. To show that \tilde{T} is well defined, let $x_{1}, x_{2} \varepsilon X$ such that $\omega_{X}\left(x_{1}\right)=\omega_{X}^{\prime}\left(x_{2}\right)=\bar{x}$ and let $\varepsilon>0$. By Lemma 2.6 , there exist $x_{\varepsilon}^{\prime}, x_{\varepsilon}^{\prime \prime}, u_{\varepsilon}, X$ such that $\|\left|x_{\varepsilon}^{\prime}\right|| |+\left|\left|\left|x_{\varepsilon}^{\prime \prime}\right|\right|\right|<\varepsilon$ and $x_{1}+x_{\varepsilon}^{\prime \prime}+u_{\varepsilon}=x_{2}+x_{\varepsilon}^{\prime}+u_{\varepsilon}$. Hence $T\left(x_{1}\right)+$ $+T\left(x_{\varepsilon}^{\prime \prime}\right)+T\left(u_{\varepsilon}\right)=T\left(x_{2}\right)+T\left(x_{\varepsilon}^{\prime}\right)+T\left(u_{\varepsilon}\right)$ and so $\omega_{\underline{Y}}\left(T\left(x_{1}\right)\right)+\omega_{Y}\left(T\left(x_{\varepsilon}^{\prime \prime}\right)\right)=\omega_{\underline{V}}\left(T\left(x_{2}\right)\right)+$ $+\omega_{Y}\left(T\left(x_{\varepsilon}^{\prime}\right)\right)$. Then $\| \omega_{\underline{Y}}\left(T\left(x_{1}\right)\right)-\omega_{Y}\left(T\left(x_{2}\right)\right)| |=\left|\left|\omega_{Y}\left(T\left(x_{\varepsilon}^{\prime}\right)\right)-\omega_{Y}\left(T\left(x_{\varepsilon}^{\prime \prime}\right)\right)\right|\right| \leq$
 ry, we obtain $\omega_{Y}\left(T\left(x_{1}\right)\right)=\omega_{\underline{V}}\left(T\left(x_{2}\right)\right)$, i.e., \tilde{T} is well defined. Using the fact that $\omega_{X}\left(W_{X}\right)=V_{X}$, it is easy to show that $\tilde{T} \varepsilon L\left(X_{1},\left(Y_{1}, C_{1}\right)\right)$. Since for $x \in \omega_{X}^{-1}(\bar{x})$ we have $||\tilde{T}(\bar{x})||=\left|\left|\omega_{\underline{y}}(T(x))\right|\right|=|||T(x)|||$ and $||\bar{x}||=|||x|||$, it follows that $||\tilde{T}||=|||T|||<\infty$.
(ii) By (i) above we have $||I(T)||=\||T|| |$ for each $T \varepsilon L(X ;(Y, C))$. It is straightforward to show that I is a linear operator.
(iii) If $T \in H_{L}(X,(Y, C))$ then by Remark 4.5 we ret that
$I(T) \varepsilon W_{L}\left(X_{1},\left(Y_{1}, C_{1}\right)\right)$. Now $\left(N_{4}\right)$ for $\|||\cdot|| \mid$ on $L(X,(Y, C))$ follows bv $\left(N_{4}\right)$ for the norm of $L\left(X_{1},\left(Y_{1}, C_{1}\right)\right.$) using (ii).
(iv) Suppose ω_{Y} one-to-one. Plainly, I is also one-to-one and to show that I is onto $L\left(X_{1},\left(Y_{1}, C_{1}\right)\right)$, let $\tilde{T}_{\varepsilon} L\left(X_{1},\left(\underline{v}_{1}, C_{1}\right)\right.$). Define

$$
\begin{equation*}
T(x)=\omega_{Y}^{-1}\left(\tilde{T}\left(\omega_{X}(x)\right)\right) \tag{5.1}
\end{equation*}
$$

