USA 13

Václav Nýdl

Reconstructing equivalences

In: Zdeněk Frolík and Vladimír Souček and Jiří Vinárek (eds.): Proceedings of the 13th Winter School on Abstract Analysis, Section of Topology. Circolo Matematico di Palermo, Palermo, 1985. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplements No. 11. pp. [71]--75.

Persistent URL: http://dml.cz/dmlcz/702157

Terms of use:

© Circolo Matematico di Palermo, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

RECONSTRUCTING EQUIVALENCES

Václav Nýdl

Abstract

A graph is called an equivalence if each of its components of connectivity is a complete graph. We ask whether an equivalence is uniquely determined with its k-point subobjects. For each k we prove: 1 Every equivalence on less than $k . \ln (k / 2)$-point set is uniquely determined with k-point subobjects; $2 /$ It is not true that every equivalence on at least $(k+1) \cdot 2^{k-1}$-point set is uniquely determined with its k-point subobjects.

0. Introduction

We denote 〈 V, W 〉 the ordered pair where the first member is V and the second one is $W . P_{2}(X)$ denotes the set of all 2-point subsets of the set X. An ordered pair $G=\langle X, R\rangle$ where $R \subset P_{2}(X)$ is called a graph and we denote $|G|=$ card X the number of points of X. The complete graph on X is the graph $\left\langle X, P_{2}(X)\right\rangle$ and we denote K_{n} the standard complete graph on n-point set. For the graph $G=\langle X, R\rangle$ and the set $Y \subset X$ we define the induced graph $G / Y=\left\langle Y, R \cap P_{2}(Y)\right\rangle$. In usual sense we work with concepts in graph theory, namely the connectivity of graphs, components of connectivity, isomorphism of graphs. The number of components of G is denoted op G; isomorphic graphs are denoted $G \simeq H$ and nonisomorphic graphs $G \neq H$.

For every sequence of complete graphs $K_{n_{1}}, \ldots, K_{n_{s}}$ it is the standard sum $K=K_{n_{1}}+\ldots+K_{n_{s}}$ with components of connectivity C_{1}, \ldots, C_{s} satisfying $K / C_{i} \simeq K_{n_{i}}$; if $n_{1}=\ldots=n_{s}=n$ we write simply $K=s . K_{n}$.

Definition 0.1. A graph E is called an equivalence if E is isomorphic to a sum of complete graphs.

Definition 0.2. The frequency of the graph H in the graph G

[^0]is the number $\operatorname{frq}(H, G)=\operatorname{card}\{Y ; G / Y \simeq H\}$. For an integer k the notation $G_{1} \stackrel{k}{\leftrightarrows} G_{2} / G_{1} \xlongequal{\approx} G_{2}$, respecively/ means that for every graph H such that $|H|=k /|H| \leq k$, respectively/ the equality $\operatorname{frq}\left(H, G_{1}\right)=$ $\operatorname{Prq}\left(H, G_{2}\right)$ holds.
Remark 0.3. An induced graph of an equivalence is an equivalence. Thus, if E is an equivalence then $\operatorname{frq}(H, E)>0$ if and only if H is an equivalence.
We have showed in [6] the following theorem.
Theorem 0.4. Let k be an integer, G_{1}, G_{2} be graphs. Following three properties are equivalent $/ i / G_{1} \underset{\sim}{\underset{\sim}{k}} G_{2}, / i i / G_{1} \stackrel{\leq k}{\underset{\sim}{~} G_{2}}$, $/$ iii/ for every connected graph $H,|H| \leq k$, it is $\operatorname{frq}\left(H, G_{1}\right)=\operatorname{frq}\left(H, G_{2}\right)$ Now, for the case of equivalences we get:

Theorem 0.5. Let k be an integer, $\mathrm{E}_{1}, \mathrm{E}_{2}$ be equivalences. Follo-
 /iii/ for every $j \leq k \operatorname{frq}\left(K_{j}, E_{1}\right)=\operatorname{Prq}\left(K_{j}, E_{2}\right)$.

Proof. Use Remark 0.3., Theorem 0.4. and the fact, that only complete graphs are connected equivalences.

