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VARIATIONAL AND BOUNDARY VALUE PROBLEMS FOR DIFFERENTIAL 

EQUATIONS WITH DEVIATING ARGUMENT 

G.A.Kamenskii and A.D.Myshkis, Moacow 

The ayatema with after-effect that are deacribed by differen­

tial equations with deviating arguments have the following charac­

teristic property: for the estimation of the future in such a sys­

tem it is necessary to know the past for the time equal to the 

time-lag. It means that the initial value apace for auch a ayatem 

i8 a functional apace S (with a given norm), and a natural analog 

to the aimple variational problem is a problem of minimizing a 

functional with deviating argument on trajectories connecting two 

pointa of the apace S. Such variational problema are named by ua 

the infinite defect variational problema. In the aame way, the bo­

undary value problems for differential equationa with deviting ar­

gument when the trajectories connect the points of the apace S 

are called the infinite defect boundary value problema. 

Various problems involving infinite defect are studied extensi­

vely now. N.N.Krasovskii [l] t § 45 has formulated and aolved the 

problem of the quieting of a aystem with time-lag. For the quieting 

of a aystem without time-lag xf(t) « Ax(t) + Bu(t) it is suffici­

ent to find a control function u(t) such that x ( t . j ) « 0 for a 

*1 > *o a n d tken put u(t) « 0 for t > t . . . In contrast, for 

the quieting of the system with time-lag 

xf(t) = Ax(t) 4- Gx(t-T>) + Bu(t) 

a control function u(t) such that x(t) « 0 for t.-< t^t^+t 

is needed. This problem, as is not difficult to see, is an infinite 

defect problem. 

A.W. Krjashimskii and Yu.S. Osipov [2] studied a difference-

differential game with a target set in a functional space. H.Banks 

and G.A.Kent derived Pontrjagin type maximum principle for control 

of neutral type difference-differential equations with a functional 

target set. (SeeT3])* The variational problems for functional with 

deviating argument were investigated by G.A. Kamenskii £4t 5] • All 

mentioned papers deal with infinite defect problems. 

The boundary value problems for differential equations with de­

viating argument have been studied by A. Ha Ian ay [6], L.J. Grimm and 

K.Schmitt [7], G.A.Kamenskii and A.D.Myshkis [18J and others. 

In the last works was described the essential difference between 
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the boundary value problems for equations with the deviations in 
the highest order derivatives and for equations without such devia­
tions. 

In this paper we investigate the variational problems for the 
functional with deviating argument of the more general type than in 
[4, 5] t We consider also analogous problems for functionals depen­
ding on functions of many arguments and finite difference method 
for solving the boundary value problem arising in the onedimentio-
nal case. 

1 • Variational problems for functional* with deviating argument 

Consider the problem of the extremum of the functional 

( D J(y) « / -?(*, j(% (x)),... , y(<^ (x))f ?>(% (x))f..., 

* y*(a> (x))) dx, 
m 

where -oo<oc<^ < «> f p. [k^g] x (B?1)2** 2-> Rf a > 1, 
in the class IT of the functions y: R-^rf1, y(x) *= 0 ( x€[a,b])f 

<?<, < a< b 5 >-? ( a nonhomogeneous boundary value problem may be 
reduced to the homogeneous one by the standard change of variables), 
y(x) is absolutely continuous, y#€ L , 1 < p S <-x:> with the natu­
ral norm* It is supposed that P e C., <^Q (x) « x, all 

<̂ > 6 C j o i ^ p ] , 0 ) j (x) jt 0,W. < | > , p ] ) 2 [ a , b ] and 

. > . ^ 

for P < oo m 

(2) |F( x , У 0 # • • • » ym ! 
ř z o f . . • » - m ) | + £.• yi 

«l » • . . • • • • i . I ' . I xi m 

+ E II 
І - o 

гi 

(3) 

m г 
І - o 

i v 
x, У 0 » •• •»У m » z o» •••»-*>.. < 

m 
M||y 0 | | | j . | ) d + 2H | ^ |J P " 1 ) 

o 

with continuous K, L; F is a n-dimentional vector. 

i 
Denote £ -r Cc> C ̂ p ] ) ^ ^ , ^ ] the inverse functions to the OX . 