By Remark 2.5, $T \varepsilon L(X,(Y, C))$ and since $\left|\left\|T(x)\left|\|\left|=\left|\left|\tilde{T}\left(\omega_{X}(x)\right)\right|\right| \leq\right.\right.\right.\right.$
 $T \varepsilon L(X,(Y, C))$. By the definition of T we have that $I(T)=\tilde{T}, i . e . " I$ is onto $L\left(X_{1},\left(Y_{1} ; C_{1}\right)\right)$: For the last assertion in (iv), by (iii) above it remains to show that $L\left(X_{1},\left(Y_{1}, C_{1}\right)\right.$) is a nals if $L(X,(\underline{V}, C))$ is a nals. The proof is similar with the proof of (iii), observing that if $\tilde{T} \varepsilon W_{L}\left(X_{1},\left(Y_{1}, C_{1}\right)\right)$ and $T \varepsilon L(X ;(\underline{Y}, C))$ is such that $I(T)=\tilde{T}$ then $\mathrm{T}_{\varepsilon} \mathrm{W}_{\mathrm{L}}(\mathrm{X},(\mathrm{Y}, \mathrm{C}))$
(v) Let $T \varepsilon L(X,(Y, C)) \cap \Lambda(X, Y)$ and let $T(T)=\tilde{T} \in L\left(X_{1},\left(\underline{v}_{1}, C_{1}\right)\right)$. Let $\bar{x} \in X_{1}$ and $x \in X$ such that $\omega_{\underset{\sim}{X}}(x)=\bar{x}$. We have $\tilde{T}(-1 \circ \bar{x})=\tilde{T}_{T}\left(\omega_{X}(-1 \circ x)\right)=$ $=\omega_{Y}(T(-1 \circ x))=-l \circ \omega_{Y}(T(x))=-1 \circ \tilde{T}(x)$, i.e., $\tilde{T} \varepsilon \Lambda\left(X_{1}, Y_{1}\right)$. If ω_{Y} is one-to--one and $\tilde{T} \varepsilon L\left(X_{1},\left(Y_{1}, C_{1}\right)\right) \cap \Lambda\left(X_{1}, Y_{1}\right)$ then T defined by (5.1) belongs to $L(X,(Y, C)) \cap \Lambda(X, Y)$ and we have $I(T)=\tilde{T}$.
5.2. REMARK. Let $\Lambda_{b}(X, Y)=\{T \varepsilon \Lambda(X, Y):|||T|||<\infty\}$ where $\|||T|| \mid$ is given by (4.11). Using Remark 4.3 and the fact that $L\left(X,\left(Y_{,} V_{Y}\right)\right)$ is a nals (by Theorem 4.15), it follows that $\Lambda_{b}(X, Y)=\Lambda(X, Y) \cap$ $\cap_{L}\left(X,\left(Y, W_{Y}\right)\right.$) is a nals. By Lemma $5.1(v)$ for $C=W_{Y}$ we have that $I: \Lambda_{b}(X, Y) \rightarrow \Lambda_{b}\left(X_{1}, Y_{1}\right)$ is a linear onerator such that $\|I(T)\|=$ $=\| \| T\| \|, T \varepsilon \Lambda_{b}(X, Y)$, and when ω_{Y} is one-to-one, then I is one-to--one and onto $\Lambda_{b}\left(X_{1}, Y_{1}\right)$.

Let K be the convex cone of the linear snace $L\left(E_{X}, E_{\underline{y}}\right)$ defined by

$$
K=\left\{T \varepsilon L\left(\mathrm{E}_{\mathrm{X}}, \mathrm{E}_{\mathrm{Y}}\right): \mathrm{T}\left(\mathrm{X}_{1}\right) \subset \mathrm{Y}_{1}, \mathrm{~T}\left(\mathrm{~N}_{\mathrm{X}_{1}}\right) \subset \mathrm{C}_{1}\right\}
$$

and let

$$
\mathrm{K}=\mathrm{K} \cap \mathrm{~L}\left(\mathrm{E}_{\mathrm{X}}, \mathrm{E}_{\mathrm{Y}}\right)
$$

5.3. LEMMA. For $T \varepsilon K$ let $\tilde{T}=T \mid X_{1}$. Then $\tilde{T} \varepsilon L\left(X_{1},\left(Y_{1}, C_{1}\right)\right)$ and $||\tilde{T}||=||T||$.

Proof. Clearly $\tilde{T} \varepsilon L\left(X_{1},\left(Y_{1}, C_{1}\right)\right)$ and $||\tilde{T}|| \leq||T||$. Let now $z \varepsilon E_{X}$ $||z||<1$. There exist $\bar{x}_{1}, \bar{x}_{2} \varepsilon X_{1}$ such that $z=\bar{x}_{1}-\bar{x}_{2}$ and $\left|\left|\bar{x}_{1}\right|\right|+\left|\left|\bar{x}_{2}\right|\right| \leq 1$.

We have $\||T(z)|\left|\leq\left|\left|T\left(\bar{x}_{1}\right)\right|\right|+\left|\left|T\left(\bar{x}_{2}\right)\right|\right|=\left|\left|\tilde{T}\left(\bar{x}_{1}\right)\right|\right|+\left|\left|\tilde{T}\left(\bar{x}_{2}\right)\right|\right| \leq\right.$

5.4. LEMMA (i) The cone K can be organized as an als where the addition and the multiplication bu non-neqative reals are as in $L\left(E_{X}, E_{Y}\right)$.
(ii) K is analmost linear subspace of K and the als K together with the norm $11 \cdot 11$ of $L\left(E_{X}, E_{Y}\right)$ satisfy $\left(\mathrm{N}_{1}\right)-\left(\mathrm{N}_{3}\right)$.
(iii) The mapping $\mathrm{J}: \mathrm{K} \rightarrow \mathrm{L}\left(\mathrm{X}_{\mathrm{I}},\left(\mathrm{Y}_{1}, \mathrm{C}_{1}\right)\right)$ defined by $\mathrm{J}(\mathrm{T})=\mathrm{T} \mid \mathrm{X}_{1}$. $T \varepsilon K$, is a linear operator such that $\|J(T)\|\|=\| T \|, T \varepsilon K$, and J is one-to-one and onto $\mathrm{L}\left(\mathrm{x}_{1},\left(\underline{\mathrm{~V}}_{1}, \mathrm{C}_{1}\right)\right)$.
(iv) (K,|l|l|) is a nals iff $\mathrm{L}\left(\mathrm{X}_{1},\left(\underline{\mathrm{~V}}_{1}, \mathrm{C}_{1}\right)\right)$ is a nals.

