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THE THEORY OF SMALL CHANGES IN THE DOMAIN OF EXISTENCE 
IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS 
AND ITS APPLICATIONS 

I. BABUŠKA, Praha 

In connection with basic problems of the theory of partial differential equations there 
are the so called conditions for the correct formulation of a problem. These conditions 
are cited in almost every basic textbook. In this sense we take a problem to be cor­
rectly formulated if the following conditions are satisfied: 

1) the condition of solvability, i. e. the condition of the existence of the solution; 
2) the condition of the uniqueness of the solution; 
3) the condition of the continuous dependence of the solution on the boundary 

conditions or on the right-hand side. 

The condition of the correct formulation of a problem is connected with mathe­
matical applications. If a mathematical problem should describe a real physical 
problem, it must also fulfil its basic qualitative characteristics. The three conditions 
cited above, i. e. conditions of the existence, uniqueness and continuous dependence 
are fulfilled in principle by every physical problem. 

Hadamard analysing the conditions of the continuous dependence on boundary 
conditions or on the right-hand side states that "the boundary conditions in almost 
every physical example are given empirically, i. e. only approximately and sometimes 
with a great deal of approximation. Therefore a solution, for which we are not able 
to determine its dependence on changes of boundary conditions, at least theoretically, 
has no practical sense". 

Although it is clear that the question of approximation may be more subtle in 
practice than is apparent at first sight (e. g. it is a question of determining a measure 
for the approximation), Hadamard's analysis reveals the very kernel of the question 
of the applicability of a mathematical solution in problems of natural and technical 
sciences. 

But for the same reasons which are cited by Hadamard, it is also clear that the cor­
rectly formulated problem must fulfil two more conditions in addition to the previous 
three, namely 

4) the condition of the continuous dependence on small changes of the coefficients 
of the equation and 

5) the condition of the continuous dependence on small changes of the domain of 
existence. 
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The coefficients of a differential equation usually characterise some physical quali­
ties of the material or their fenomenological description. 

The domain of existence, on which the problem is solved, is also an abstraction, 
which is fulfilled in practice only with various degrees of approximation. For example 
a building construction which is solved as a circular plate (i.e. the domain of existence 
is supposed to be a circle) in practice more closely resembles a polygon with a great 
number of sides (depending on the exact form of the shuttering used) than a circle etc. 
Therefore we must demand that a problem fulfils the fifth condition, i.e., the solution 
must depend continuously on small changes of the domain of existence. 

In this paper we will deal with the mathematical problems connected with the ques­
tion of dependence of the solution on small changes of the domain of existence, i.e. 
with the fifth condition for the correctness of the problem in the sense quoted above. 

It has been shown that this problem has applications in many branches of mathema­
tics. The mathematical significance of this condition is greater than it seems at first 
sight. 

Due to lack of space, we must restrict ourselves to an illustrative choice of 
questions and mathematical assertions and — for the sake of simplicity — deal 
only with the simplest cases. We would like to clarify the basic problem and some 
interrelations but will not use precise formulation of definitions and the orems in their 
most general form nor give their proofs. 

In the literature very little attention is paid to the problems of the dependence of the 
solution on small changes in the domain of existence, although, as we shall see it, there 
are very interesting and important mathematical problems originating here. 

Let us at first formulate this mathematical problem for a differential equation of the 
elliptic type, with a given domain of existence. 

Definition 1. Let us have a bounded domain Q c= E2 and a linear space M(Q) of 
smooth functions defined on Q with the scalar product 

[.. »],,<», - £ ( i Q --£-. J^j i* ty • 
Further letf be a function defined on Q. The function w(M(Q),f, I) defined on Q 

will be the solution of the problem Alw — f in relation to M(Q) if 

1) we M(£2), where M(Q) is a completment of the space M(Q) with respect to the 
norm introduced; 

2) l>, w]La'<D) = ( - l ) 1 JT-i«/dx dy f°r every u e M(Q\ 

Remark . For the sake of a simple notation we assume that Q a E2 and that 
the scalar product is given in the simplest form of the norm in Ll

2. However, an 
analogical definition can also be formulated for a general case. 
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This definition holds for a general domain of existence. It depends of course on the 
concrete choice of the space M(Q); depending on this choice the solution exists, is 
just one, etc. The space also determines the homogeneous boundary conditions 
fulfilled by the solution on the boundary of the domain of existence. 

