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THE ROLE OF CENTER MANIFOLDS IN ORDINARY DIFFERENTIAL EQUATIONS 

H.W. Knobloch and B. Aulbach 

Wtirzburg, Fed. Rep. Germany 

In the last decade center manifold theory turned out to be one of the 

most useful and widely used concepts of invariant manifold theory. The 

notion and a first systematic treatment of what nowadays is called 

center manifold theory appeared 1967 in Kelley's paper [15]. Despite 

of its modern appearence however some basic aspects of this theory can 

be traced back to the beginning of qualitative theory of ordinary 

differential equations. The first treatment was probably given by Bohl 

[7] in 1904. He essentially constructed the types of invariant mani­

folds listed in Theorem 1 below. In addition he established one of the 

basic properties of center manifolds, namely to contain all solutions 

which are sufficiently small. Lyapunov, on the other hand, proved and 

used the second basic property (the so-called reduction principle) in 

his treatment of the critical case of stability with a pair of purely 

imaginary eigenvalues when he reduced a given system to a two-dimensio­

nal one which bears all information concerning stability. The reducing 

transformation is described by a function representing, in modern 

language, a center manifold for the original system. Kelley [16] and 

Pliss [23] developed a corresponding general reduction principle which 

allows to reduce the dimension of the underlying differential system 

without losing any information concerning stability. This reducing 

property is not limited to stability, but also holds for a wider class 

of local problems in differential equations e.g. in bifurcation theory. 

Bifurcating objects which are made up of small bounded solutions such 

as stationary solutions, periodic orbits or tori always lie on center 

manifolds. Thus, from a bifurcation point of view, the flow of a given 

system need to be studied on a center manifold only. In most cases 

treated so far this meant reduction to dimension one or two. Hence the 

reduction principle is the most useful result of center manifold theo­

ry. It is remarkable that it can be extended to certain types of infi­

nite dimensional systems (see Henry [14], Carr [8]). There exists also 

an analogous notion for mappings (see e.g. Marsden and McCracken [21]) 

with similar properties and a wide range of applications. 

In this report we consider the finite dimensional case only and give 

first an up to date account of center manifold theory for ordinary 
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differential equations (sections 1 and 2 ) . The main results of this 

paper are contained in Section 3 and concern an application of center 

manifold theory to a non-local problem. To be more specific we consider 

an invariant manifold and rise the question whether the approach to 

this manifold as a whole implies approach to a particular solution on 

this manifold. If the manifold is an orbitally asymptotically stable 

periodic solution the answer is in the affirmative. This is part of the 

well known Andronov-Witt-Theorem ("Existence of an asymptotic phase"). 

In Section 4 finally we demonstrate the scope of our method by means 

of an example which arises in genetic population dynamics. 

1. Autonomous systems 

In this section we collect the main facts of center manifold theory for 

first order autonomous differential systems. For general references see 

Kelley [15], Palmer [22], Carr [8]. Without loss of generality we write 

the underlying differential system in the form 

i * A"x + p(x,y,z) 

y - A 0y + q(x,y,z) (1) 

z « A +z + r(x,y,z) 

where A ,AQ,A are constant matrices whose eigenvalues have negative, 

vanishing, positive real parts, respectively, and p,q,r vanish together 

with their first order partial derivatives at the coordinate origin. 

The first theorem is concerned with five types of manifolds which are 

invariant under the flow of system (1) and which exist under the above 

hypotheses. 

Theorem 1; System (1) admits five types of invariant manifolds whose 

respective representations near (0,0,0) are 

(i) (y.»z) - if (x) (stable manifold H") 

(ii) (x,z) • hQ(y) (center manifold HQ) 

(iii) (x,y) - h+(z) (unstable manifold H+) 

(iv) z • h~(x,y) (center-stable manifold H~) 

(v) x - h+(y,z) (center-unstable manifold H Q ) . 

Each of these functions has the same order of differentiability as the 

right-hand side of (1) (if it is finite) and vanishes at zero together 
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with its first order derivative. 
Furthermore the following implications hold true: 

(I) If a solution (x(t) ,y (t) ,z (t)) of (1) starts at t = 0 on H~ (H+) 

sufficiently close to the origin then (y(t),z(t)) -= h (x(t)) 

( (x(t),y(t)) = h+(z(t)) ) holds for all t€[0,«) ( (~«,0] ) and 

the solution tends to (0,0,0) as t ->» ( t -> - «> ) .. 