Proof. (i) Observing that if $T_{1}, T_{2}, T \varepsilon K$ and $\lambda \varepsilon R_{+}$then $T_{1}+T_{2} \varepsilon K$ and $\lambda o T=\lambda T \varepsilon K$, it remains to define $-1^{\circ} T \varepsilon K$. For $z \varepsilon E_{X}, z=\bar{x}_{1}-\bar{x}_{2}$, $\bar{x}_{i} \varepsilon X_{1}$, $i=1,2$, let $(-1 \circ T)(z)=T\left(-1 \bullet \bar{x}_{1}\right)-T\left(-10 \bar{X}_{2}\right) \in E_{Y}$. It is easy to show that -loT is well defined and that -loTeK. Now a simple verification shows that K is an als.
(ii) Let $T \varepsilon K$. Since $(-10 T) \mid X_{1}=-10\left(T \mid X_{1}\right)$, bv Lemma 5.3 it follows that $\|-10 T| |=\|(-10 T)\left|X_{1}\right||=\| T| X_{1}| |=||T||<\infty$. The proof of the assertions in (ii) is now obvious.
(iii) By Lemma 5.3, for $T \varepsilon K$ we have $J(T) \varepsilon L\left(X_{1},\left(y_{1}, C_{1}\right)\right)$ and $\|J(T)\|=\||T| l$. It is straightforward to show that J is a linear operator which is one-to-one. Let now $\tilde{T} \varepsilon L\left(X_{1} ;\left(Y_{1} ; C_{1}\right)\right)$ and for $z \varepsilon E_{X}$, $z=\bar{x}_{1}-\bar{x}_{2}, \bar{x}_{i} \varepsilon X_{1}, i=1,2$, define $T(z)=\tilde{T}\left(\bar{x}_{1}\right)-\tilde{T}\left(\bar{x}_{2}\right) \varepsilon E_{\underline{y}}$. This mapping is well defined and $T \varepsilon L\left(E_{X}, E_{Y}\right)$. Clearly $T \varepsilon K$ and $T \mid X_{1}=\tilde{T}$. By Lemma 5.3 we get $||T||=||\tilde{T}||<\infty$, i.e., $T \varepsilon K$ and since $J(T)=\tilde{T}$ it follows that J is onto $L\left(X_{1},\left(Y_{1}, C_{1}\right)\right)$.
(iv) Using Remark 4.5 and the definition of -loT for TeK it is easy to show that $T \varepsilon W_{K}$ iff $J(T) \varepsilon V_{L}\left(X_{1},\left(\underline{Y}_{1}, C_{1}\right)\right)$. The assertions of (iv) follow now immediately.

We can now prove the converse statement in Remark 4.13.
5.5. REMARK. If $T \varepsilon L(X,(Y, C))$ then T is continuous. Indeed, let $T_{1}=J^{-1} I(T) \& K$, where I and J are given by Lemmas 5.1 and 5.4. Then $I(T)=J\left(T_{1}\right)=T_{1} \mid X_{1}$. Now let $x_{n}, x \in X$ such that $\lim _{n \rightarrow \infty} \rho_{X}\left(x_{n}, x\right)=0$. We have $\rho_{Y}\left(T\left(x_{n}\right), T(x)\right)=\left\|\omega_{Y}\left(T\left(x_{n}\right)\right)-\omega_{Y}(T(x))| |=\right\|\left|T(T)\left(\omega_{X}\left(x_{n}\right)\right)-I(T)\left(\omega_{X}(x)\right)\right| \mid=$ $=\left\|T_{1}\left(\omega_{X}\left(x_{n}\right)\right)-T_{1}\left(\omega_{X}(x)\right)\right\| \rightarrow 0$, since $T_{1} \varepsilon L\left(E_{X}, E_{V}\right)$ and $\| \omega_{X}\left(x_{n}\right)-$ $-\omega_{\mathrm{X}}(\mathrm{x})| |=\rho_{\mathrm{X}}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}\right) \rightarrow 0$.

