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ON PROPERTIES OF SPECTRAL APPROXIMATIONS 

J. Descloux, N. Nassif, J. Rappaz* Lausanne 

In this paper, we want to discuss connections between some conditions used in 

the theory of spectral approximation. For the sake of simplicity we shall restrict 

ourselves to the following framework: X is a complex Banach space with norm || • || ; 

Xn, n eiN, is a sequence of finite dimensional subspaces of X; n : X -* X are linear 

projectors with range X which converge strongly to the identity; A: X •> X is a li­

near bounded operator; the linear operators B : X -> X, uniformely bounded, with range 

in Xn, are supposed to approximate A; A : X -> X is then defined as the restriction 

of Bn to Xn (or, given the An's, one can, for example, define B = A n ) ; B will be 

called the "Galerkin approximation of A" if Bn = nnA. Remark that B is compact and 

has the same eigenvalues and eigensubspaces as A (with the exception of o). 

We shall use the following notations. If Y and Z are closed subspaces of X, then, 

for x e X, 6(x,Y) = inf|| x-y||,6(Y,Z) = sup 6(y,Z), 6(Y,Z) =max(6(Y,Z),6(Z,Y)). 
yev yeY,||y|| = i 

For a linear operator Cdefined on X or X , w i t h range in X, we set ||C|| = sup ||Cx||. 
n xexn,||x||=i 

Let us introduce some properties of approximations of A by A or B : 

U) lim|| A-Bn || =o ; Al) lim Bp = A strongly; A2) {BnX|||x || $ 1, n eiN} is relatively 
n-x» n-x» 

compact; Z) lim|| A-AJI = o; R) lim sup <5(Ax,XJ = o; VI) xn e X , lim x =x 
n-~ n * n-~ xexn,||x|| = l

 n n n n->- n 

-=> lim AnXn = Ax; V2) for any bounded sequence xn e Xn, {(A-An)xn} is relatively 
n-x» 

compact ; G) for any A e p(A), for any subsequence {xa} of any bounded sequence 
x e X such that (A -x)x converges, there exists a converging subsequence {x } of n n a a p 
{x } such that A(lim x0) = lim A 0x 0 . a 3 P 3 P P 

A2 means that {B } is collectively compact in the sense of Anselone [1]; Z and 

R has been studied by the authors in [2]; R means that Xn is "almost" an invariant 

subspace of A; VI and V2 imply that A is a compact approximation in the sense of 

Vainikko [8]; G is used, in a more general context, by Grigorieff and others in par­

ticular in [4],[5V Since Bn is compact, note that U or {A1,A2} implies that A is 

compact. 

In the following a(A), p(A), a(AJ, p(AJ, a(B n), p(Bj will denote the spectrum 

and the resolvant sets of A, Ap and Bp. RZ(A) = (A-Z)"
1: X ̂  X and R Z(AJ = (A^z)"

1: 

X + X are the resolvent operators of A and AM defined respectively for z e p(A) and n n n 
z e p ( \ ) -
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Let rtzp(A) be a Jordan curve; we set P = - (2TH)" 1 R2(A)dz and, if r p(A n), 

P =- (2-iTi)"1 I R (An)dz: Xn + Xp. P and Pp are the spectral projectors and E = P(X), 

E = P (xn)
 are tne invariant subspaces of A and A relative to r. 

Consider now some spectral properties: SI) for any z 6 p(A),3N 6 IN and Mz such 

that || R (A )|! < M , n > N ; S2) Vx 6 E, lim 6(x,E ) = o; S3) lim <5(E --) = o; 
- n-x» n-x» 

S4) if E is finite dimensional, then lim 6(En,E) = o. If X is a Hilbert space and if 
n-xx> 

A and A are selfadjoint, for an interval Ic]R, define E-, as the invariant subspace 
of A relative to I and ET c X as the invariant subspace of A relative to I; we then in n n 
introduce the property SH): for all intervals I and J, the closure of I being a sub­

set of the interior of J, one has lim 6(Ej ,E,) = o. 
n-*» 

SI, which is a property of stability, implies the upper semi-continuity of the 

spectrum and garantees the meaningfulIness of the approximated spectrum a(A ). S2 

has little importance for application; however S3 garantees the meaningfullness of 

all the elements of the approximate invariant subspace E . If r contains only an 

eigenvalue X e o(A) of algebraic finite multiplicity, SI and S4 imply that X is sta­

ble in the sense of Kato ([6],p.437). For the selfadjoint case, SH is a refinement 

of S3. 

PiopoAUion 1: a) U => {AI, A2, Z, R, VI, V2, G, SI, S2, S3, S4}; b) {AI, A2} ==> 
{R, VI, V2, G, SI, S2, S4}; {Al, A2} +> S3; if A and Bn are selfadjoint {Al, A2}-=>U; 

c) Z => {R, VI, V2, G, SI, S2, S3, S4}; for the selfadjoint case, Z<==>SH<=->{V1, V2}; 

d) if A is the Galerkin approximation of A, R <=o Z <=~> V2; e) {VI, V2} => {G, SI, 

S2, S4}, V2 => R; {VI, V2} +> S3; f) G <=> {VI, SI}; G +> S2; G f> R, G +> S3; 
G f> S4. 

