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BOШШ.ARY BEHAVIOR OP POTENTІALS 

J. Král, Praha 

Let L be an elliptic operator of the form 
m rn 

L u s x Tr(a-.v -x J u) + / e.s -T-5U + cu f - — d x k \ ik 2xx ' f- i
 3A1 

with sufficiently smooth coefficients in a domain D- C Rm (m >2). 

It is well known that under certain conditions on L and S2 there 

exists a fundamental solution G(x,y) on _Q X12 which is smooth 

off the diagonal and has a specified singularity at points of the 

diagonal admitting locally uniform estimates of the type 

(1) G(x,y) = 0 (dist(x,y)2~m ) , 

(2) ldG(x,y)| - ff (dist(x,y)1~m ) 

as dist(x,y)->0+ (here dist.•• denotes the distance and d stands 

for the differential). For compactly supported finite signed Bo-

rel measures ji the potentials 

(3) Gp(x) = ( G(x,y) dji(y) 

i 
are locally integrable together with their derivatives and are 

often used to transform boundary value problems for L into inte­

gral equations. Various aspects of the method of potentials in 

the theory of partial differential equations together with ample 

references to the classical work of E.E.Levi, G.Giraud, M. Gevrey 

and others may be found in C.Miranda's monograph [lj • As poin­

ted out by W.Feller [2] , the leading part of the operator L can 

(possibly after multiplication by a suitable factor ) convenient­

ly be written in the form of the Laplace-Beltrami operator 
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corresponding to a Riemannian metric defined by the form 
m 

2 1 Sik dx
1 dxk . 

This permits a better insight in some properties of solutions of 

Lu « 0 ; in particular, the usual conormal derivative associated 

with L reduces to tke ordinary irormal derivative corresponding to 

the Riemannian metric. We wish to indicate here that this point of 

view has useful applications in connection with investigation of 

boundary behavior of potentials and, in particular, their weak 

normal derivatives. 

Instead of a domain in R01 we shall thus consider an m-dimen-

sional Riemannian manifold SI (without boundary) which is smooth 

( say, of class C*° ) and oriented. On SI we shall consider an ope­

rator L of the form 

Lu = #( d*du + duAE + uC ) 

whose leading part is the Laplace-Beltrami operator on Jl ; here 

#• is the Hodge star operator mapping k-forms into (m-k)-forms , 

d is the exterior derivative, A is the exterior product, E is a 

differential (m-l)-form and C is a differential m-form. The trans­

pose of L has the form 

Mv *= *( d#dv - dvAE + v(C-dE) ) • 

We shall suppose that we are given a function G(x,y) on SI x SI 

which is smooth off the diagonal and satisfies in the weak sense 

the equations 

Lx G(x,y) « £y , y £ SI t 

My G(x,y) - Sx , x € SI , 

where & denotes the Dirac measure concentrated at z; with the 

estimates of the form (1),(2) (where now the distance dist... 
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is derived from the Riemannian metric) we have then for each com­

pactly supported signed Borel measure u the potential (3) which 

together with dGu is almost everywhere defined ( and locally sum-

mable )• 

We shall fix an open set QCJ2. with a compact boundary B c Jl 

and denote by C (B) the Banach space of all signed Borel measures 

with support contained in B ; the norm in C*(B) is given by total 

variation. CQ will denote, the class of all continuously differen-

tiable functions with compact support on il .If u€C*(B), then 

the weak normal derivative of u = Gu may be defined as the functio­

nal Nu over C* by the formula 

(y>. Nu) = \ [ d y > A * d u - y > d u A E - y > u C ] • 

a 
( If the boundary B of Q is a properly oriented hypersurface, then 

(y;Nu) = ( y A # du so that Nu is a reasonable weak characteri-

zation of the normal derivative •) 

7/ith the exception of the compactness requirement we make now 

no a priori restriction on the boundary B of Q and with each u e 
\L 

C (B) we associate the corresponding functional NGu, It is easily 

seen that the support of NGu is contained in B ( in the sense that 

(u>,NGu) « 0 whenever y> € C has support disjoint with B ). In 

general, NGu need not be representable by a ( signed ) measure. 

On the other hand, if there is a representing measure y for NGu, 

which mean3 that 

(y , NGu) « \ y> d V 

for all f € o ' tiien necessarily the support of V is contai­

ned in B so that V € C*(B) ; in this case we identify NGu = V; 

as usual. 
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We thus arrive naturally at the following 

Question • What conditions on B guarantee that UGu € C*(B) for 

every u€ C*(B) ? 