(II) If a solution (x(t),y(t),z(t)) of (1) stays sufficiently close 

to the origin for all t€ [0,«) ( (-«,0],1R ) then z(t) = 

h~(x(t),y(t)) ( x(t) =- h*(y(t),z(t)), (x(t),z(t)) =-hQ(y(t)) ) 

holds for all t€ [0,«) ( (-»,0],3R ). 

Remarks: 1. The general definitions of stable, center, unstable, cen­

ter-stable, center-unstable manifolds, respectively, for system (1) are 

given in terms of functional representations and approximation proper­

ties at the point (0,0,0). In fact, the tangent spaces at (0,0,0) are 

the corresponding (global) invariant manifolds for the linearized system. 

2. It is not true in general that an arbitrary invariant subspace of 

the linearized system is tangent space at (0,0,0) of an invariant mani­

fold of the nonlinear system (1). As an example consider the linear 

space given by the equation y = 0 which is invariant with respect to the 

linearized equation. The equivalent for the system (1) would be an in­

variant manifold with equation y = h(-x,z) passing through (0,0,0). Such 

a manifold however does not always exist. Take e.g. x,y,z scalar and 

consider the equation 

Assume one can find a sufficiently smooth function h(x,z) with h(0,0)-=0 

such that y=h(x,z) defines an invariant manifold. Then h satisfies the 

partial differential equation 

xz - -h x x + h z z . 

One arrives then at a contradiction simply from the observation that 

the Taylor-expansion of the right-hand side does not contain the term xz. 

We wish to point out however that there may exist other invariant mani­

folds for (1) than those mentioned in Theorem 1 which are related to 

linear solution spaces of the linearized equation. One can e.g. con-* 

sider the space consisting of those solutions of the linear equation 

which have a decay rate less than or equal to exp(-6t), 6 a given po­

sitive number. As it has been shown in [18, Kap.V, Satz 9.1] one can 

indeed construct then an invariant manifold for (1) such that all state­

ments of Theorem, except possibly (II), remain true. 
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For special cases of system (1) we get this 

Corollary: If in system (1) the critical y-component is absent then for 
a solution (x(t),y(t),z (t)) near (0,0,0) the following three statements 
are equivalent: 
(I'a) (x(0),y(0),z(0)) belongs to H~ (H+), 
(I'b) (x(t) ,y(t) ,z(t)) is bounded on [0,») ( (-00,0] ), 
(I'c) (x(t) ,y(t) ,z(t)) tends to (0,0,0) as t-*« (t-*-~ ) . 

If in system (1) the unstable z-component (stable x-component) is ab­
sent then instead of (II) the following is true: 
(II') If a solution (x(t),y(t),z(t)) stays sufficiently close to (0,0,0) 
for all t€[0,«) ( (-~fo] ) then (x(t),z(t)) = hQ(y(t)) for all t€ 
[0,oo) ( (-«>ro] ). 

For system (1) in its general form both the stable and the unstable 
manifold is unique, in fact, they can be characterized as the set of 
solutions that approach the origin at an exponential rate as t -• *> , 
t-*-» , respectively. The center manifold however and also the center-
stable and the center-unstable manifold are not unique in general. In 
spite of this nonuniqueness each function representing one of the above 
five types of invariant manifolds has a unique Taylor-expansion which 
can be determined in a purely algebraic way. This is stated in the next 
theorem. 

Theorem 2: The above five functions satisfy the respective partial 
differential equation near the corresponding coordinate origin: 

/ A 0 v _ / q(x,h") v 
(i) ( . ) h + ( _ ) = h ( A x + p(x,h ) ), 
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Furthermore the Taylor-expansions of h""#h ,h #h",h are the unique for­

mal power series which solve the respective partial differential 

equations and start with second order terms. 

Remarks: 1. If the right-hand side of system (1) is analytic then both 
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the stable and the unstable manifold is analytic (see the appendix in 

[1]). The other three types of manifolds however are generally not ana­

lytic. Some well known counterexamples can be found in Kelley [15] and 

Carr [8]. These examples have the property that the coefficient matrix 

of the linearized equation is singular. We just want to mention another 

example with nonsingular coefficient matrix which has been used by 

Lyapunov [19] in a similar context (see also Malkin [20]). 