1. Frequencies in equivalences

Throughout this part of paper let A, B, C be equivalences, $A=$ $=s . K_{u}, B=K_{v}$ where $s>0, u>0, v>0, Q=s . K_{u}+K_{v}$ and for every $i \leq u+v Q_{i}=(s-1) \cdot K_{u}+K_{i}$.

Definition 1.1. We define two numbers for any equivalence E $\langle A, B\rangle \notin=\operatorname{card}\{Y, Z\rangle ; E / Y \simeq A, E / Z \simeq B\}=\operatorname{frq}(A, E) \cdot \operatorname{frq}(B, E)$, $\langle A, B\rangle \downarrow \downarrow=\operatorname{card}\{\langle Y, Z\rangle ; E / Y \simeq A, E / Z \simeq B, Y U Z=X\}$, where $E=\langle X, R\rangle$.

Lemma 1.2. Let E be an equivalence. Then card $\left\{\langle Y, Z\rangle ; C / Y \simeq_{A}\right.$, $C / Z \simeq B, C /(Y \cup Z) \simeq E\}=[A, B\rangle \downarrow \downarrow E] \sim r q(E, C)$.

Proof. The number of the sets. W such that $C / W \simeq E$ is $\operatorname{frq}(E, C)$. For each such a set W we have $\langle A, B\rangle \downarrow \pm$ ordered pairs $\langle Y, Z\rangle$ satisfying $C / Y \simeq A, C / Z \simeq B, W=Y \cup Z$.

Remark 1.3. Equivalences A, B in Lemma 1.2. can be arbitrary. Lemma 1.4. The following equality is true

$$
\langle A, B\rangle \nmid C=\sum_{i=1}^{u+v-1}\left[\langle A, B\rangle \not \downarrow Q_{1}\right] \cdot \operatorname{frq}\left(Q_{1}, C\right)+\left[\langle A, B\rangle \nmid Q_{u+v}\right] \cdot \operatorname{frq}\left(Q_{u+v}, C\right)+
$$ $+[\langle A, B\rangle \nmid Q] \cdot \operatorname{Prq}(Q, C)$.

Proof. We denote $M_{0}=\{\langle Y, Z\rangle ; C / Y \simeq A, C / Z \simeq B\}$ and further for every $i \leq u+v \mathbb{M}_{i}=\left\{\langle Y, Z\rangle ; C / Y \simeq A, C / Z \simeq B, C /(Y \cup Z) \simeq Q_{1}\right\}$. Finally, $M=\{\langle Y, Z\rangle ; C / Y \simeq A, C / Z \simeq B, C /(Y \cup Z) \simeq Q\}$. We have the disjoint decomposition $M_{0}=M_{1} \cup \ldots \cup M_{u+\nabla-1} \cup M_{u+v} \cup M$ and we can write card $M_{0}=$ $=\sum_{i=1}^{u+v-1}$ card $M_{i}+\operatorname{card} M_{u+v}+$ card $M_{\text {. Using Lemma 1.2. we obtain the }}$
needed equality.
Lemma 1.5. Let $j+1=s . u+v$, let E_{1}, E_{2} be two equivalences such that $E_{1} \stackrel{j}{\sim} E_{2}$ and $\operatorname{frq}\left(Q, E_{1}\right)=\operatorname{frq}\left(Q, E_{2}\right)$. Then $\operatorname{frq}\left(Q_{u+V}, E_{1}\right)=$ $\operatorname{srq}\left(Q_{u+v}, E_{2}\right)$.