Most statements of Proposition 1 can be obtained directly or with little work 

from known results in the litterature; for b), see Anselone [1]; for c), d), see 

Descloux, Nassif, Rappaz [2],[3]; for e), see Vainikko [8]; for f), see, for example, 

Grigorieff[4], Jeggle [ 5 V However let us verify in e) that V2 => R: suppose R false; 

3 e > o , the sequence xn e XR, n eiN, ||xn||=l and a subsequence {x } of {xR} such 

that 6(Axa,Xa) >. e; V2 implies the existence of y 6 X and of a subsequence {x } of 

{x } such that lim (A-A )x = y; setting Z. = A.x +nfiy e XQ , one has lim(AxQ -ZJ=o, 

which is a contradiction. We verify in c) that {VI, V2} => Z in the selfadjoint case: 

suppose Z false; there exist e >o, the sequence xn e Xn, n 6JN, || x j | = 1 and a subse­

quence {xa} of {xn} such that ||(A-Aa)xa|| >. e; V2 implies the existence of y e X arid 

of a subsequence {xp} of {xa} such that lim (A-A )x = y; denoting by (,) the scalar 

product in X, one has by VI: e2 < ||y \f = lim((A-A )x ,n y) = lim(x.,(A-AJn y) = o; 
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contradiction. Note that the last property we have verified is in fact a particular 

case of the following result: let X*, X*, A*, A*, ll* be the adjoint spaces of X, Xp 

and the adjoint operators of A, An, nn; X* is identified as a subspace of X* by the 

map cpn 6 X* + cp 6 X* with cp(x) = <Pn(nnx) Vx 6 X; then the three properties V2, n* 

converges strongly to the idendity in X*, for all converging sequences xn 6 X* one 

has lim A*x = A (lim x ), imply Z. 
n-x» n-x» 

2 

We also prove the negative statements of Proposition 1 by examples. Let X = £ 

with scalar product (,) and canonical basis e1,e2,..; note Y =span(e1,e2,..,e );n 

will be the orthogonal projector on Y . We show that {Al, A2} f> S3 (and consequen­

tly {VI, V2} f> S3, G f> S3); set Xn = Yn; the operators Ax = (x,e1)e1 and Bnx = 

= (x»ei+e
n)

ei verify {Al, A2}; but e -e is an eigenvector of A = B (restricted 

to X ) for the eigenvalue o. The following example will show that even in the 
00 

Galerkin selfadjoint case, G f> R and G f> S4; set X = Y ,Ax = \ (x,e )e + 
n=l 

+ (x»e n+ ) e
2 » ̂

 = n
nA (restricted to X ); clearly property R is not verified; 

furthermore a(A) = {-1,0,1} where o is an eigenvalue of multiplicity 1 of A, a(A ) = 
= a ( \ ) (n^2) where o is an eigenvalue of multiplicity 2 of A so that S4 is not 

verified; since A is selfadjoint || R (A ) 11 = l/(distance (z,a(A )), SI is verified; 

since A is a Galerkin approximation, VI is satisfied and by proposition If, one has 

also G. (An example of a differential operator illustrating the same situation is 

contained in Rappaz [7] p. 71). 

Rem&nkA: Condition Z appears as a generalization of U, whereas {VI, V2} is gene­
ralization of {Al, A2}. G is essentially equivalent to the stability conditions SI. 

For practical applications, {Al, A2} has been used in connection with integral ope­

rators (see Anselone [1]), {VI, V2} and G have been used in connection with finite 

difference methods for compact operators (see Vainikko [9], Grigorieff [4]; condi­

tion Z has been verified in connection with Galerkin finite element methods for non 

compact operators of plasma physics (see Descloux, Nassif, Rappaz [2]). 

Proposition 1 does not exhaust the list of relations between the different pro­

perties we have introduced. We mention another one. 

?n.opo^Ajtiovi 2: Let X be a Hilbert space, n be the orthogonal projector from X 

onto X . A be compact. A is given and we set B„ = A n ; then Z «-> U. n n n n n 

Piooj: From the realation A-Bn=(A-An)nn+A(I-nn),one has ||A-Bn|| $|| A-A |^+||A(I-nJ|; 
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by Z, lim || A — A |L = o, since A and consequently its adjoint A are compact, since 

lim nn = I strongly, one has lim || A(I - n n ) | | = lim || (I - n )A || = o. 
n-x» n-*» n-*» 

Finally, we show for the typical situation of integral operators with continuous 

kernel that the properties {Al, A2} can be "transformed" in uniform convergence. To 

be specific, let K: [o,l]x[o,l] ->- (, be a continuous kernel, X be either C°[o,l] or 
7 ~ f1 

L (o,l), A: X -* X be the integral operator defined by (Ax)(t) = K(t,x)x(i)dT. Let 

for n 6 IN, h = 1/n, t, = ih; for X = C°Lo,l], we approximate A by the trapezoidal 
n h 

rule and define B : X + X by (B x)(t) = £ £{K(t-t. ,)x(t. ) + K(t,t.)x(t.)}. A and 
n n n = " l ^ J ~ ̂  J ~ i J J 

B then satisfy properties {A l fA 2) (see Anselone [1]). 

VsiopoAition 3: For the above situation, there exists the operator C : X ->- X, 

where X = L2(o,l) such that a(C ) = a(B ) and lim || A -Cn|| = o. 
n-*» 

Vfioo £_: By proposition 2, it suffices to construct a subspace X <=L (o,l) and an 

operator A : X -> X such that a(A ) IJ {o} = a(B ) and lim || A - A || = o. Choose X 
n-x» 

as the set of continuous piecewise linear function relative to the mesh {t.}; for 

x 6 X , A x is then defined as the Interpol ant of B x in X ; using the uniform con­

tinuity of K, one obtains easily that lim II A - A II = o. (For more details see 

Descloux, Nassif, Rappaz [3]). n^°° 

Rmank: Proposition 3 is still valid when B is obtained by other classical in­

tegration formulae, for example Newton cotes or Gauss-Legendre; one has only to de­

fine convenient subspaces X . 
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