To illustrate the different choice of the space M(Q) let us examine the biharmonic 
problem / = 2. 

I. Let us include in the space M(Q) all functions having four continuous derivatives, 
the value of the functions and their first derivatives being equal to zero on the bound­
ary of the domain of existence. Let us designate this space as MX(Q). In this case 
Definition 1 gives the solution of the classical biharmonic problem with the right-hand 
side, when a zero value and zero first derivative is prescribed for the function in the 
normal direction on the boundary of the domain of existence. Because this is a natural 
generalization of the classical Dirichlet's or Dirichlet-Poisson's problem for the 
Laplace equation we will call this problem, characterized by the space MX(Q) Di­
richlet's problem for the biharmonic equation. It can be shown, that the solution of 
this problem fulfils the first three conditions of correctness, i.e. the common conditions 
for the existence, uniqueness and continuous dependence on the right-hand side. 
The corresponding physical interpretation is the problem of a built-in plate. 

II. If we include in M(Q) functions with four continuous derivatives and will 
demand, contrary to the first example, that only the values of the functions be equal to 
zero on the boundary of the domain, we obtain the space MU(Q). This space cha­
racterizes the so called intermediate problem for the biharmonic equation. In the 
classical formulation we are dealing again with the solution of the biharmonic 
problem. But here are fulfilled the special homogeneous boundary conditions, which, 
on a straight-line segment of the boundary, can be formulated as follows: we demand 
that the value of the desired function and its second derivative in the normal direction 
be equal to zero. These conditions are more complicated for a non-linear segment of 
the boundary, where the curvature of the boundary begins to play a role. Of course, 
Definition 1 does not include the assumption about the smooth boundary and exis­
tence of a normal and holds for every domain of existence, i.e. for an open connected 
set. The conditions for the normal derivative in the classical sense are of course ful­
filled only in the case of a smooth domain. The physical interpretation of the inter­
mediate problem for the biharmonic equation is the problem of a free supported 
plate. 

It can be shown again, that the conditions of the existence, uniqueness and the 
continuous dependence on the right-hand side are fulfilled. 

III. If we include in the space M(Q) all smooth functions, with no boundary condi­
tions to be fulfilled, we obtain the space MIH(Q). This space characterizes the so called 
Neumann's problem for the biharmonic equation. We call it a Neumann's problem, 
because it represents a natural generalization of Neumann's or Neumann-Poisson's 
problem for the Laplace equation of second order and has similar properties concern­
ing the existence and uniqueness of the solution. 
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In the classical case it is again a biharmonic problem with the following homogene­
ous conditions on a straight-line segment of the boundary: d2w/dn2 = d3w/dn3 + 
+ 2 . d3w/{ds2 dn) = 0, s is an arc, n a normal. 

The physical interpretation is the free plate problem. The basic characteristics of the 
solutions of the problems cited above follow from the functional analytic theory of 
elliptic differential equations. See for example [1], [2]. 
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Let us now formulate the problem of the stability of the solution. 

Definition 2. Let Q be a domain and K a unit open circle, Q a K. We will call the 
domain Q stable from the interior with respect to the problem Alw = f and the spaces 
M{Q) and X, if for every function f e X defined on K and for every sequence Qn, 
n = 1, 2 , . . . such that Qn a Q, Qn -> Q {i. e.for F a Q it holds F c= Qn for every 
n > N{x)) holds 

(1) w{M{Qn),f,l)-+w{M{Q),f,l) in Ll
2{Qn). 

If Q is stable from the interior, we will call the function w{M{Q),f, I) the interior 
solution of the given problem. 