Proof. For $i \leq u+v-1$ it is $\left|Q_{1}\right|=(s-1) \cdot u+1 \leq s . u+v-1=j$ and by Theorem 0.5. $\operatorname{frq}\left(Q_{1}, E_{1}\right)=\operatorname{frq}\left(Q_{i}, E_{2}\right)$. Analogiously, since $v \leq j$ and s.u $\leq j$ we have $\operatorname{Prq}\left(K_{v}, E_{1}\right)=\operatorname{frq}\left(K_{v}, E_{2}\right)$ and $\operatorname{Prq}\left(s . K_{u}, E_{1}\right)=$ $\operatorname{Prq}\left(s . K_{u}, E_{2}\right)$, i.e. $\left\langle s . K_{u}, K_{v}\right\rangle \downarrow E_{1}=\left\langle s . K_{u}, K_{v}\right\rangle \nmid E_{2}$. Now, we calculate using Lemma 1.4. $0=\left\langle s . K_{u}, K_{v}\right\rangle \downarrow E_{1}-\left\langle s . K_{u}, K_{v}\right\rangle{ }_{2} E_{2}=\sum_{i=1}^{u+v-1}\left\langle s . K_{u}, K_{v}\right\rangle$ $\downarrow Q_{i} \cdot\left[\operatorname{frq}\left(Q_{1}, E_{1}\right)-\operatorname{frq}\left(Q_{i}, E_{2}\right)\right]+\left\langle s . K_{u}, K_{v}\right\rangle \downarrow \downarrow Q_{u+v} \cdot\left[\operatorname{frq}\left(Q_{u+v}, E_{1}\right)-\right.$ $\left.-\operatorname{Prq}\left(Q_{u+v}, E_{2}\right)\right]+\left\langle s \cdot K_{u}, K_{v}\right\rangle \downarrow \downarrow Q .\left[\operatorname{Prq}\left(Q, E_{1}\right)-\operatorname{frq}\left(Q, E_{2}\right)\right]=\left\langle s . K_{u}, K_{v}\right\rangle$ $\downarrow Q_{u+v}\left[\operatorname{frq}\left(Q_{u+v}, E_{1}\right)-\operatorname{frq}\left(Q_{u+v}, E_{2}\right)\right]$. Since $\left\langle s . K_{u}, K_{v}\right\rangle \downarrow \downarrow Q_{u+v}>0$ we get finally $\operatorname{frq}\left(K_{u+v}, E_{1}\right)=\operatorname{frq}\left(K_{u+v}, E_{2}\right)$.

Definition 1.6. An equivalence E is called pseudoregular if there exist numbers $s \geq 0, u>0, v>0$ such that $E \simeq s . K_{u}+K_{\nabla}$.

Now, we are able to prove the main theorem.
Theorem 1.7. Let k be an integer, $\mathrm{E}_{1}, \mathrm{E}_{2}$ be equivalences. Following four properties are equivalent /i/ $\mathrm{E}_{1} \underset{\sim}{\underset{\sim}{5}} \mathrm{E}_{2}$, /ii/ $\mathrm{E}_{1} \lesssim \underset{\mathrm{E}_{2}}{ }$, /iii/ for every $j \leq k \operatorname{frq}\left(K_{j}, E_{1}\right)=\operatorname{frq}\left(K_{j}, E_{2}\right)$, /iv/ for every $j \leq k$ there is a pseudoregular equivalence S_{j} such that $\left|s_{j}\right|=j$ and $\operatorname{prq}\left(S_{j}, E_{1}\right)=\operatorname{prq}\left(S_{j}, E_{2}\right)$.

Proof. To prove the theorem it suffices to show that the implication $/ i v / \Rightarrow / i i i /$ is true. We use an indirect argument. If the implication is false there exist $i \leq k$ such that $\operatorname{frq}\left(K_{i}, E_{1}\right) \neq$ $\neq \operatorname{Prq}\left(K_{i}, E_{2}\right)$. Let $i^{K}=\min \left\{1 ; \operatorname{frq}\left(K_{i}, E_{1}\right) \neq \operatorname{\rho rq}\left(K_{i}, E_{2}\right)\right\}$. Obviously $1<1^{\text {IF }} \leq k$ and for $j=1^{\text {II }}-1$ we have by $T_{h e o r e m ~ 0.5 . ~}^{E_{1}} \stackrel{j}{\sim} \mathrm{E}_{2}$. We know that $\operatorname{frq}\left(S_{j+1}, E_{1}\right)=\operatorname{frq}\left(S_{j+1}, E_{2}\right)$. Let $c=\min \{c p S ; S$ is pseudoregular, $\left.|S|=j+1, \operatorname{frq}\left(S, E_{1}\right)=\operatorname{frq}\left(S, E_{2}\right)\right\}$. Then $1<c \leq c p S_{1}{ }^{\text {m }}$ Take $Q=s . K_{u}+K_{v}$ such that $s>0, u>0, v>0,|Q|=j+1, c p Q=$ $=c=s+1$. By Lemma 1.5. $\operatorname{Prq}\left((s-1) \cdot K_{u}+K_{u+v,} E_{1}\right)=\operatorname{frq}\left((s-1) \cdot K_{u}+\right.$ $+K_{u+v}, E_{2}$) contradicting the minimality of c because op $\left[(s-1) \cdot K_{u}+\right.$ $\left.+K_{u+v}\right]=s<c$.