The main result of this paper is the next theorem which तives ($\mathrm{E}, \mid \mathrm{l} \cdot \mathrm{I} .1$) and ω from Theorem 2.3 for $\mathrm{L}(\mathrm{X},(\mathrm{Y}, \mathrm{C})$) when it is a nals. Unfortunately we are able to nrove it under the stronger assumption (in view of Lemma 5.1 (iii)) that $L\left(X_{1},\left(V_{1}, C_{1}\right)\right)$ is a nals. Let I
and J be given by Lemmas 5.1 and 5.4, and denote by K_{1} the following subset of $L\left(E_{X}, E_{Y}\right)$:

$$
K_{1}=J^{-1} I(L(X,(Y, C)))
$$

5.6. THEOREM. If $\mathrm{L}\left(\mathrm{X}_{1},\left(\mathrm{Y}_{1}, \mathrm{C}_{1}\right)\right)$ is a nals, then for the nals $\mathrm{L}(\mathrm{X},(\mathrm{Y}, \mathrm{C}))$ the following assertions are true:
(i) $\mathrm{E}_{\mathrm{L}(\mathrm{X},(\mathrm{Y}, \mathrm{C}))}$ is a linear subspace of $\mathrm{L}\left(\mathrm{E}_{\mathrm{X}}, \mathrm{E}_{\mathrm{Y}}\right)$ and we have $\mathrm{E}_{\mathrm{L}(\mathrm{X},(\mathrm{Y}, \mathrm{C}))}=\mathrm{K}_{1}-\mathrm{K}_{1}$. The norm.on $\mathrm{E}_{\mathrm{L}(\mathrm{X},(\mathrm{Y}, \mathrm{C}) \text {) }}$ is defined for $\mathrm{T}_{\mathrm{E}} \mathrm{E}_{\mathrm{L}}(\mathrm{X},(\mathrm{Y}, \mathrm{C})) b y$

$$
\| T| |_{E_{L}(X,(Y, C))}=\operatorname{inff\{ |T_{1}||_{L_{(}(E_{X},E_{\underline {v}})}+||T_{2}|\| _{L_{(}(E_{X},E_{Y})}\} }
$$

where the inf is taken over alZ $\mathrm{T}_{1}, \mathrm{~T}_{2} \varepsilon \mathrm{~K}_{1}$ such that $\mathrm{T}=\mathrm{T}_{1}-\mathrm{T}_{2}$. Moreover

$$
||T||_{E_{L}(X,(Y, C))}=||T||_{L}\left(E_{X}, E_{Y}\right) \quad\left(T \varepsilon K_{1}\right)
$$

(ii) We have $\omega_{\mathrm{L}}(\mathrm{X},(\mathrm{Y}, \mathrm{C}))^{=\mathrm{J}^{-1} \mathrm{I}}$ and $\omega_{\mathrm{L}}(\mathrm{X},(\mathrm{V}, \mathrm{C}))(\mathrm{L}(\mathrm{X},(\underline{\mathrm{Y}}, \mathrm{C})))=\mathrm{K}_{1}$ is an almost linear subspace of the als K such that $\left(\mathrm{K}_{1},\|\cdot\| \|_{\mathrm{L}}\left(\mathrm{F}_{\mathrm{X}}, \mathrm{E}_{\mathrm{Y}}\right)\right.$) is a nals.
(iii) If ω_{Y} is one-to-one then the conclusions of (i) and (ii) hold for $\mathrm{K}_{\mathrm{I}}=\mathrm{K}$ and the mapping $\omega_{\mathrm{L}}(\mathrm{X},(\mathrm{Y}, \mathrm{C})$) is now one-to-one.

Proof. As we have noted above, since $L\left(X_{1},\left(Y_{1}, C_{1}\right)\right.$) is a nals, by Lemma 5.1 (iii), L(X, $Y, C)$) is also a nals. Usinc Lemmas 5.1 and 5.4 together with the observation that since $J^{-1} I$ is a linear operator then K_{1} is an almost linear subspace of K, it is easy to show that the linear space $K_{1}-K_{1}$ endowed with the norm defined at (i) above, and the linear operator $J^{-1} I$ satisfy all the requirements of Theorem 2.3 for the nals $L(X,(Y, C)$), as well as (i)-(iさi) above.

Even when ω_{Y} is one-to-one, we have not the equality sign in the inclusion $K-K \subset L\left(E_{X}, E_{Y}\right)$, as the following examnle shows.
5.7. EXAMPLE. Let x be the nals described in Examnle 2.10 , $Y=R^{2}$ endowed with the Euclidean norm and $C \subset Y$ be the convex cone $\left\{(\alpha, 0): \alpha \varepsilon R_{+}\right\}$. Since C has pronerty (D) in Y, by Theorem 4.15, $L(X,(Y, C))$ is a nals. We have $X=X_{1}, Y=Y_{1}=E_{Y}$ and $E_{X}=R^{2}$ endowed with the norm $||(\alpha, \beta)||=|\alpha|+|\beta|,(\alpha, \beta) \varepsilon R^{2}$. Let $T \varepsilon L\left(E_{X}, E_{Y}\right)$ be defined bv $T((\alpha, \beta))=(\alpha, \beta),(\alpha, \beta) \varepsilon E_{X}$. Supnose $T=T_{1}-T_{2}, T_{i} \varepsilon K, i=1,2$. Then for the element $(0,1) \varepsilon W_{X}$, we must have $T_{i}((0,1))=\left(\alpha_{i}, 0\right) \varepsilon C, i=1,2$. Hence $\mathrm{T}((0,1))=(0,1)=\mathrm{T}_{1}((0,1))-\mathrm{T}_{2}((0,1))=\left(\alpha_{1}-\alpha_{2}, 0\right)$, which is not nossible.