We will call the domain Q stable from the exterior with respect to the problem 
Alw = / and the spaces M{Q) and X, if for every function f e X defined on K and 
for every sequence Qn, n = 1, 2 , . . . such, that Q a Qn, Qn c K, Qn -> Q {i. e. for 
F n Q = 0 it holds F n Qn = 0 for every n > N{x), the following holds: 

(2) w{M{Qn),f,l)^w{M{Q),f,l) in Ll
2{Q). 

If Q is stable from the exterior, we will call the function w{M{Q), f, I) the exterior 
solution of the given problem. A domain Q without interior boundary points {i. e., 
a domain such that Q = Em — {Em — Q)) we shall call a stable domain with respect to 
Alw = / and the spaces M{Q) and X, if for every function fe X defined on K and 
for every sequence Qn, n = 1, 2 , . . . such that Qn c K, Qn -> Q {i. e. if F c Q then 
F a Qn for every n > Nt{x) and if F n Q = 0, then F n Qn 0 = for every 
n > N2{x)) holds 

(3) w{M{Qn),f,l)->w{M{Q),f,l) in Ll
2{Q n Qn). 

Remark. In Definition 2 we demand the continuous dependence of the solution 
on Qn for every/ e X. It is clear that X must be such as to guarantee the existence of 
the solution w{M{Qn),f, I). 

In the case of Dirichlet's problem for the /-harmonic equation we write X = L2{K). 
In the case of Neumann's problem for the /-harmonic equation X will include all 

functions / e L2{K) having a compact support in Q and moreover 

(4) f f fxayp dx dy = 0 for a + p = / - 1 , 

where a, /? are non-negative integers. 
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By substantially narrowing X we can achieve the stability of Q. The Definition 
means that we should take X as large as possible so that X would be dense in that 
part of L2(£2), for which the solution in Q, according to Definition 1, does exist. 

In equation (2), contrary to the case of stability from the interior, we obtain the 

space M(Q), which has generally no connection with M(Q). This space must not of 
course depend on the choice of the sequence Qn, but only on Q. Generally speaking 

M(Q) 4= M(Q). A simple example of this situation is the case, where the domain of 
existence includes the so called interior boundary points; for example it may be the 
circle with an excluded segment. In this case we obtain a circle with excluded segment 
for Qn converging from the interior to Q and a circle without a segment excluded for 
the convergence from the exterior. This is easy to understand, because in the limiting 
case we deal with a solution in two different domains of existence. 

There also exist, of course, nontrivial examples, i. e., examples of domains without 
internal boundary points and hence with the same limiting domain of existence for 

both the internal and external convergence, for which nevertheless M(Q) 4= M(Q). 
For the domains without internal boundary points it is reasonable to introduce the 

conception of a stable domain according to Definition 2. 

In the preceding paragraphs we have introduced three characteristic problems for the 
/-harmonic equation. We will now study the stability of the domains in these cases. 

Let us begin with Dirichlet's problem for the /-harmonic equation, which is charac­
terized by the space Mj(Q). The classical formulation leads to the /-harmonic equation 
with the boundary conditions 

dw dl"xw 
w = — = ... = = 0 . 

dn dn1-1 

The following Theorem can be proved: 

Theorem 1. Let us consider Dirichlet's problem for the l-harmonic equation and 
let X = L2(K). Then 

1) every domain is stable from the interior and from the exterior, 
2) ifm = 21, where m is the dimension of the space of the domain, then there exists 

a domain which is not stable. 
3) A sphere is a stable domain. 
4) If I = 1, i. e.for the harmonic equation, then in the plane every Caratheodory 

domain with zero boundary measure is stable. 
For proof see [3]. 

For illustration let us now introduce some open problems. Does there exist an un­
stable domain for m < 2/? In the plane every Caratheodory domain is stable for 
/ = 1. Is this domain also stable for / > 1? 
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Let us proceed now to the second problem cited above, i.e. to the intermediate 
problem. We will restrict ourselves to the case I = 2, i.e. to the case of the biharmonic 
problem with physical meaning — a free supported plate. Here we obtain a surprising 
result. 

Theorem 2. For the intermediate problem of the biharmonic equation, with Cff 
including all functions f e L2(Q) with a compact support on Q, there is no domain 
stable either from the exterior, or from the interior. 