Theorem 1.8. Let $k>0, E_{1}, E_{2}$ be equivalences, $E_{1} \stackrel{k}{=} E_{2}$. If there exists a pseudoregular equivalence S such that $|S| \leq k$ and $\operatorname{frq}\left(S, E_{1}\right)=\operatorname{Prq}\left(S, E_{2}\right)=0$ then $E_{1} \simeq E_{2}$.

Proof. Tet $n=\left|E_{1}\right|=\left|E_{2}\right|$, let $S=s . K_{u}+K_{v},|s| \leq k$, $\operatorname{frq}\left(S, E_{1}\right)=\operatorname{frq}\left(S, E_{2}\right)$. For every integer w define $S_{w}=s \cdot K_{u}+K_{w}$. For $w \leq{ }^{2}$ we have $\operatorname{frq}\left(S_{w}, E_{1}\right)=\operatorname{frq}\left(S_{W}, E_{2}\right)=0$ and by Theorem 1.7. /property /iv// $E_{1} \xrightarrow{n} E_{2}$. It is $1=\operatorname{frq}\left(E_{1}, E_{1}\right)=\operatorname{frq}\left(E_{1}, E_{2}\right)$ and clearly $E_{1} \simeq E_{2}$.
2. Bounds of reconstructibility and nonreconstructibility

We are interested in the problem: for given k find n satisfying the implication $\left(\left|E_{1}\right|=\left|E_{2}\right|=n\right.$ et $\left.E_{1} \stackrel{k}{\sim} E_{2}\right) \Longrightarrow\left(E_{1} \simeq E_{2}\right)$ where E_{1}, E_{2} are arbitrary equivalences.

We denote $\mathrm{cp}_{\mathrm{i}} \mathrm{E}$ the number of components of the equivalence E having at least 1 elements. Let us indicate two elementary facts: /fact $1 /|E|=\sum_{i \geq 1}{c p_{i}}^{E}$, /fact $2 /$ if $\operatorname{frq}\left(s . K_{i}, E\right) \geq 1$ then $c_{i} E Z_{s}$.

Theorem 2.1. Let $k>2, E_{1}, E_{2}$ be equivalences, $\left|E_{1}\right|=\left|E_{2}\right| \leq$ $\leq k . \ln (k / 2)$ where \ln denotes the logarithmus naturalis. If $\mathrm{E}_{1} \stackrel{k}{\sim} \mathrm{E}_{2}$ then $\mathrm{E}_{1} \simeq \mathrm{E}_{2}$.

Proof. Suppose $E_{1} \neq E_{2}$ and define for every $i \leq k$ the integral part of k / i denoted $t_{i}=[k / i]$. Now, for every $i \leq k$ we have frq $\left(t_{i} \cdot K_{i}, E_{1}\right) \geq 1$ by $T_{\text {heorem }} 1.8$. and moreover $\mathrm{cp}_{i} \mathrm{E}_{1} \geq \mathrm{t}_{i}$ by /fact 2/. We calculate $n=\left|E_{1}\right|=\sum_{i \geq 1} c_{i} E_{1} \geq \sum_{i=1}^{k} t_{i} \geq \sum_{i=1}^{k}(k / i-1)=\left(k \cdot \sum_{i=1}^{k-1} 1 / i\right)+$ $+1>k \cdot \ln (k / 2)+1$. We get a contradiction with the assumption that $n \leq k . \ln (k / 2)$.