J O 2 
It i s easy to prove that the functional J(y) under our assumptions 
is differentiable and by simple changes of variables and by integ­
rating by parts we can get the first variation of J(y) in the 
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form 
a m 

S-J- \ rY~Y(x) P_ ( & (x),y(u;(r.(x))) y (u?(JC(x) ) ) , 

b j = 0 m 

yt(^0(K(x))),...,y»(uJ(5'(i)))) - — X"_ *".(x)F_ (...)l$y(x)-

( the subtrahend here is necessary to understand in the terms of the 
theory of distributions). By standard methods we get the proof of 
the following 

Theorem 1. If the function y is a stationary point for the 
functional (1 ) ( in particular, the point of extremum), then y£Hp 
satisfies almost everywhere on [af b J the equation 

(4) >_, r! (x) F__ (fc(x)f j(u? (2C(x)))f...fy(cc/ (dT(x)))f 

d m / 
y'(^a,(x)))f...fy'(o;(ir(x)))) - — VV.(x)F-. (...) » o. 

o J * j dx JTo* J 3 

It follows that the expression in (4) standing after the 
sign -jg has to be absolutely continuous. ( Mark that yf(x) in 

general case does not belong to that class of functions). 
Thus the y(x) is the generalized solution of the equation (4) 

though the equation (4) is satisfied by y(x) almost everywhere. 
Remind that you have to put in (4) y(fc>. ( tf. (x))) • y •(*-?( frl(x))) » 
» 0 every time when °^j ( £ (x)) 6 [af bj; and that y(a) =- y(b)= 
• 0. Suppose in addition that F € C2 $ P > 2 and for p < oo 
the matrices F__ _ satisfy (2), the matrices F satisfy (3) 

y / l yd 1 
and the matices P - the analoguous inequality with the power 

j -*-
p-2. Then by usual methods we may get the following representation 
of the increment of the functional (1) 

(5) A J * $ J + g ̂  J + o ( || S y |( 2o ), 

( P_ Sy(u>. (x)))- £y(a> (x)) + 

<PV - &y(a>(x))*&V(ca(X)) •+• ( P_ _ S'y»(u)(x))*S'y'(aj;(x))ldx. y j z _ 3 E- zjzl J e J 
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Suppose also that mes { xjO) .(x) « G.) T / X ) ] * 0 (Vi$ 1» J / 1 ) 
Then we may state the following analog to the necessary condition 
of Legendre. 

Theorem 2. Suppose that the above mentioned conditions are sa­
tisfied and the functional (1) attains on y the local minimum 
in the space H . Then for almost all x €[af b] the matrix 

m 
7~l p- > <*•(x).y(w(^.(i))),...,y(to (r,(x»), y»(-oo(K(x))).... 
3 - o ^ 5 

...,y»(io(lf.(x))))jr i(x) 

is non-negative. 
For the proof it is necessary for any xQ€ J a, b(_f 

x Q £ Vy^fxl CO. (x) - CO (x)} to put Sy = 1 g(M(x-x )>, 
° ifi. c ' J l> M 

g £ H ^ ? M —* <70 and to use the arbitrarity of the finite 

function g. 
2. A variational problem for the quadratic functional depending 

on the functions of many deviating arguments. 
Let S and Q C S be non-empty open bounded sets in tf1 ( n > 2 ) 

and on S are given the functions ^ k : S ** ^ k(S) cz R
11 having 

the inverse functions <^~ k « ^"k: <^k(S) -* S and % (x) 5 xf 

Q C ^ k ( S ) , ^ k 6 C2(S), r k € C 2 ( ^ k ( S ) ) (k = 0f...,m, m > 1 ) . 
Consider the problem of the minimum of the functional 

jM = ff[f: JZ ^kiwv^ ( x , , \ ( a ; i l x , , + 

S L i ,d=1 k f l = 0 1 3 
n m ^̂ —. 

2 V"1 J~* b ikl(x)ux ( a ; ^ ) ) ^ ^ ^ ) ) - ^ \ ckl(x)u(^k(x))-
i=1 k ^ O n m k f l=0 

•u(6U ^x) )^ 2 ^ Y2* dik ( x ) ux.(^k(x))^2^ek(x)u(a^(x))ldx 
i=1 k = 0 i k=0 

in the subspace H of the space W^R?) that is the closure of the 
set HQ of the infinitely differentiable functions that are finite 
on Q. With other words we may say that u belongs to the space 

W^(Q) and û . (0>k(X)) * u(CO k(x)) = 0 by 0) k(x) e Q . Here 
aijkl* bikl» d i k € °1(S)> c k l^ C°(S)f ek6 ̂ (S) (i,j . 1,...,n; 

kfl « 0f...,m). Without loss of generality we shall suppose that 
aijkl * ajilk* ckl s clk. Let u be the extremal point for J(u). 
Then for any v £ H 
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(6) <Tj(u, •) - 0. 