For proof see [3]. This property is very interesting because this is a problem often 
met in practice and we will study it in more detail later. 

Let us now examine the third problem cited, namely Neumann's problem for the 
polyharmonic equation. Here we have an analogous situation to the case of Dirich-
let's problem. The following theorem holds: 

Theorem 3. Let us have Neumanns problem for the l-harmonic equation and let JT 
include all functions f e L2(Q) with a compact support in Q and fulfilling equation 
(4). Then 

1) all domains are stable from the interior and from the exterior, 
2) there exists an unstable domain, 
3) a sphere is a stable domain, 
4) In the plane every Caratheodory domain with zero boundary measure is stable 

for / = 1, 2. 
For proof see [3] and [4]. 

Let us mention now at least one open problem. Is the Caratheodory domain stable 
in the plane for J > 2? 

We will now examine in more detail the question of instability of the intermediate 
problem for the biharmonic equation, the physical meaning of which is the free sup­
ported plate in the classical formulation of Sophie Germain. This is the basic problem 
in the theory of elasticity with wide applications in technical practice. Nevertheless 
there are interesting instability phenomena also in this case. One concrete example of 
this instability follows. 

Let Q be a circle with radius R, the coordinates of its centre being (0, 0) and let Qn 

be a regular n-gon with the same center. Let us suppose, that these n-gons converge to 
the circle with ascending n. Let / = 1, i. e. let us solve the problem of a plate homo­
geneously loaded. Now it can be proved that 

22R2 

w{Mu{Q^, f s 1, 2) (0,0) - — - for n ->co , 
64 
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S2R2 

w(M / / ( i 2 ) , /= l , 2 ) (0 ,0 ) = - — - . 
64 

So we see that the value of the solution w(Mu(Qn),f9 2) in the coordinate beginning, 
i.e., in the center of the n-gon, converges to a certain value, but this value differs 
from the value for the circle. This difference cannot be neglected. 

The significance of this result can be compared with the fact, mentioned in the 
Introduction, that the circular plate made from concrete can often be treated as an 
n-gon rather than a circle. The question is, which of these solutions is physically cor­
rect, and whether this instability is a real fact or only a property of the mathematical 
abstraction. From the physical point of view it is clear that in reality the solution 
must be stable and that the instability found by mathematical methods is a result of 
unsuitable formulation of the problem of the plate. The difference between the limit­
ing solution and the solution for a circle depends on the manner of convergence of the 
domains Qn to the circle Q. If for example the Qn are smooth domains converging to 
the circle including the curvature of the boundary, then there is no instability, because 

w(Mn(Q*)9 f = 1, 2) - w(Mu(Q), f = 1, 2) for n ->co . 

From this we see that the instability depends strongly on the manner in which the 
domain converges. From the physical point of view as well as from the point of view 
of the mathematical formulation of the problem of a plate we can ask if it is suitable to 
assume the solution only on smooth domains, so as to exclude that paradox. To sup­
port this standpoint we can argue, that the angle-points do not exist in reality. But it is 
also clear, that the answer to a question so formulated depends on the personal 
opinion of the person asked. 

Let us examine this question in more detail from another point of view. The plate, 
the stress of which we would like to ascertain, is in fact a three-dimensional body. So 
we shall formulate this problem as a three-dimensional problem of the mathematical 
theory of elasticity. But in practice we simplify the solution and solve this problem as 
a two-dimensional one and we are convinced that this approximation is precise enough 
for technical applications. But, as we have pointed out earlier, we might solve the 
problem of a plate as a three-dimensional one, which mathematically leads to the 
solution of a strongly elliptical system of partial differential equations, the so called 
equations of Lame 

(5) 8-^ + Au = 0, 
OX 

8y 

— + Aw = 0 
dz 

with the corresponding boundary conditions on the cylindrical-shaped domain, the 
height of which is 2ft and the base is Q. 
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The solution, used in practice for more than 100 years is the two-dimensional 
approximation, leading to the Sophie Germain equation. The relation between the 
solution obtained in this way and the correct solution of the three-dimensional 
problem gives the Bernoulli hypothesis of plane sections; we can express it in the 
form 