Construction 2.2. For every $k \geq 1$ we construct two equivalences E_{1}, E_{2} such that $E_{1} \stackrel{k}{\sim} E_{2}, E_{1} \neq E_{2},\left|E_{1}\right|=\left|E_{2}\right|=(k+1) \cdot 2^{k-1}$.

Proof. For $i=1, \ldots, k+1$ we define the numbers a_{i}, b_{i} $a_{i}=\begin{gathered}\binom{n+1}{i} \text { if } i \text { is even } \\ 0 \text { if } i \text { is odd }\end{gathered} \quad b_{i}=\begin{gathered}0 \text { if } i \text { is even } \\ \binom{n+1}{i} \text { if } i \text { is odd } .\end{gathered}$
The numbers a_{i}, b_{i} satisfy $a_{i}-b_{i}=(-1)^{i}\binom{n+1}{i}, a_{i}+b_{i}=\binom{n+1}{i}$. We define $E_{1}=\sum_{i=1}^{k+1} a_{i}, K_{i}, E_{2}=\sum_{i=1}^{k+1} b_{i} \cdot K_{i}$. It is obvious that $E_{1} \neq E_{2}$ because E_{2} has 1-point components but E_{1} has not. For every j, $1 \leq f \leq k$ we calculate $\operatorname{frq}\left(K_{j}, E_{1}\right)-\operatorname{frq}\left(K_{j}, E_{2}\right)=\sum_{i=j}^{k+1} a_{i} \cdot\binom{i}{j}-\sum_{i=j}^{k+1} b_{i} \cdot\binom{i}{j}$ $=\sum_{i=j}^{k+1}\left(a_{i}-b_{i}\right) \cdot\binom{i}{j}=\sum_{i=j}^{k+1}(-1)^{i} \cdot\binom{k+1}{i} \cdot\binom{i}{j}=0$ and we get $\operatorname{frq}\left(K_{j}, E_{1}\right)=$ $=\operatorname{rrq}\left(K_{j}, E_{2}\right)$. It is $E_{1} \stackrel{k}{=} E_{2}$ by Theorem 1.7. Finally, we calculate $\left|E_{1}\right|+\left|E_{2}\right|=\sum_{i=1}^{k+1} a_{i} \cdot i+\sum_{i=1}^{k+1} b_{i} \cdot i=$ $=\sum_{i=1}^{k+1}\left(a_{i}+b_{i}\right) \cdot i=\sum_{i=1}^{k+1}\binom{k+1}{i} \cdot i=(k+1) \cdot 2^{k}$, which yields $\left|E_{1}\right|=\left|E_{2}\right|=$ $=(k+1) \cdot 2^{k-1}$.

Remark 2.3. In [6] we have defined reconstructibility indica-. ting function $u_{\mathscr{C}}$ of the class of graphs \mathscr{C}. If we denote \mathcal{E} the class of all equivalences we can write the result of this paper in the form: for every $k>2 \quad k \cdot \ln (k / 2) \leq u_{e}(k)<(k+1) \cdot 2^{k-1}$.

REFERENCES
[1] Bondy, J.A., Hemminger,R.L. "Graph reconstruction - a survey", J. Graph Theory, 1(1977), 227-286.
[2] Manvel,B. "Some basic observations on Kelly's conjecture for graphs", Discrete Math., $\underline{8}(1974)$, 181-185.
[3] Muller, V. "Probabilistic reconstruction from subgraphs", Comment. Math. Univ. Carol.,17(1976), 709-719.
[4] Nýdl,V. "Reconstruction of an Equivalence Object from Its Subobjects",thesis(Czech), Charles University, Prague, 1980.
[5] Nýdl,V. "Finite graphs and digraphs which are not reconstructible from their cardinality restricted subgraphs", Comment. Math. Univ. Carol., 22(1981), 281-287.
[6] Nýdl,V. "Some results concerning reconstruction conjecture", Proceedings of the 12th Winter School on Abstract Analysis /Supplemento ai Rendiconti del Circolo Matematico di Palermo/, 1984, 243-245.

VÁCLAV NÝDL
VŠZ PEF
SINKULEHO 13
37005 C. BUDĚJOVICE
CZECHOSLOVAKIA

[^0]: This paper is in final form and no version of it will be submitted for publication elsewhere.