2. In the analytic case a center manifold need not even be of class c" 

(see van Stien [24] and Carr [8]) although it has, by Theorem 1, deri­

vatives of any order. The explanation is that the domain of definition 

of the center manifold function may shrink to the origin as the order 

of differentiability increases. 

To conclude the discussion of the autonomous case we describe the re­

duction principle that generalizes Lyapunov's [19] and Malkin'8 [20] 

concept of stability in critical cases. Since stability of the origin 

for system (1) can occur only without unstable z-component we suppose 

system (1) to have the form 

x'• A~x + p(x,y) 
• (2) 
y • A

0
y + s(x'v) • 

Along with this we consider the so-called reduced system 

y - AQy + q(hQ(y),y) (3) 

describing the flow of system (2) on a center manifold x»h Q(y). By 

(x(t,x0,yQ),y(t,xQ,y0)), y(t,yQ) we denote the respective solution of 

(2), (3) with initial value (xQ,yQ), yQ for t-0. 

Theorem 3: The origin of system (2) is stable (asymptotically stable, 

unstable) if and or4y if the origin of the reduced system (3) is 

stable (asymptotically stable, unstable). Furthermore if Hx0ll + Hy0H 

is sufficiently small then there exists a y 0"y 0(
x
0'

v
0) such that 

,lx(t'xo'yo) " ho(y(t'yo))l1 + H y(t'xo'yo) -y ( t'y 0
) n decays with 

exponential rate as t-»«. The "asymptotic phase" y0(xQ,y0) has the 

same order of differentiability as the right-hand side of (2) if it is 

finite. 

For a precise formulation and the proof of the last statement the rea­

der is referred to [4]. 
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2. Nonautonomous systems 

The basic facts about autonomous center manifold theory which were out­

lined in the previous section are all well documented in the literature 

by now. In what sense and to what extent they can be generalized to the 

nonautonomous case is not completely obvious. We give a short descrip­

tion of what has been definitely established in the literature (see 

[17],[18],[4]). For reasons of simplicity we confine ourselves to the 

study of the configuration stable/center-unstable manifolds. In terms 

of differential equations this configuration occurs if the given system 

can be brought by means of a suitable transformation into the form 

x - A(t)x + p(t,x,y) 
• (4) 
y » B(t)y + q(t,x,y) 

where the matrices A(t),B(t) are continuous and bounded on 3R and the 

nonlinearities p,q are continuous and of class Cv,v £2, in x,y. p,q and 

their first order derivatives are bounded in t and tend to zero uni­

formly in t as llxll + llyll -• 0. With respect to the linearized equation 

we require the following kind of exponential dichotomy. The principal 

fundamental matrices $A(t,s), 0Q(t,s) of x->A(t)x, y«B(t)y, respective­

ly, satisfy estimates of the form 

II *A(t,s)ll*K e"
a ( t" s ) for t*s, II *B(t,s)ll * L e

3(t"'s) for tie (5) 

with positive constants K,L,a,3 such that a>&. 

Theorem 4: Under the above hypotheses system (4) admits two types of 

invariant manifolds whose respective representations near the t-axis 

(x,y) • (0,0) are 

(i) y - g~(t,x) (stable manifold) 

(ii) x « g0(t,y) (center-unstable manifold). 

The functions g" and g are continuous and of class Cv in x,y, respec­

tively, and 9~f<3x,<3o' ^o^v t e n d t o z e r o uniformly in t as IIx II + llyll 

-» 0. Furthermore the following implications hold true: 

(I) If, for some tQ€ 3R, II x(tQ) II + II y(tQ)ll is sufficiently small 

and y(tQ) «- g"(t0,x(tQ)), then y(t) - g"(t,x(t)) holds identically for 

t U Q and the solution (x(t),y(t)) tends to (0,0) as t-»«» ; 

(II) If, for some tQ€ 3R , a solution (x(t),y(t)) of (4) stays suffi­

ciently close to (0,0) for all tit Q, then x(t) - g*(t,y(t)) holds 

for all tit Q. 
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One can prove a partial analogue to Theorem 2. Since g ,g are smooth 

functions the invariance property of the corresponding manifolds is 

equivalent with the fact that these functions satisfy the following 

partial differential equations, respectively: 

(i) B(t)g" + q(t,x,g") - g~ + g~ ( A(t)x + p(t,x,y)) 

(ii) A(t)go + p(t,go,y) - (g+)t + (go)y ( B(t)y + q(t,go,y)).
 (6) 

Whether the Taylor-coefficients of g~ and g , which are now time-depen­

dent functions, can be determined uniquely from (6) is in general not 

known. If the right-hand side of (4) is periodic in t one can establish 

uniqueness along the same line of proof as in the autonomous case. 