(6) u(x, y,z)= - z — , 
ox 

( \ d w 

v(x, y,z)= - z — , 

dy 

w(x, y, z) = w(x, y) . 
If we know the function w, which is the solution of the Sophie Germain equation, 

we suppose that the functions u, v, w given by the equations (6) are a good approxima­
tion to the solution of the Lame equations. Therefore it must be stressed that the 
solution in the classical formulation of Sophie Germain is to be taken as an approxima­
tion of the three-dimensional problem into the two-dimensional one. Therefore let us 
examine the stability of the problem in the original three-dimensional formulation. 

In the three dimensional case it can be proved that the solution is stable not only for 
a circle, but also for every Caratheodory domain. Thus we have for rc-gons a conti­
nuous transition (see [5]). 

In the two-dimensional formulation the solution is unstable for every domain. 
We can therefore see that the instability arises from the transition of the three-

dimensional problem to the two-dimensional one with the help of the Bernoulli hypo­
thesis. This is also a sufficient reason to contradict the opinion that for the exclusion of 
the instability paradox we must restrict ourselves to smooth domains. 

Now we can ask if there exists a transformation of the three-dimensional problem 
to the two-dimensional one, which preserves the original stability and describes the 
three-dimensional solution with sufficient degree of precision. 

It can be shown that there exists a transformation, which in certain natural sense can 
be assumed as an optimal one, which gives very good results and preserves the stabi­
lity. This transformation leads to the following system of three partial differential 
equations of the second order and of strongly elliptical type for the unknown quan­
tities p, q, w 

/•-A . ^P ^ 4 , 3 / S W \ n 

(7) Ap + — ^ + — — + -z[p 1 = 0 , 
W dx2 dxdy h2\ dxj 

3 / dw\ A + VA"'Ty) = °-
dx dy h 

20 

Ap + 
ťp 
Ôx2 

+ **. 
õx дy 

Aq + õ2q 
дy2 + «v 

õx õy 

Aw + 
дЛ. õq _ 1 



The connection between the original three-dimensional problem and this two-
dimensional one is defined by the following approximate relations: 
(8) u(x9 y9z)=- z p(x9 y) , v(x9 y9z)=- z q(x9 y) , w(x9 y9 z) = w(x9 y) . 

By noting the difference between the classical problem of Sophie Germain and the 
approximation in this formulation we see that both approximations are very similar. 
In the latter case we abandon the assumption of the perpendicular section with respect 
to the deformed central surface, or in other words, we take into account in a suitable 
way the influence of the displacing forces. 

The question of how to transform the multi-dimensional problems to problems with 
a lower number of dimensions is very extensive (see [6], [7]). Due to lack of space, 
we have only touched some of the aspects which are closely connected with the 
problem of stability. 

On the basis of the detailed mathematical examination we have explained in a physical 
way the reason for the instability of the intermediate problem. 

But we have proved that there exists an unstable domain with respect to Di­
richlet's problem for the Laplace equation. This problem also has a physical meaning 
and we can again ask why such a domain exists. It can be shown that the unstable 
domains are characterized by some porosity, i. e. by very small holes. These holes (i. e. 
porosity) are in certain sense in contradiction to the assumption of a continuous 
medium, which is the basic assumption in the derivation of Dirichlet's problem for the 
Laplace equation, for example when we are studying heat conduction. 

If this interpretation is right, then there must exist a relation between the stability of 
the domain of existence in the case of a differential equation of the elliptic type and 
the stability of cylindrical-shaped domains for equations of the parabolic and hyper­
bolic type. In this case the time variable, which creates the cylindrical domain, can 
have no influence on the stability, and it is the space form of the domain which is 
decisive. 

It can be shown, that this relation really exists. Let us examine the stability of the 
domain D = Q x <0, T> for the equation of parabolic and hyperbolic type, du/dt = 
= Au + / , d2u/dt2 = Au + f respectively, with homogeneous Dirichlet's conditions 
on the boundary. We will assume small changes of the domain Q and study their in­
fluence on the solution in the same way, as we have studied the stability for the equa­
tion of elliptical type. 