6. APPLICATIONS

The aim of this section is to obtain certain classical theorems from the the theory of operators in normed linear spaces, within the framework of normed almost linear spaces. For the proofs we shall use Theorem 5.6, the correspondint theorem known in normed linear spaces, as well as the following result.
6.1. LEMMA. A nals ($\mathrm{X},|||\cdot|||$) is complete iff $\left(\mathrm{E}_{\mathrm{X}},||\cdot||\right)$ is a Banach space and X_{1} is norm-closed in E_{X}.

Proof. Suppose X complete. Then X_{1} is complete in the $11 \cdot|\mid$ of E_{X} and so closed in E_{X}. We show now that E_{X} is a Banach space. Let $\left\{z_{n}\right\}_{n=1}^{\infty} \subset E_{X}$ be a Cauchy sequence. We can sunnose (passing to a subsequence if necessary) that for each $n \in N$ we have

$$
\left|\mid z_{n}^{-z} n+p \text { }\right| \left\lvert\,<\frac{1}{2^{n+1}} \quad\right. \text { for each } p \geq 1
$$

Let $z_{1}=x_{1}-y_{1}, x_{1}, Y_{1} \varepsilon X_{1}$. Since $\left|\left|z_{2}-z_{1}\right|\right|<1 / 2^{2}$, there exist $x_{2}, Y_{2} \varepsilon X_{1}$ such that $z_{2}-z_{1}=x_{2}-y_{2}$ and $\left|\left|x_{2}\right|\right|+\left|\left|y_{2}\right|\right|<1 / 2$. Then $z_{2}=\left(x_{1}+x_{2}\right)-$ $-\left(y_{1}+y_{2}\right)$ where $\left|\left|x_{2}\right|\right|<1 / 2^{2},\left|\left|y_{2}\right|\right|<1 / 2^{2}$. By induction on n we find two sequences $\left\{x_{i}\right\}_{i=1}^{\infty},\left\{\underline{y}_{i}\right\}_{i=1}^{\infty} \subset x_{1}$ such that for each $n \in N$ we have $z_{n}=\left(\sum_{i=1}^{n} x_{i}\right)-\left(\sum_{i=1}^{n} y_{i}\right)$ and for $n \geq 2$ we have $\left|\left|x_{n}\right|\right|<1 / 2^{n},\left|\left|y_{n}\right|\right|<1 / 2^{n}$. For each $n \varepsilon N$, let $\bar{x}_{n}=\sum_{i=1}^{n} x_{i} \varepsilon X_{1}$ and $\bar{y}_{n}=\sum_{i=1}^{n} y_{i} \varepsilon X_{1}$. Clearlv, $\left\{\bar{x}_{n}\right\}_{n=1}^{\infty}$ and $\left\{\bar{y}_{\underline{n}}\right\}_{\underline{n}=1}^{\infty}$ are Cauchy sequences and since x_{1} is comnlete, there exist $\bar{x}, \bar{y} \varepsilon X_{1}$ such that $\lim _{n \rightarrow \infty}| | \bar{x}_{n}-\bar{x}| |=0$ and $\lim _{n \rightarrow \infty}| | \bar{y}_{n}-\bar{y}| |=0$. Then for $z=\bar{x}-\bar{y} \in E_{X}$ we have $\lim _{n \rightarrow \infty}| | z_{n}-z| |=0$, i.e., E_{X} is a Banach space. The "if" part is obvious.

Simple examples show that the assumption $\left(E_{X},\| \| \|\right)$ be a Banach space does not imply that X_{1} is norm-closed in E_{X}.

