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VARIATIONAL AND BOUNDARY VALUE PROBLEMS FOR DIFFERENTIAL

EQUATIONS WITH DEVIATING ARGUMENT
GeA.Kamenskii and A.D.Myshkis, Moscow

The systems with after-effect that are described by differen-
tial equations with deviating arguments have the following charac-
teristic property: for the estimation of the future in such a sys-
tem it is necessary to know the past for the time equal to the
time-lag. It means that theAinitial value space for such a syatem
is a functional space S (with a given norm), and a natural analog
to the simple variational problem is a problem of minimizing a
functional with deviating argument on trajectoriea connecting two
points of the space S. Such variational problems are named by us
the infinite defect variational problems. In the same way, the bo-
undary value problems for differential equations with deviting ar-
gument when +the trajectories connect the points of the aspace S

are called the infinite defect boundary value problems.

Various problems involving infinite defect are studied extensi-
vely now. N.N.Krasovskii [1] » § 45 has formulated and solved the
problem of the quieting of a system with time-lag. For the quieting
of a system without time-lag x?(t) = Ax(t) + Bu(t) it is suffici-
ent to find a control function u(t) such that x(t1) = 0 fora
t1:> to and then put u(t) = 0 for t 2 t1. In contrast, for
the quieting of the system with time-lag

x?(t) = Ax(t) + Gx(t-T) + Bu(t)

a control function u(t) such that x(t) = 0 for t15 t St1+-t
is needed. This problem, as is not difficult to see, 1is an infinite
defect problem.

A.W. Krjashimskii and Yu.S. Osipov [ 2] studied a difference=-
differential game with a target set in a functional space. H.Banks
and G.A.Kent derived Pontrjagin type maximum principle for control
of neutral type difference-differential equations with a functional
target set. (See[3]). The variational problems for functional with
deviating argument were investigated by G.A. Kamenskii [4, 5] . All
mentioned papers deal with infinite defect problems.

The boundary value problems for differential equationa with de-
viating argument have been studied by A.Halanay [6], L.J. Grimm and
K.Schmitt [7], G.A.Kamenskii and A.D.Myshkis [8] and others.

In the last works was described the essential difference between



180

the boundary value problems for equations with the deviations in
the highest order derivatives and for equations without such devia-
tions. .

In this paper we investigate the variational problems for the
functional with deviating argument of the more general type than in
[4, 5] . We consider also analogous problems for functionals depen-
ding on functions of many arguments and finite difference method
for solving the boundary value problem arising in the onedimentio-
nal case.

1. Variational problems for functionalswith deviating argument

Consider the problem of the extremum of the functional
B
(1) I = [ Bx, (@ ©seee s 3(@, (1)), ¥H(W ()5,
* y(w (x))) ax,
m
where — @ <X <f < oo ,F:[d,p]x (Rn)2m+2__,, R, m= 1,

in the class of the functions y: R—>R", y(x) = 0 ( x€[a,b]),
A < a<b =g ( a nonhomogeneous boundary value problem may be
reduced to the homogeneous one by the standard change of variables),
y(x) is absolutely continuous, y’e¢ L, 1< p < oo with the natu-

ral norm. It is supposed that P e 01, W, (x) = x, all
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( V xél.f‘,P] 5 TgreresTys Zgreeeszy € R)
with continuous K, I; Fy is a n-dimentional vector.

J
Denote b:‘ = C%(E‘,ﬁ])—*ﬁ’l,ﬁ] the inverse functions to the ¢J .