Now, what we have expected on the basis of physical intuition can be proved, na­
mely Theorem 4. 

Theorem 4. The domain D = Q x <0, T>, Q c K for an equation of parabolic 
type du/dt = Au + f or hyperbolic type d2u/dt2 = Au + f with homogeneous 
Dirichlet's conditions and for a function f9 which is continuous and smooth on 
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K x <0, T>, is stable if and only ifQ is stable with respect to Dirichlefs problem for 
the harmonic equation and X = L2(K). 

Proof. See [8] and some unpublished results. 

Remark . The solution of the equation of parabolic and hyperbolic type is under­
stood in the usual sense. 

For the same physical reasons, which we have mentioned above, we can expect a 
relation between the stability of the domain and the stability of eigen-values, represent­
ing physically the eigen-frequencies. 

Let us examine the eigen-value problems 

Alu = hi, (x,y)eQ, — = 0 for k = 0, 1 , . . . , / - 1 
duk 

with homogeneous Dirichlet's boundary conditions. In quite the same way as we have 
introduced the idea of the interior and exterior solution for the problem Alu = / as 
limiting solutions for the domain converging from the interior or the exterior, we 
can introduce the idea of the interior and exterior eigen-value or eigen-function. 

Theorem 5. The domain Q is stable with respect to Dirichlefs problem for an 
l-harmonic equation and X = L2(K) if and only if the corresponding exterior and 
interior eigen-values for the problem Alu = hi with Dirichlefs boundary conditions 
are the same. In the stable case the exterior and interior eigen-functions will also be 
identical. 

For proof see [9]. 
We have shown in an illustrative manner some relations concerning the problem of 

stability of the domain of existence for different kinds of problems and their physical 
interpretations. The problem is of course substantially wider. 

We will mention now the relation of the problem of stability to the problem of the 
theory of approximations. 

The following theorem holds: 

Theorem 6. Let Q be a domain, K a unit circle, Q c K, mes ^(Q) = 0. Then Q is 
stable with respect to Dirichlefs problem for the l-harmonic equation for X = 
= L2(K) if and only if for every function u, ueli2(K) which is harmonic on Q and 

for every s > 0 there exists a domain Qe, Q <=• Qe and a function ve l-harmonic on Qt 

so that || u — tf£||L2.(K) < £. 

For proof see [3]. 
In the special case where / = 2, Theorem 7 follows directly from Theorem 6. 
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Theorem 7. In the space of functions which are harmonic and square-integrable 
in Q9 functions which are harmonic in open sets containing Qform a dense subset if 
and only if Q is stable with respect to Dirichlefs problem for the biharmonic 
equation and X = L2(K). 

For proof see [3]. 
Let us compare Theorem 7 with the well known assertion from the theory of a 

complex variable about the density of polynoms in the space of square-integrable 
holomorphic functions. In this case the classical theorem holds: for a Caratheodory 
domain the polynoms form a dense subset in the space of all square-integrable holo­
morphic functions. Our Theorem 7 resembles this classic assertion in that we are 
dealing with the density assuming only the real and imaginary parts of the correspond­
ing holomorphic functions. 

If for every harmonic and square-integrable function on Q there would also exist 
the conjugated square-integrable function, then our assertion would be a simple con­
sequence of the theorem cited from the theory of a complex variable. But this holds 
only for domains with a smooth boundary, and it is possible to construct simple 
examples of domains with angle points for which the conjugated square-integrable 
function does not exist. 

A relation analogous to the problem of stability with respect to Dirichlet's problem 
also holds for stability with respect to Neumann's problem. 

Theorem 8. The domain Q is stable with respect to Neumann's problem for the 
l-harmonic equation and for X including all functions with a compact support in Q9 

feL2(K) and fulfilling (4) if and only if the set of functions infinitely differ enti able 
on some neighbourhood Q forms a dense subset in Ll

2(Q). 

For proof see [3]. 
In special case / = 1, 2 in the plane, Theorem 3 gives us the density of smooth 

functions in L\(Q) if Q is a Caratheodory domain. 
There are unsolved problems for / > 2. 