We can now prove e.g. the extensions of Banach-Steinhaus Theorem and the inverse manping theorem from the theory of normed linear spaces.
6.2. THEOREM. Let X be a complete nals, Y a nals such that ω_{Y} is one-to-one and CeY a closed convex cone such that $\mathrm{L}(\mathrm{X},(\mathrm{Y}, \mathrm{C})$) is a nals. Let $\left\{\mathrm{T}_{\mathrm{n}}\right\}_{\mathrm{n}=1}^{\infty}$ be a sequence in $\mathrm{L}(\mathrm{X},(\mathrm{Y}, \mathrm{C})$) such that $\lim _{\mathrm{n} \rightarrow \infty} \rho_{\mathrm{Y}}\left(\mathrm{T}_{\mathrm{n}}(\mathrm{x}), \mathrm{T}(\mathrm{x})\right)=0$ for each $\mathrm{x} \in \mathrm{X}$. Then the sequence $\left\{\left\|\left|T_{\mathrm{n}}\right|\right\|_{\mathrm{n}=1}^{\infty}\right.$ is bounded and $T \varepsilon L(X,(Y, C))$.
proof. Since ω_{Y} is one-to-one and C closed, it is easy to show that $T \varepsilon L(X,(Y, C))$. Now for each $X \varepsilon X,\| \| x\| \| \leq 1$ we have $|||T(x)|||=\left|\left|\omega_{Y}(T(x))\right|\right| \leq\left|\left|\omega_{Y}(T(x))-\omega_{Y}\left(T_{n}(x)\right)\right|\right|+\left|\left|\omega_{\underline{v}}\left(T_{n}(x)\right)\right|\right|=$ $=\rho_{Y}\left(T_{n}(x), T(x)\right)+\| \| T_{n}(x)\| \| \leq \rho_{Y}\left(T_{n}(x), T(x)\right)+\| \| T_{n}\| \|$ for each $n \in N$,
and so if we show that $\left\{\left|\left|\left|T_{n}\right|\right|^{\prime}\right|\right\}_{n=1}^{\infty}$ is bounded, then $T \in L(X,(\underline{v}, C))$. Since ω_{Y} is one-to-one, by hypothesis and Lemma 5.1 (iv). $L\left(X_{1},\left(Y_{1}, C_{1}\right)\right)$ is a nals. By Theorem 5.6, $\omega_{L(X,(Y, C))}\left(T_{n}\right) \varepsilon K, n \in N$. Then $\omega_{L}(X,(Y, C))\left(T_{n}\right) \mid X_{1}=\tilde{T}_{n} \varepsilon L\left(X_{1},\left(Y_{1}, C_{1}\right)\right)$ and $\omega_{Y} T_{n}=\tilde{T}_{n} \omega_{X}$, n εN. Hence and by hypothesis we have for each $x \in X$. that $0=\lim _{n \rightarrow \infty} \rho_{Y}\left(T_{n}(x), T(x)\right)=$ $=\lim _{n \rightarrow \infty}| | \omega_{Y}\left(T_{n}(x)\right)-\omega_{Y}(T(x))| |=\lim _{n \rightarrow \infty}| | \tilde{T}_{n}\left(\omega_{X}(x)\right)-\omega_{Y}(T(x))| |$ and so for each $\overline{\mathrm{x}} \varepsilon \mathrm{X}_{1}$ the sequence $\left\{\mathrm{T}_{\mathrm{n}}(\overline{\mathrm{x}})\right\}_{\mathrm{n}=1}^{\infty}$ converges to an element of Y_{1}. Let $z_{\varepsilon} E_{X}, \quad z=\bar{x}_{1}-\bar{x}_{2}, \bar{x}_{i} \varepsilon X_{1}, i=1,2$. Then $\omega_{L}(X,(\underline{y}, C))\left(T_{n}\right)(z)=$
 to an element of E_{Y}. By Lemma 6.1, E_{X} is a Banach snace, whence bv Banach-Steinhaus Theorem the seruence $\left\{\left\|\omega_{L}(X,(Y, C))\left(T_{n}\right)\right\| \|\right\}_{n=1}^{\infty}$ is bounded. Since $\left\|\omega_{L}(X,(Y, C))\left(T_{n}\right)\right\|\|=\| \mid T_{n}\| \|$ for each $n \varepsilon N$, the sequence $\left\{\left|\left|\left|T_{n}\right|\right|\right|\right\}_{n=1}^{\infty}$ is bounded.
6.3. THEOREM. Let X, Y be two complete normed almost linear spaces such that both ω_{X} and ω_{Y} are one-to-one. If $\mathrm{T} \varepsilon \mathrm{L}\left(\mathrm{X},\left(\mathrm{Y}, \mathrm{T}_{\mathrm{Y}}\right)\right.$) is one-to-one and onto Y and $\mathrm{T}\left(\mathrm{W}_{\mathrm{X}}\right)=\mathrm{W}_{\mathrm{Y}}$, then the inverse operator $\mathrm{T}^{-1} \varepsilon \mathrm{~L}\left(\mathrm{Y},\left(\mathrm{X}, \mathrm{W}_{\mathrm{X}}\right)\right)$. Proof. By Remark 2.4 we have $\omega_{X}\left(W_{X}\right)=W_{X_{1}}$ and $\omega_{Y}\left(W_{Y}\right)=W_{Y_{1}}$. By Theorem 4.15, $L\left(X,\left(Y, W_{Y}\right)\right), L\left(X_{1},\left(Y_{1}, V_{Y}\right)\right), L\left(Y,\left(X, W_{X}\right)\right)$ and $\mathrm{L}\left(\mathrm{Y}_{1},\left(\mathrm{X}_{1}, \mathrm{~W}_{\mathrm{X}_{1}}\right)\right.$) are normed almost linear spaces. Let $\mathrm{T} \in \mathrm{L}\left(\mathrm{X},\left(\mathrm{Y}, \mathrm{N}_{\mathrm{Y}}\right)\right.$) be one-to-one and onto Y and $T\left(W_{X}\right)=\left[V_{Y}\right.$, and let $T_{1}=\omega_{L}\left(X,\left(Y, W_{Y}\right)\right.$) (T) ε K. Then $T_{1} \mid X_{1}=\tilde{T} \varepsilon L\left(X_{1},\left(Y_{1}, W_{Y_{1}}\right)\right)$ and $\tilde{T} \omega_{X}=\omega_{Y} T$. We show that the bounded linear operator $T_{1}: E_{X} \rightarrow E_{Y}$ is one-to-one and onto E_{V}. Let $z_{1}, z_{2} \varepsilon E_{X}$ such that $T_{1}\left(z_{1}\right)=T_{1}\left(z_{2}\right)$. Let $x_{i} \varepsilon X, 1 \leq i \leq 4$, such that $z_{1}=\omega_{X}\left(x_{1}\right)-\omega_{X}\left(x_{2}\right)$ and $z_{2}=\omega_{X}\left(x_{3}\right)-\omega_{X}\left(x_{4}\right)$. Then $T_{1}\left(z_{1}\right)=\tilde{T}\left(\omega_{X}\left(x_{1}\right)\right)-\tilde{T}\left(\omega_{X}\left(x_{2}\right)\right)=\omega_{V}\left(T\left(x_{1}\right)\right)-$ $-\omega_{Y}\left(T\left(x_{2}\right)\right)$, and similarly, $T_{1}\left(z_{2}\right)=\omega_{Y}\left(T\left(x_{3}\right)\right)-\omega_{\underline{V}}\left(T\left(x_{4}\right)\right)$, and so $\omega_{Y}\left(T\left(x_{1}+x_{4}\right)\right)=\omega_{Y}\left(T\left(x_{2}+x_{3}\right)\right)$. Since ω_{Y} and T are one-to-one, it follows that $x_{1}+x_{4}=x_{2}+x_{3}$, whence $z_{1}=\omega_{X}\left(x_{1}\right)-\omega_{X}\left(x_{2}\right)=\omega_{X}\left(x_{3}\right)-\omega_{X}\left(x_{4}\right)=z_{2}$, i.e., T_{1} is one-to-one. Let now $u \varepsilon E_{Y}$ and $Y_{1}, y_{2} \varepsilon Y$ such that $u=\omega_{Y}\left(y_{1}\right)-\omega_{Y}\left(y_{2}\right)$. Since T is onto Y there exist $x_{1}, x_{2} \varepsilon X$ such that $y_{i}=T\left(x_{i}\right), i=1,2$. Let $z=\omega_{X}\left(x_{1}\right)-\omega_{X}\left(x_{2}\right) \varepsilon E_{X}$. We have $T_{1}(z)=\tilde{T}\left(\omega_{X}\left(x_{1}\right)\right)-\tilde{T}\left(\omega_{X}\left(x_{2}\right)\right)=$ $=\omega_{Y}\left(T\left(x_{1}\right)\right)-\omega_{Y}\left(T\left(x_{2}\right)\right)=\omega_{Y}\left(y_{1}\right)-\omega_{Y}\left(y_{2}\right)=$, i.e.. T_{1} is onto E_{Y}. By the inverse mapping theorem, there exists $T_{1}^{-1} \varepsilon L\left(E_{Y}, E_{X}\right)$ such that $T_{1}^{-1}\left(T_{1}(z)\right)=z$ for each $z_{\varepsilon} E_{X}$. We show now that the following inclusions hold:

$$
\begin{align*}
& \mathrm{T}_{1}^{-1}\left(\mathrm{Y}_{1}\right) \subset \mathrm{X}_{1} \tag{6.1}\\
& \mathrm{~T}_{1}^{-1}\left(\mathrm{~W}_{\mathrm{Y}_{1}}\right) \subset \mathrm{W}_{\mathrm{X}_{1}} \tag{6.2}
\end{align*}
$$

For the proof of (6.1), let $\bar{Y} \in Y_{1}$ and $z \varepsilon E_{X}$ such that $T_{l}^{-1}(\bar{y})=z$. Let $Y \in Y$ such that $\bar{y}=\omega_{Y}(Y)$ and let $x \in X$ such that $T(x)=y$. Then $T_{1}(z)=\bar{y}=$ $=\omega_{Y}(T(x))=\widetilde{T}\left(\omega_{X}(x)\right)=T_{1}\left(\omega_{X}(x)\right)$ and since T_{1} is one-to-one, it follows that $z=\omega_{X}(x)_{\varepsilon} X_{1}$. For the proof of (6.2), let $\bar{w}_{1} \varepsilon \mathbb{N}_{Y_{1}}$. By (6.1) we get $\mathrm{T}_{1}^{-1}\left(\bar{w}_{1}\right)=\overline{\mathrm{x}} \varepsilon \mathrm{X}_{1}$. By Remark 2.4, there exists $\mathrm{w}_{1} \varepsilon \mathrm{~V}_{\underline{y}}$ with $\bar{w}_{1}=\omega_{\mathrm{Y}}\left(\mathrm{w}_{1}\right)$. By hypothesis there exists $w \in W_{X}$ such that $w_{1}=T(w)$. We have $T_{1}(\bar{x})=\bar{w}_{1}=$ $=\omega_{Y}(T(w))=\tilde{T}\left(\omega_{X}(w)\right)=T_{1}\left(\omega_{X}(w)\right)$, and since T_{1} is one-to-one, we get $\overline{\mathrm{x}}=\omega_{\mathrm{X}}(\mathrm{w})$. Again by Remark 2.4, $\overline{\mathrm{x}} \in \mathrm{W}_{\mathrm{X}_{1}}$.