It is easy to prove that the functional J(y) under our assumptions
is differentiable and by simple changes of variables and by integ-
rating by parts we can get the first variation of J(y) in the
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form
a m

/
§T = Sb[.z((}’i(x) ij( 63 (x),y(t%(b"j(x)))....,y(ui‘(53(;))),
Jd = m

a /
TG (E0))gene iy (0 (K (2D = — JE_ ob}(x)rzj(...ilgy(x)'
« dx =

( the subtrahend here is necessary to understand in the terms of the
theory of distributions). By standard methods we get the proof of
the following

Theorem 1. If the function y is a stationary point for the
functional (1) ( in particular, the point of extremum), then yeﬂp
satisfies almost everywhere on [a, b] the equation

m
/
4 2 F b: ’ w bf gocey f )
(4) ;ﬂ'oxi (x) yjcj(x) (CATACOD IR CAEACIIY
(Y. (x))) (@ (¥ (x)))) = Em ¥ (x)F, (
. gecey ’ - — F ece = 0.
3 TS ax 55 J ey ‘

»
y (wo

It follows that the expression in (4) standing after the
sign %x_ has to be absolutely continuous. ( Mark that y’(x) in

general case does not belong to that class of functions).

Thus the y(x) is the generalized solution of the equation (4)
though the equation (4) is satisfied by y(x) almost everywhere.
Remind that you have to put in (4) y(w (¥ (x))) = y*(W( ¥, (x))) =
= 0 every time when 0{1 ( 32 (x)) é-[a", bl; and that y(a) = y(b)=
= 0. Suppose in addition that P € C2 s P>2and for p< OO0
the matrices P satisfy (2), thematrices P satisfy (3)

yjyl y:‘z]_
and the matices szzl - the analoguous inequality with the power
p-2. Then by usual methods we may get the following representation
of the increment of the functional (1)

1 o2
(5) A3 =83+ 380 + o |85 (2
H,
where p
° m
EEAN! [(r”Sy(w.(x))»gy(w(x))+
5 3i1=0 1 J (4

(o Sr@ Iy @)+ (r,, rw)E y* (e () ax.
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Suppose also that mes {x,u)j(x) =W l(x)s =0 (Vi, 1, 3#1) .
Then we may state the following analog to the necessary condition
of Legendre.

Theorem 2. Suppose that the above mentioned conditions are sa-
tisfied and the functional (1) attains on y +the local minimum
in the space H, . Then for almost all x¢[a, b] the matrix

m -
JZOPszJ‘Kj("'y(wo“%“’”'"""“’m( GG, ¥ @0, (5 (),
- /
ceesy? (W (=N Y 4(x)
is non-negative.

For the proof it is necessary for any x 6]&, b[,

xoe -{ \ 0) (x) = W (x)} to put Jy = -:Eg(m(x—xo)),

g € H.a , M — oo and to use the arbitrarity of the finite
function g.

2. A variational problem for the quadratic functional depending
on the functions of many deviating arguments.

Let Sand QC S be non-empty open bounded sets in R® ( n>2)
and on S are given the functions <O : 5~ wk(s_) < R? having
the inverse functions C‘)-l = b’k: wk(g) —+ S and @, (x) = x,

QC @ (5), @, € ¢B(5), ¥ € B(WL(5)) (k= 0,..0,m, m21).
Consider the problem of the minimum of the functional

I(u) = ff[ z 21 (B, (W @)y (@3(0) +

193 =1 k,1=0 n
m
2 E D by (e @)@ @) + ) | e, ()
i=1 k,1=0 k, 1—0
cu(w ((x)+ 2 Z }'_': 5, (g (0, (x))4 22:ek(x)u(w (x))|ax
i=1 k = =0

in the subspace H of the space wa(R“) that is the closure of the
set Ho of the infinitely differentiable functions that are finite
on Q. With other words we may say that u belongs to the space

o —

WA Q) and wy (W, (X)) = u(® ,(x)) = 0 by @ ,(x) € Q. Here
1,3 3 ) .

835610 Dyp1e d4ic€ € (5)s opg € COB), o€ Ly(S) (4,3 = 14eeeym

k,1 = Oyeee,m)., Without loss of generality we shall suppose that

853k1 = ®ji1k’ ®x1 ® ®1k. Iet u be the extremal point for J(u).
Then for any v & H
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(6) $I(u, v) = 0.