The extension of the reduction principle to the nonautonomous case po­

ses no serious problems provided one strengthens the inequalities (5) 

to the following type of dichotomy condition 

l|*A(t,s)ll SKe"
a ( t" 8 ) for t*s, II *B(t,s)ll s L e

3lt~slfor t,s€ 1R. 

Theorem 5: Let the strengthened dichotomy condition be -satisfied with 

K,L,a,3 positive and 3 smaller than some number depending only upon 

v,a,K,L. Then the following statements hold true: 

(i) If a solution (x(t),y(t)) of (4) is, for some tQ€ TR , sufficiently 

close to (0,0), then there exists a solution y(t) of (8) below (depen­

ding on x(t0)#y(tQ)) such that 

II x(t) -g£(y(t))ll + II y(t) -y(t)ll * N e"01^ for t*0 (7) 

with positive constants N and a'. In this relation which holds at least 

as long as II y(t) II or II y(t) II remain small enough a' can be chosen 

as close to o as desired. The Masymptotic phase map" (x(tQ),y(tQ)) -> 

y(t ) is continuous and v-1 times continuously differentiable with re­

spect to the state variable (x,y). 

(ii) The trivial solution (0,0) of (4) is stable (uniformly stable, 

asymptotically stable, uniformly asymptotically stable, exponentially 

stable, unstable) if and only if the trivial solution of the reduced 

system 

y « B(t)y + q(t,g0(t,y)) (8) 

is stable (uniformly stable, asymptotically stable, uniformly asympto­

tically stable, exponentially stable, unstable)• 

Remarks! 1. Note that statement (i) holds without any assumption con-
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cerning stability of the solutions on the center manifold. The con­

stants N,a' in (7) do not depend upon the solutions (x(t),y(t)) and 

y(t). 

2. Statement (ii) is a straightforward consequence of statement (i). 

3. Application: Invariant manifolds, with asymptotic phase 

We wish to discuss in this section the main result of [5] which has 

been proved by an elaborate application of the center manifold theory 

as developed in the previous sections. 

Let M be a compact differentiable manifold which is invariant under 

the flow of an autonomous differential system 

x - f (x) . (9) 

We deal with the following problem. Consider a solution x(t) of (9) 

which approaches M as t-»«>. Is it true then that x(t) ultimately be­

haves like a particular solution x(t) on the manifold in the sense 

that II x(t) -x(t)ll decays to zero? If the answer is yes, we say that 

M is a manifold with asymptotic phase. Examples of asymptotically 

stable manifolds with asymptotic phase have been known since long (see 

the references in [5]). The essence of the following theorem however 

is that one can infer the asymptotic phase property without assuming 

the asymptotic stability of the manifold. One can even allow the pre­

sence of unstable manifolds along trajectories on the manifold. 

In the sequel we denote by x(t,x ) the solution of (9) with initial 

value x for t=-0. Furthermore we denote by c local coordinates on M, 

i.e. given x € M one can find a map c-*x (c) which maps a neighborhood 

N of c = 0 onto a neighborhood of x on the manifold. 

Theorem 6: Hypotheses: (i) For every x €M the partial derivatives up 

to second order of x(t,x (c)) with respect to c are bounded for all 

t € JR and c € N. (ii) Given a solution x(t) on M. Then the linear va­

riational equation along x(t) is kinematically equivalent to a decoup­

led system 

x = A(t)x , y - B(t)y , z - C(t)z (10) 

and the fundamental matrices of the respective equations satisfy esti­

mates of the form 

ll*A(t,s)ll * K e"
a ( t" s ) for t*s, ir'*B(t,s)ll S L for t,s€lR, 

Il0c(t,s)ll * M e
3 ( t~ s ) for tss (11) 
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where K,L,M,a,3 may depend upon the solution x(t). (iii) The dimension 

of y in (10) equals the dimension of M. 

