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In recent years, multifractals and their f(a)-spectrum have become so popular in 
numerical and experimental studies of strange attractors, diffusion-limited aggrega­
tion, turbulence and random resistor networs [ l , 2, 5, 7, 8], that it seems necessary 
to develop solid foundations for these concepts. There are only two types of measures 
for which the f(a)-spectrum was determined rigorously: these are Gibbs states on 
zero-dimensional hyperbolic attractors in IR ("cookie-cutters") [2,7] and self-
similar measures with respect to two similarity mappings, when the open set con­
dition is fulfilled [5, 8]. In both cases, the thermodynamic formalism was used and 
the function f(a) has a parabolic shape. 

The purpose of this note is to treat analytically some other examples for which 
the f(a)-spectrum is linear. Our methods are quite elementary and all details are 
proved. We shall restrict ourselves to finite measures \i on [0,1] which assume posi­
tive values on all intervals [a, b] cz [0,1] . Let us start with some definitions. The 
local dimension of \i at a point x is defined as 

(1) dlx) = lim l 0 g / ^ * ) ) 
s->o l o g s 

where Ue(x) = ]x — e. x + g[. d^(x) quantifies "the degree to which x belongs to \x 
when x is determined more and more accurately". The physicists' "working defini­
tion" of the f(a)-spectrum is 

(2) f(a) = dim {x \ d^(x) = a} , 0 ^ a ^ oo 

where dim means HausdorrT dimension (cf. [4] for definitions). Intuitively, \i classifies 
the parts of [0,1] where \i is strongly concentrated (small a) or sparsely distributed 
(large a). 

Kahane and Katznelson [6] gave an example of a measure supported by a Cantor 
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set in [0,1] such that for every a, there are at most two x with d^x) = a. Moreover, 
our examples show that the limit (1) need not exist for many x (the set of all these x 
has dimension 1). We think that this is also possible in experimental studies. For 
these reasons we suggest to replace (2) by 

(3) f(a) = lim dim {x \ a — e = dj^x) = a + e} , 0 _ a ^ o o 
£-•0 

where dj(x) denotes the lower local dimension, that is, the liminf in (1). For all 
measures treated in the literature, it is easy to see that definitions (l) and (3) agree. 
Forf(a)-functions, the differences between dj^x), djx) and the upper local dimension 
^ (x ) (i.e., the limsup in (1)) have apparently not been studied so far. However, 
for the dimension distribution of \i which was recently introduced by Cutler and 
Kahane, it turned out that d^x) is the appropriate function [3]. This justifies our 
definition (3). Without going into details, we note that the dimension distribution 
of \JL classifies djx) by means of the measure \i and the f(a)-spectrum of \i classifies 
in terms of the Hausdorff dimension. The latter is more subtle and difficult. 

Our measure \i will be discrete. Their dimension distribution will be trivial since 
they will be concentrated on the countable set of rational numbers of the form 
p\2n, p an odd integer. Let 0 < r < 1/2. Let ^{1/2} = r, \i{\\4\ = ,"{3/4} = r 2 , . . . 
...,li{p\2n} = rn for p = 1, 3, 5, ...,2n - 1. Then lz[0,1] = r/(l - 2r). Note that 
for any \i and x, y>({x}) > 0 implies dj^x) = 0. 

Theorem. For the measure fi defined above, 3M(x) = (—log r)/(log2) = : a* 
whenever A*({x}) = 0. For any a between 0 and a*, f(a) = a/a*. 

Proof, (i) We easily see that fi(]p\2k, (p + l)/2fc[) = rfc + 1(l - 2r) for p = 
= 0, 1, ..., 2fc - 1 and hence vQy, y + 2"fc[) = rfc+1(l - 2r) for each y in 
[0,1 - 2"*]. Foree[2~ , , ,2- ( , , ~ 1 ) [ this implies log fi(U e(x))\loge = ((n + l ) l og r + 
+ log (1 - 2r))\(-(n - 1) log 2). Thus 3|l(x) = a* for arbitrary x. 

(ii) Take a point x -# P/2fc and e > 0. We determine e! < e with 
| a* — log n(Ue, (x))/log e'| -> 0 for e -> 0. Let y be the unique number p/2fc in Ue(x) 
with odd p and smallest possible k. Let s' = \x — y\, 2" ( n + 1) < e' < 2~n and 
I = ]y, y + 2/2"[ for y = x, I = ] y - 2/2", y[ otherwise. Then Ufi,(x) = I implies 
log/<Ue,(x))/loge' = log/x(I)/log2-(w+1) = (n logr + log(l - 2r)) / -(n + l ) l og2 
which tends to a* for n -> oo. This proves the first part of the theorem. 

(iii) Let djx) < a < a*. We show that x is contained in infinitely many of the sets 

WM = U{[P/2fc - 5, p/2fc + 5] | p = 1, 3, 5 , . . . , 2fc - 1} 

where S = Sk(<x) = 2"fca*/a(l - 2r)1/a. Note that d^(x) < a means fi(Ue(x)) > e" 
for arbitrary small e. Take an s for which this inequality holds, and define y = p[2k 

as above. Then ea < fi(Ue(x)) = n(](p - l)/2fc, (p + l)/2fc[) = r*(l - 2r). Now 
r = 2-a* implies £ < 2"fca*/a(l - 2r)1/a and x e Wk(<x). 