By a change of variables in the integral representation of (6) we
obtain

(7)S Z E , JL‘.,1:1(25’1(15))%[ (x)vy (x)+ Zblkl( XI(X))uxl(x)'
1 b3,k

v (x)+ Z IS ST COLMNCON chl(zrl(x))u“m v(x)+
i,k

de ¥ 1w () + oy (¥ vix) | w|f e = o,

where * (W ( Ki(x))) = o ¥l(x), B'I(x) - Jacobian

D( X1130"9 Xln)

D( x1 seey xn' )
tion Z7) for any v & H, we shall call u the generalized solu-
tion of the differential equation

(8)-—2 ‘_Aijkl(x)ux (x)l T ZBikl(z) (x) +

1”0

. If the function u €H satisfies the equa-

+;§ ckl(x) u l(x) = F(X) ( x €Q )-

Here

/
Aijkl(x) =20l ¥ (x)))Kll(x)l Bypy(x) = by4( b’l(x))]Xl(x)l"

Z by ¥ 10 | Kb, Y @ (), @,

r,s=1
Cpy(x) = Z[m (¥, Klm\] + ey A’l(x))'\d'l(x)l
¥(x) = Z[au(b’(xnl xl(x)\] Zelt Y| ¥ =],

W, = <wk1,..., ) 87 = ( b’n,..., & 1n)-

We proved the following

Theorem 3. If the functional J(u) attains on the function wu
the extremum in the space H then wu is the generalized solution of
the equation (8).

It is easy to show on simple examples (not like for the equa-
tions without deviations of arguments) that any requirements on the
smoothness of the right hand parts cannot guarantee the existence
of twice differentiable solutions. Therefore it is necessary to use
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the above mentioned definition of the solution in all cases.
Consider now the boundary value problem for the equation (8)
in the space H. The boundary condition has the form e = 0 and

u;‘i(x) =u(x) = 0byw (¥y(x) E Q.

Define bounded operators

A I3(Q) — I3(Q), (Aw),(x) = -:]Zkll B3 (x) w53

RE = L@, (R = Y By o Z 0y (x)u<1(x)

1,00 k,1
and adjoint operators

: IB(Q) = 1), (K ), (x) = Z AL @)Wl ¥ ) ¥ o] wm)

+: H—>L,(Q), ( Ru 1(x) = = Z [ Bitl(x)lwl(xk(x))a/ (x)]

Z i,k,1
s | o ¢ = Ca|wh (¥ - ¥t .

Denote by (.,.) the scalar product in I'Z(Q) and by ("')n
~ the scalar product in L2(Q)- Suppose that fora C>0

(9) (Aw, w), = C(w,u), (Vau € L}Q)),

in this case it is natural to name the equation (8) elliptic.
By definition the function #H¢é¢H 1is a solution of the stated boun-
dary value problem for the equation (8), if

(10) (AVu,Vv)n+(Ru,v)-(F,v) (Vv e H)

Consider also in the space H the homogeneous boundary value
problem .

(11) (AVu,Vv)n4 (Ru, v )= O (Vve H)
and adjoint boundary value problem

(12) (Vv u,Vv) + (Euv)=0 (Vven)

By means of reducing the equations (8) - (12) introduced
above to the equations in the Hilbert space H and using the theory
of compact operators in Hilbert spaces we obtain the following

Theorem 4. If the boundary value problem (11) has only zero
solution, then the problem (10) has one and only one solution up

for any Fel,(Q), and || wpll, < ¢l #ll.

If the boundary value problem (11) has non-zero solutions,
then the problem (10) has solutions if and only if ( F, 0 ) = O,
for all solutions u of the problem (12). The dimensions of
the solutiona spaces of (11) and (12) are finite and equal.
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In obtaining of the results of this section took part A.L.
Skubachevskii.