Using (6.1), (6.2) and the hypothesis that ω_{X} is one-to-one, by Theorem 5.6, there exists $T^{\prime} \varepsilon L\left(Y,\left(X, V_{X}\right)\right)$ such that $\omega_{L}\left(X,\left(X, W_{X}\right)\right)^{\left(T^{\prime}\right)}=$ $=T_{1}^{-1}$. It remains to show that for each $X \in X$ we have $T^{\prime}(T(x))=x, X_{i} . e .$, $T^{\prime}=T^{-1}$. Let us denote by $I^{\prime}: L\left(Y,\left(X, W_{X}\right)\right) \rightarrow L\left(\mathrm{X}_{1},\left(\mathrm{X}_{1}, \mathrm{~N}_{\mathrm{X}_{1}}\right)\right.$ the mapping given by Lemma 5.1 (ii). Let $x_{\varepsilon} X$ and $Y=T(x)$. We have $\omega_{X}\left(T^{\prime}(T(x))=\right.$ $=\omega_{X}\left(T^{\prime}(\mathrm{y})\right)=\left(\mathrm{I}^{\prime}\left(\mathrm{T}^{\prime}\right)\right)\left(\omega_{\mathrm{Y}}(\mathrm{y})\right)=\omega_{\mathrm{L}}\left(\mathrm{Y},\left(\mathrm{X}, \mathrm{F}_{\mathrm{X}}\right)\right)^{\left(\mathrm{T}^{\prime}\right)\left(\omega_{\mathrm{Y}}(\mathrm{y})\right)=\mathrm{T}_{1}^{-1}\left(\omega_{\mathrm{Y}}(\mathrm{Y})\right)=}$ $=T_{1}^{-1}\left(\omega_{Y}(T(x))\right)=T_{1}^{-1}\left(\tilde{T}\left(\omega_{X}(x)\right)\right)=T_{1}^{-1}\left(T_{1}\left(\omega_{X}(x)\right)\right)=\omega_{X}(x)$. Since ω_{X} is one--to-one, we get $T^{\prime}(y)=x$, which completes the proof.

As one can see in the above Theorems 5.2 and 5.3 , the formulations in our more general setting of some results known in the theory of operators in normed linear spaces is not difficult. The above method may be used to prove other results. We can not prove or disprove in the framework of normed almost linear spaces the closed graph theorem and the open mapping theorem. We also do not know whether a nals $L(X,(Y, C))$ is complete if Y is complete. It is easy to show that if V_{Y} is A Banach space then $\mathrm{V}_{\mathrm{L}(\mathrm{X},(\mathrm{Y}, \mathrm{C}))}$ is a Banach space.

REFERENCES

1. DAY, M.M. "Normed Linear Spaces", $3^{\text {rd }}$ ed., Springer-Verlar, New York-Heidelberg-Berlin, 1973.
2. DUNFORD, N. and SCHWARTZ, J.T. "Linear Onerators". Part I. feneral Theory, Pure and Applied Mathematics, 7, New York, London Interscience, 1958.
3. GODINI, G. "A framework for best simultaneous apnroximation: normed almost linear spaces", J. Approximation Theory, 43 no. 4 (1985), 338-358.
4. GODINI, H_{C}. "An approach to reneralizing Banach spaces: normed almost linear spaces", Proceedings of the $12^{\text {th }}$ Winter School on Abstract Analysis (Srni 1984). Suppl. Rend. Circ. Mat. Palermo Serie

II, no. 5 (1984), 33-50.
5. GODINI, G. "Best approximation in normed almost linear snaces". in "Constructive Theory of Functions". Proceedings of the International Conference on Constructive Theory of Functions (Varna 1984). Publishing House of the Bulqarian Academy of Sciences, Sofia, 1984, 356-363.
6. GODINI, G. "On normed almost linear spaces", Prenrint Series Math., INCREST, Bucureşti, 38 (1985).
7. SCHAEFER, H. "Topoloqical Vector Spaces", New York, London, 1966.
G. GODINI

DEPARTMENT OF MATHEMATICS
INCREST, Bd. PACII 220
79622 BUCHAREST, ROMANIA