Conclusion: If limt_Kx> dist(x(t,x ) ,M) = 0 then there exists a (p(x )€M 

such that limt_>ooC(x(t,x0)) - x(t,cp(x ))) = 0 . Furthermore if the 

z-equation is not present in (10) regardless how x(t) is chosen on M, 

then M is a stable attractor and 

the region of attraction onto M. 

then M is a stable attractor and x -> <P(XQ) defines a smooth map of 

Remarks: Hypothesis (i) implies that the solutions on the manifold M 

depend continuously upon initial data, uniformly for t€ 3R. (ii) is a 

strengthened form of what usually is called normal hyperbolicity. It 

allows, by means of a Lyapunov transformation, to describe the flow 

in the neighborhood of a given solution on M by a system of differen­

tial equations of the form 

x = A(t)x + p(t,x,y,z) 

y = B(t)y + q(t,x,y,z) (12) 

z = C(t)z + r(t,x,y,z) 

2 2 2 where p,q,r are of order (llxll +llyll + II z II ) uniformly with respect 

to t. Under the hypotheses concerning the linearized equation (see (11)) 

one can infer by a repeated application of Theorem 4 the existence of 

a center manifold for (12) with properties similar to those stated in 

Section 1. Hypothesis (iii) finally amounts to the condition, that this 

center manifold can be identified with the intersection of the given 

manifold M and a sufficiently small neighborhood of the solution x(t) 

on M. If M is generated by stationary points or periodic orbits one 

can, of course, express (iii) in terms of eigenvalues or characteristic 

multipliers of the variational equation. Special cases of the theorem 

can be found in Malkin [20], Hale and Stokes [12]. These authors deal 

with stable manifolds only. The hyperbolic case has been treated in 

[2],[3],[5] and" a forthcoming paper by Hale and Massatt [13]. 

4. An example: Fisher's population model 

The Fisher-Wright-Haldane model is the classical selection model in 

population genetics (for general references see Crow and Kimura [9], 

Hadeler [11] and Edwards [10], for the particular problem of this sec­

tion see [6]). The state of the population at each time is described 

by the vector p • (p.t#-«-i»Pn) of the so-called gene frequences. The 

evolution of the population is governed by the differential equation 

p = PFp - (pTFp)p (13) 
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where P is the diagonal matrix diag(p1,...,pR) and F, the so-called 

viability matrix, is constant and symmetric. The appropriate state 

space of biological interest is the simplex 

n 
S = { p€3R : I p. = 1, p. £ 0, j=1,...,n } 

i=1 x J 

which is positively invariant for system (13). The positive definite 

T 

quadratic form p Fp is a Lyapunov function? its derivative with re­

spect to (13) vanishes precisely on the set of stationary solutions. 

Thus the o-limit set fi of any solution p(t) in S consists of equili­

bria. A natural question is then whether ft is a single point, meaning 

that p(t) always converges to an equilibrium as t-*<». This question 

falls into the category of problems we discussed in Section 3, with M 

being the set of equilibria of (13) in S. Using Theorem 6 one can then 

establish the following result. If p(t) is a solution of (13) in S 

with an o-limit point p in the relative interior of S, then 

lim-jpft) = p (see [6], extensions to solutions with o-limit points 

on the relative boundary of S can be found there too). The proof re­

quires a careful analysis of the system (13) in order to make sure 

that all hypotheses of Theorem 6 are fulfilled. One has to establish 

the following facts about stationary points p of (13) in the relative 

interior of S: 

(1) p is embedded in a k-dimensional linear manifold M, of stationary 

solutions where k equals the defect of the viability matrix F, 

(2) F and the Jacobian J(pQ) of the right-hand side of (13) at p have 

the same defect, 

(3) J(p ) is similar to a symmetric matrix and consequently has only 

real eigenvalues. 

It should be noted that the nonzero eigenvalues of J(pQ) depend on pi 

and F. In general, nothing can be said about them from the study of 

the matrix F. Hence the versions of Theorem 6 which have been stated 

for the case of a stable manifold M can certainly not be applied to 

the model equation (13), one needs the case of hyperbolic manifolds. 
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