By a change of variables in the integral representation of (6) we 

obtain 

( 7 > ( { L [ X I aidki<*i<*>><<*>vx<x)+ LIw^*))^-)-

.v(x)+ XZbilk<5ri<x)>ukl<:c)vx (x )* Z-Ckl(^T1(x))ukl(x) T(X) + 
y , i.k i k 

+ /_,dii( JT iU))^x <x> + .-i<i'i(*)) T<x>]| ̂ l<x>|i «- « ° , 
where • ( ^ k ( ^ ( x ) ) ) - • k l ( x ) , frjte) - Jacobian 

-*( 011 »•• •» 0 i « ) 

Hi-! _ . If the function u€H satisfies the equa-
D( x1 . . . , -^ ) 

tion (7) for any v € H, we shall call u the generalized solu­
tion of the differential equation 
(B) -ZZ [^kl< x>^< x>l x+ 2 1 Bikl(x) u ^ x ) + 

i . j .k . l * 3 ikl 1 J c i -̂i 

^ Z - . C t l ( x ) u x l ( x ) - P(x) ( x 6 Q ) . 
k , l ' " ^ 

Here 
Aidki<x> - aijki<*"i(-=)>|iri(-=)|. Biki<x> - biki< >i(-:))|y.{(=-)|-

- X I bikl< ^ 1<X)) | * l ^ + ^ k r ^ < V !(«)))•( ^ l 8 ) x (x), 
r,s=1 s -

cki<x> - - X l k k i < r-,(x))l Jri(x)H + okl( ^ ( x ) ^ ^ ) ! , 

»(x) - ^ZL[^ii(^i(x))kiu)|] - H e l ( ^(x))! if^x)! , 
ifl

 xi 1 

W k " < Wki»'"» ^ k n ) * *l - ( ^ 1 1 ^ln ) # 

We proved the following 

Theorem 3* If the functional J(u) attains on the function u 

the extremum in the space H then u is the generalized solution of 

the equation (8). 

It is easy to show on simple examples (not like for the equa­

tions without deviations of arguments) that any requirements on the 

smoothness of the right hand parts cannot guarantee the existence 

of twice differentiable solutions. Therefore it is necessary to use 
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the above mentioned definition of the solution in all cases. 
Consider now the boundary value problem for the equation (8) 

in the space H. The boundary condition has the form uL. « 0 and 

u^1(x) -= ukl(x) . 0 by co k( rx(x)) g Q 

Define bounded operators 

A: I§(Q) — l£(Q), (Au)i(x) - - Z _ ^ A j i k l<x) u ^ U ) ? 

L ^ Q ) , ( Ru )(X) - YZ ^ l c l ^ ^ 1 + ----- Ckl(x)u
kl(x) 

i.lgl i lc*1 
R: H 

and adjoint operators 

A+: l5(Q)->I§(Q),(A+u)i(x) - Y l AiJkl< x )K< ^k(x)> (fk(x)| uj^x) 
.1,1-,1 

R+i H-^I^(Q), ( Ru )(x) - - Y Z [ B1J1(x)|^/1(Jr]c(x))^]c(x)|» 
-—i i,k,l , 

•ulk(x) x + Z_- Ckl(x) 0)i( IT k(x))-Jflc(x)| u
l k(x). 

Denote by (•,.) the scalar product in Iv-^Q) and by (•••)n ~ 
- the scalar product in Lu(Q)# Suppose that for a C > 0 

(9) ( Auf u ) n -> C(ufu) n ( V u e Ln(Q)), 

in this case it is natural to name the equation (8) elliptic. 
Bjy definition the function tieH is a solution of the stated boun­
dary value problem for the equation (8), if 

(10) ( AVu, vv) n+ ( Ru, Y ) . ( P, T) ( V v G H ). 

Consider also in the space H the homogeneous boundary value 
problem 

(11) ( A V tt, <s7 v ) n 4 ( Ru, v ) m 0 ( V v 6 H ) 
and adjoint boundary value problem 

(12) ( A+V tt, V v ) n + ( R+u, v ) == 0 ( V Y 6 H ) . 
:$y means of reducing the equations (8) - (12) introduced 

above to the equations in the Hilbert space H and using the theory 
of compact operators in Hilbert spaces we obtain the following 

Theorem 4* If the boundary value problem (11) has only zero 
solution, then the problem (10) has one and only one solution u p 

for any P£l^(Q), and || u p ||H < cj| p||. 
If the boundary value problem (11) has non-zero solutions, 

then the problem (10) has solutions if and only if ( P, u ) =- 0, 
for all solutions u of the problem (12). The dimensions of 
the solutions spaces of (11) and (12) are finite and equal. 
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In obtaining of the results of this section took part A.L. 