8 

We have dealt so far with various characteristic aspects of the problem of the theory of 
stability, which studies the problem of the continuous dependence of the solution on 
small changes of the domain of existence. If we compare this conception with the ele­
mentary idea of continuity for a function of a real variable, we can note some analogy. 
Therefore we will point out what in this analogy corresponds to the conception of the 
derivative or of the differential in the case of a function of a real variable. 

Let a domain Qx be slightly different from the unit circle, defined by the expres­
sion 

Qx = E[(x9 y); x2 + y2 < (1 - Xf(cp))2
9 0 = cp = 2TT] . 
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The domain Qx is characterized by the parameter X and the problem of stability is to 
show how the solution behaves for X -> 0. 

Let ^fbea function given in the neighbourhood Q0. Further let ux be a function 
defined on Qx so that Aux = 0 on Qx, ux = g on ^(Q^ 

Because Q0 is a unit circle which is a stable domain, it follows from the theory cited 
above that lim ux = «0. So far the procedure is analogous to the conception of conti-

A-+0 

nuity. The analogy with the differential or derivative leads to the question when, for 
small X9 we can write the function asymptotically in the form ux = w0+ Xv + 0(X2). 

In this simple case it can be proved, that the function ux can be written in the asymp­
totic form if the second derivatives for the function g and the first derivatives for the 
function / fulfil Holder's condition. The v is the solution of Dirichlet's problem on 
the unit circle with the boundary condition v = /d(u0— g)/dr on !F(Q0) (see [10]). 

We will mention now some applications of this theory to the problem of notch-
stress. 

One of the basic problems of the theory of elasticity, which has outstanding import­
ance in practice, is the problem of stress concentration around a notch. Let us have 
a stressed half-plane which is disturbed by a notch, characterized by the function fi(x), 
i.e. JQ = E[(x9y); y < ju(x)]. This notch is the cause for the concentration of stress, 
this fact being of great technical importance. The coefficient describing the ascent of 
the stress caused by the notch will be called the coefficient of the concentration on the 
stress. 

If we use the aforementioned method, we obtain for shallow notches the following 
asymptotic expression for the coefficient of the concentration of the stress K (see [11]): 

2 Í*00 1 
K = l +-V.P\ -n'(x)dx, 

* J - c o * 
We take the integral in the sense of Cauchy's main value. In the special case of a cir­
cular notch we obtain the expression 

Й-З-A. = 1 + - arcsin 
71 

where t is depth and Q radices of the notch. 

Because of its great practical importance the theory of the notch-stress is widely 
elaborated. In practice there is the classical method of Neuber, who derived the asym­
ptotic expressions for this coefficient for some special cases such as the circular notch 
etc. In the simple case of the half-plane with the circular notch it is possible to deter­
mine the coefficient of the concentration of the stress precisely. From a comparison of 
the results of the precise theory, Neuber's approximation, and the theory mentioned 
above we see that for shallow notches our results are better than the Neuber's ones 
and that for deep notches the results are the same. The advantage of the methods 
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mentioned as an application of the theory of the dependence of the solution on small 
changes of the domain is that here we can express the influence of the form of the notch 
more clearly than in the Neuber's method. 

We can use this advantage by solving the problem of the optimal form of the notch. 
The problem is to find the function fi(x), 

li(x) = 0 for x < 0 , ii(x) = X for x > a , 

which expresses the form of the notch in such a way that no coefficient of the stress 
concentration reaches its minimum value. It can be shown that the asymptotic solu­
tion of the optimal form of the notch for small X is given by the expression 

71L N V1 - xlaJ N \a\ a))\ 
The minimum coefficient of the concentration corresponding to the optimal notch is 
Kmin = 1 + 4/TT . X/a. 

For comparison the coefficient of the concentration in the case of the elliptical-
shaped notch is 

Kel = 1 + - - 1 . 2 8 5 4 . 
n a 

By comparing these two expressions we can see the influence of the optimum form 
of the notch on the coefficient of the concentration. 
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