(iv) Conversely, if x is contained in infinitely many Wk(<x) then dj(x) ^ a. We can 



assume n({x}) = 0, so that x e Wk(o) implies p\2k e Ud(x) and fi(Ud(x)) = rk = 
= 2~ka* = Sal(l - 2r). 

(v) Let us show dim {x \ djx) < a} = a/a*. Using (iii), we verify that the jft-
dimensional Hausdorff measure is finite for ft > a/a*. Let e > 0 and choose k0 so 
that Sko((x) < e. We cover U{W*(a) \k = k0} by intervals of length 2 Sk(a), k = k0. 
If we write P = (1 + n) a/a* then 2k~1(2dk((x)y = c . 2~nk

9 c = | (1 - 2r)/?/a, and 
the sum for fc ^ k0 is c . 2~nko\(\. — 2~n) which tends to zero for k0 -» oo. 

(vi) Now we show dim {x| ^ (x ) = a} _ a/a*, verifying that the jS-dimensional 
Hausdorff measure of this set is positive for /? < a/a*. Let /? = (1 — n) a/a*. We 
shall construct a sequence k1 < k2 < ... and a Cantor set D g 0{W*,(a) | i = 
= 1,2,...} with / ( D ) > 0. For every k we have 2*~1(2Sik(a))' = c . 2"* with c 
from above. Choose k1 with c . 2nki > 1, and let V1 = Wkl(oc). Now suppose kn is 
constructed and V., is a union of intervals with Lebesgue measure Xn (n _ 1). Then 
choose kn+1 > kn such that more than J . Xn. 2

k"+ 1 _ 1 of the intervals of JVkn+1(
a) 

are contained in Vn and such that J . Xnc. 2nkn+i > 1. Let Vn+1 be the union of all 
intervals of Wkn+l(o) which are inside Vn. By induction, we built the Cantor set D = 
= Cl{Vn\n = i29...}. 

(vii) To estimate ^ (D ) , it suffices to consider finite coverings £ = {Iu ...,Im} by 
intervals. Assume first that the Ij are intervals from the Wk.(<x)9 i ^ n. Let v(/) denote 
the number of intervals of Vn which are inside / divided by the total number of in­
tervals of Vn. For all / from a fixed Wki(tx)9 i = n, the value v(/) and the length 2(/) 
are constant, and since the sum of these v(/) is 1 and the sum of the X(l)fi is > 1 
by construction, we have X(I)P > v(l). Now taking sums over j = 1, . . . , m we see 
tha t£A(//>Iv(J,)^l. 

(viii) To prove //(D) > 0, it remains to check that there are no other "more 
efficient" coverings of D. Since the intervals of Vn do not always cover the endpoints 
of Ij9 it could be possible to replace the Ii by some smaller I). Nevertheless, the 
\Xn - condition implies X(Ij) > A(/,)/2, thus £ X(V^ > 1/2. 

A more interesting question is whether an interval / from Wkn_1(oc) of length / can 
be covered "efficiently" by several intervals Ji9 i = 1 , . . . , t smaller than / , but larger 
than the intervals of Vn. We can assume that the gap length x between two neigh­
bouring Jt is the same as that between two consecutive intervals of Vn and that 
the J( have equal length / ' = ( / + x)\t — x. The covering by Jl9..., Jt is "most 
efficient" if/(f) = t. l,fijlfi is minimal. With y = x\l we have/(r) = t. ((1 + y)\t - y)p. 
For t e [1, (1 + y)/y] there is only one zero of /'(f) which corresponds to a maximum 
off. The minimal value of/ on [1, **], t* = (l + y)jy is assumed at one endpoint 
of the interval. Thus £ X(Jty is minimal if we have either t = 1, J1 = I or the Jt 

are the intervals of Vn inside / . Consequently, there are no other "more efficient" 
coverings. 

(ix) From (v) and (vi) it follows by standard arguments (involving a + \\n) that 
dim {x\ djx) ^ a} = dim {x\ djx) < a} = a/a* for a < 
Hence /(a) = a/a* by (3). 



Remark. The definition of \i can be modified in various ways. Instead of the 

points p/2k, one can use the endpoints of the construction intervals of a Cantor set, 

of the points (Pi/2k, p2\2k) in [0, l ] 2 (with maximum-metric), or points in a suitable 

Cantor set in [0, l]*. The f(a)-function is also linear. Is it true that the f(a)-function 

is linear for all discrete measures the weights of which form a geometric series? If the 

weights go down exponentially, it is clear that f(a) = 0 for a < oo. One can also 

multiply the measure \x with Lebesgue measure on [0, 1] to obtain a non-discrete 

measure /J,' with linear spectrum: f(l + a) = 1 + a/a* for 0 _̂  a ^ a*, f(y) = 0 

for y < 1 and y > 1 + a*. 
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