Skubachevskii • 

3. The finite differences method of the numerical solution of 

the boundary value problem for the linear equtions with ma­

ny senior members. 

We describe here the finite difference method for linear equa­
tions with many senior members and with deviations commensurable 

with the length of the interval on wich we search for the solution. 

Such equations may be reduced to the equations with integer devia­
tions of the form 

m 
( 1 3 ) ^ ' [ ( ak(x)y'(x-k))' + bk(x)y»(x-k) + ck(x)y(x-k)] = f(x), 

k=-m 0 < x < b ( b - integer ), 

and boundary condutions 

(14) y(x) «- 0 for x < 0 and x > b . 

Suppose that all a£ , bk, ck, f 6 Cf[b, b] - the space of 

piecewise continuous functions with the possible jumps in the inte­

gers. The equation (13) may be written as the operator equation 

(15) lor * DQDy + RDy + Sy =- f , 

where m 

(Qz)(x) * Y2* ak(x)z(x"k) • 
k=-m 

m 

(Rz)(x) = X~~" bk(x)z(x--k), 

k=--m 

m 

(Sz)(x) * \ ' ck(x)z(x-k) 

k=-m 

with boundary conditions (14 )» D is the operator of differentia-

tion, operators Q, R, S act in ~-*?|_0, bj. We suppose that the 

operator Q has alwas the bounded inverse operator Q • Bjy M 

we denote the space of functions defined on T « { 0, T» T»»«»f *>(• 

The operators ^ n, A~n* ^n : ̂ " ^ **n a r e d e f i n e d ^y *lie 

formulae: 

n( £ (s + h) - £ (s)) ( s € Tn\{bJ ), b* 1, 

<Д*
n
$>(-> - Í 

t- n (§ (b) -^(b-h)) (S=b) , 
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r n( £ ( h ) - £ « ) ) ) ( s = 0 ) , 

(An$ ) («) - 4 
( n( £ (a) - ^ ( s - h ) ) ( 8 € T n \ { 0 } ) , 

m 
(Qn^Xe) - y ^ a ^ s ) ^ ( s - k ) ( B 6 Tn, £ (s-k) . 0 for 

k»-m s-k 6 T ) . 

The operators R and S are definied s i m i l a r l y . Define opera-

t o r [ * ] n J C C°» b l " > M n by •«-u- l i t5 r [ y ] n
 ( s ) * y ( s ) » B e Tn 

and define norms In M by formulae 

bn-1 bn ± 

n v / ^. % •• / # » » • n ^ 

c 
в max 

n 

? ( 8 > l . 

The approximate solution of the boundary value problem (13), 

(14) is a net function £ (s) satisfying the equation 

(16) (Ife £ )(-) - ( A A / \ +
n + R ^ ; -v 5n ) £ (a) - [f]n (s) , 

s €. Tn\-{o, bj; m=W)=0-
It i s easy to prove that i f y e H , y f 6 C'[o, b ] , y s a t i s ­

f i e s the condition (14), then 

n^JI [ H a ' \&Wn\\n-°-
If we put now Ry = y and insert Qy instead of y , we prove 
that i f on every interval J 0, 1 [,•••-. Jb -1 , b [ ex is t uniformly 
continuous y* and j " and Qy* £ H , ( Qy* )* £ C ,[p, b"l , 
then 

n « 4 o o " u -• n 

Thus we have prooved the following theorem of the approximation of 
the operator L : 

Theorem 5» If IQT =- f , then 

( 1 7 ) II ^ M n " M n I ° - > 0 for n — oo. 
The following theorem states the stability of the finite dif­

ference scheme. 
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Theorem 6. For the inactivity of the operator L it is 
necessary and sufficient that there exist C > 0 and nQ such 
that * 

aw || v r » . { | f A 4 \ i | . * K O I * 
»A 4n? |B + II r II } (» i -., W = £(«)= 0). 

n 
The necessity is prooved by the assumption of the contrary by 

using the piecewise linear interpolation of the functions for 
which the expression in parenthesis in (18) is equal to 1. 

The sufficiency follows from the theorem 5-
Prom (18) it follows in particular that (16) has an exact­

ly one solution for each n > n_. If we put in (18) £ =- [ yl -
P —- o •» L jn 

- [?J and apply (17) , we prove the theorem of the approxima­
tion of the solution : 

Theorem 7* lf "the operator L is infective, y is a solution 
of lor » f and ^ is a solution of (16), then 

|| M n - S n II *— ° for » - «°' 
In obtaining the results of this section took part A.G. Kamen-

ski i . 
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