3. The finite differences method of the numerical solution of

the boundary value problem for the linear equtions with ma-

ny senior members.

We describe here the finite difference method for linear equa-
tions with many senior members and with deviations commensurable
with the length of the interval on wich we search for the solution.
Such equations may be reduced to the equations with integer devia-
tions of the form

(13) z [ ooy i) + b(x)y* (x=) + ey (0y(x-k)] = £(),

k=-m 0< x <£b (b=~ integer ),
and boundary condutions

(14) y(x) =0 for x < 0 eand x>b.
Suppose that all a} , by, ¢y, £ € C*[0, b] - the space of
piecewime continuous functions with the possible jumps in the inte-

gers, The equation (13) may be written as the operator equation

(15) Iy = DQDy + RDy + Sy = f,
where m
(@)x) = ) | s (x)zx-k) ,
k==m
m
(Rz)(x) = E b, (x)z(x-k),
k==m
m
(5z)(x) = E ¢y (x)z(x=k)
k=-m

with boundary conditions (14), D is the operator of differentia-
tion, operators Q, R, S act in Lzl_o, b]. We suppose that the
operator Q has alwas the bounded inverse operator By Mn

we denote the space of functions defined on T {0, o’ n""’ b}

The operators A n’ N n’ Qn %—? Mn are defined by the
formulae:

n(¥ (s+h) -5 (8)) (8€ T\{p}), ba ],
—‘-
(A", §)(e) =

n(g§ (b) -z(b-h))  (s=b),
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n(&(h)-%(0) (s=0),

(A, % XNe) = {
. n(% (s) = £(s-n)) (s € 2\{0}) ,

m
(& )(s8) = E a(s) §(s=k) (8 €& T, E(s=k) = 0 for
knenm S-kg Tn ).

The operators l& and Sn are definied similarly. Define opera-
tor [ . ] ntC [o, b]o>M by equality [v], (8) = 3(8), s €T,
and define norms in lln by formulae

bn-1

bn > 4|E
lgl s = ¢ 2 (hv))%, | 5 ”n=( g Ch)

V=1

(512 - = [ £ ]

The approximate solution of the boundary value problem (13),
(14) is a net function g (s) satisfying the equation

16) (I, & )e) = (A QA+ RAT + 5 )8 (0)=[2] (8),

s € r\{o, b}; E(0)=E(®)=0.

It is easy to prove that if y e Hﬁ, y*€ c*[o, b], y satis-
fies the condition (14), then

%
| [&], - & A0,
If we put now Ry = y and insert Qy instead of y , we prove
that if on every interval ]0, 1 [,..., ]b-‘l, b [ exist uniformly
continuous y’ end y’’ and Q'€ H_, ( Q' )€ c*'fo, v],

then un | (@], - 650,804 |

o
n — o< n
Thus we have prooved the following theorem of the approximation of
the operator L :
Theorem 5. If Iy = £ , then

an | wlola - [ea]® — 0 for 2o oo

The following theorem states the atability of the finite dif-
ference scheme.

max
aé'].‘n

n-O.

= 0,
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Theorem 6. For the injectivity of the operator L it is
necessary and sufficient that there exist C> 0 and n, such

that o ) c
SONER 3 T W { R S
[ 823 |2 +05] "} @ > =, sO=5@=0)

The necessity is prooved by the assumption of the contrary by
using the piecewise linear interpolation of the functions for

which the expression in parenthesis in (18) 1s equal to 1.
The sufficiency follows from the theorem 5.

From (18) it follows in particular that (16) has an exact-
1y one solution for each n > n,. If we put in (18) & = [y]n-
- [E] n and apply (17) , we prove the theorem of the approxima-
tion of the solution :

Theorem 7. If the operator L is injective, y is a solution
of Iy =f and Ez‘ is a solution of (16), then

i °
” [y]nagn”n"*o for n — oo,

In obtaining the results of this section took part A.G. Kamen-
skii.
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