In order to answer this question in geometric terms it appears 

useful to generalize the concept of a hit introduced in L3J , L4J 

in connection with investigation of Newtonian potentials in m-spa-

ce. Let us denote by H the length ( = 1-dimensional Hausdorff mea­

sure ) derived in the usual way from the metric in SI . If T 

is a simple arc and P cJl is a Borel set, we call V € P a hit 

of f on P ( and say that P hits P at 7) ) provided, for every 

neighborhood U of 77 , 

H^unrnD^o and H1((U\P) n T ) > 0 • 

Let us now fix a point y £ SI and consider the tangent space 

Til of SI at y ; let Sy =- [ 0€ Tily ;|6| == l\ denote the sphe­

re of unit vectors and d <r the element of the surface measure in 

S ( induced by the metric in Til ), A = f d<r . If r> 0 is suf-

Sy 
ficiently small, then the exponential map at y 

expy : T i l y — * J 1 

i s well defined and 1-1 on the set 

Ue ; G€S , 0*kf<r} 

and we may consider the geodesic arcs 

rr(yfG) = |expy(oe ; 0 < ^ < r ] , G ̂  Sy . 

We shall denote by n£(y,6) the total number of all hits of Pr(y,9) 

on Q ( 0-^n£(y,9)^+°<-3). It can be shown that the function 

0 r-> nJ(yfG) 

is Borel measurable so that v/e may define 
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*? (y) Ш -_L [ nJ(y, ) d <г( ) . 

5
y 

Thus v^(y) is just the average number of points at v/hich the open 

geodesic arcs of length r starting at y hit Q. It is also useful 

to adopt the following notation. Let K C II be a compact set. 

Then, for sufficiently small r>0, vjj(y) is defined for all y^ K 

and we put 

vJJ(K) » lim supM(y); y€ K } . 
° r>|/0 L r J 

V/ith this notation we have the following answer to the above ques­

tion. 

Theorem 1 . If NGji€ C*(B) for every jx6C*(B), then necessarily 

(4) V^(B)<+<*>. 

Conversely, if (4) holds, then NGp€C*(B) whenever {i£C*(B) and 

the operator 

(5) NG : p I—> NGfi 

is bounded on C*(B) . 

The basic ideas of the proof of this theorem are similar to 

those employed in section 1 in [3] • 

If we assume (4) and denote by C(B) the Banach space of all 

continuous functions on B ( equipped with the maximum norm ),then 

Wf(y) = (f, NG£ y> 

represents a continuous function of the variable y € B for every 

f€C(B) and the operator (5) is dual to the operator 

(6) W : fv->Wf 

acting on C(B) • 

The operator W, which is closely connected with the classical 

double layer potentials, admits various concrete integral represen-
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tations analoguous to those obtained in section 2 in [3] for New­

tonian potentials. They are partly based on the fact that (4) im­

plies that Q has finite perimeter 

P(Q) = sup J ( dy/ ; I * j t / | - £ l j , 

Q. 
where y ranges over differential (m-1)-forms with compact support 

in Si , and on some results concerning sets with finite perimeter 

( compare [ 5j-[?] ). 

The operator (6) is more easily treated than (5) and its analy­

tic properties are closely tied with geometric structure of B. As 

an illustration we shall evaluate the quantity 

00 (oc) « in£ || W + * I - T II , 
T 

where T ranges over all compact operators on C(B), <* € R and I 

is the identity operator. For simplicity we shall state the formula un­

der a mild simplifying restriction requiring vol(U \ Q) > 0 for eve-

ry neighborhood U of any y£ B ( vol... denotes the volume in_Q )• 
y 

We have 

Theorem 2 . If (4) holds, then the density 

vol({z€Q; dist(z,y)< r } ) 
Q 7 " rjo vol({z£J2 ;dist(z,y)<r} ) 

exists for all y£ B and the following equality holds for any o<€R 

co{°<) = lim sup ( I*- DQ(y) | + v£(y) ). 
rJO y€B w 

Moreover, 

m i n { ^ ^ - ; rf € R1 ] - 2 &>(-]-) = 2 TJ(B) . 

Results analoguous to theorems 1,2 were originally established 

for logarithmic and Newtonian potentials and proved to be useful 

in connection with the Radon scheme [s~] for treating the Dirichlet 
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and the Neumann problem as well as related problems in potential 

theory ( compare [3],[4],[9] - [ll] including further references ). 

The above results permit similar applications in a more general 

setting . In distinction to local results v/e have described here, 

however, some of these applications depend on global behavior of 

the kernel G. These considerations remain beyond the scope of the 

present lecture. 

Finally we wish to mention that the quantity v j;(.) permits 

also to obtain necessary and sufficient conditions for the existen­

ce of angular limits of potentials analoguous to those known for 

logarithmic or Newtonian potentials ( cf. [l2j,[l3j ) and admits 

further generalizations useful in various investigations ( cf .[14] 

- [17] ) . 
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