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SOME GEOMETRIC ASPECTS 
OF SOBOLEV SPACES 

BOJARSKI B., WARSZAWA, Poland 

The extremely rich literature on Sobolev spaces by no means can be 
considered as covering all the main trends on the theory in recent time. 
In the current mathematical literature on non-linear p.d.e., especially 
of variational and differential geometric origin various observations 
and results appear which reveal some new geometric aspects of the Sobo­
lev theory and which have, so far, not found sufficient description in 
the newest monographic literature. They are on one hand related with 
elementary geometric decomposition properties of open subsets of eucli-
dean spaces, a la Whitney type, with some topics of real harmonic ana­
lysis and quasiconformal mappings, on the other with geometric topology 
and homotopy theory. New interesting phenomena have been observed in 
that context. In the "category" of Sobolev maps, even discontinuous 
transformations are able to carry some homotopically non trivial inform­
ation, producing e.g..a well defined action on homotopy and homology 
groups. What we have in mind is, hopefully, made clearer by the 
examples described below. 

In what follows we shall mainly speak about linear Sobolev spaces 
W 1 , p(n,R k) (= W 1 , P ( H ) , k = l) where 1 is an integer, P^l , and 
fl an open subset of euclidean space R , the corresponding local 

spaces WW-|on ant* *ne n o n-I-- n e a r Sobolev spaces W ,P(M,N) of maps 

f : M —>N , M,N compact Riemannian smooth manifolds, possibly with 
Is 

boundary, dim M = m, dim N = n . For N imbedded in R the space 

W1,P(M,N) = (fGW1,p(M,Rk) : f(x)£N for a.e. X £ M } 
I D k is defined as a closed subset of the linear space W ,H(M,R ) . 

I. Sobolev imbedding inequalities for domains with irregular boundary 
The imbedding W1,P(.Q. ) c* Lp*( JO.), lp<m, p*-the Sobolev con­

jugate to p , is described by the basic integral inequality 

1 1 
(1) (Jr |f-Pf|

Pdx)p*^C(m,p,C2)|diam H^C^f |V 1f| Pdx) p , 

where Pf is a polynomial of degree == (1-1),Vlf - tne 1~th gradient 
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зs off f . The constant C(n,p,Xl), depends only on the conformal class 

of the domain £l . The basic problem studied is to describe possibly 

broad classes of domains II for which (1) holds and to discuss, pos­

sibly in some explicit way, the dependence of the constants C(n,p,il) 

on the geometric properties of the domains. Starting point is the model 

local inequality for balls (or cubes) Q. = BR, QR - the cube of 

sidelength R , 

(2) (f |f-PQ |
pdx)P^C(m,p,l)R1(i: |V 1f| Pdx) p , fGWi'p(QR) . 

J Qn R J QR 

An open set Q. C Rm satisfies the chain condition F(<5",B,C) , 

CT>1, C^l, B>1, if there exist a covering F = { Q } of Q. by 

open cubes Q , with one cube Q fixed, s.t. for every QC F , there 

exists a connecting chain Q ,Q,,...,QN = Q of cubes from F satis­

fying some overlap conditions, see [2] . 

The length N = N(Q) of the connecting chain may depend on the 

particular cube ) and can be not bounded for QC.F . Bounded Lip-

schitz domains and bounded John domains satisfy the chain condition. 

Theorem [2]. Let the bounded domain n C R m satisfy the chain condi­

tion F(o~ ,B,C) . For every f € w j ^ ( a ) the global inequality holds 

1 1 

(3) (f If-PQ f|pdx)P^C(jQ)(f |V 1f| Pdx) p 

with the constant C(Q ) depending on the paran 

the dimension m only. Moreover | Pfi (f )(x) | -̂  £(.& ) | |f|dx , xC £ 

with the constant C not depending on f . In particular this implies 

that the local condition fEW,'P(.Q.) and the finiteness condition 

•IV f| dx<+oo imply the Sobolev imbedding inequality (1) with the 

constant C(n,p,:Q) - depending only on the chain condition parameters. 

For a fixed open to<Z£l the polynomial P_Q_ (f) may be chosen such 

that I Pa (f)(x)| -=? C(.D.,tu ) f I f I dx . Then in (3) C = C(H,W) . 
r 1 

The proof of the theorem sketched in [2J uses the local Sobolev imbedd­
ing inequality (2) for every cube Q of the covering F , the Markov 
inequality for the family of polynomials pn(f)> QCF and a version 
of Hardy-Littlewood maximal function theorems as auxiliary tools. It 
shows that the local estimates of the form (2) in a domain XI satis-
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fying the chain condition for all cubes QEF may b« "integrated" to 

the global estimate (3). 

II. Continuity and approximation 

The parameter V = pl-m measures the modulus of continuity of a 

Sobolev map f€Ew1,p(M,N) : e.g. for )J>o, 1 = 1 we have 

f € C 0 ' (M,N) with °̂  = n * T n e m a p f induces then the transforma­

tion of the basic algebraic functors of M and N . For V l̂ -o the 

mapping f : M —>-N may admit discontinuities. Nevertheless in some 

situations the invariants of continuous mappings f can be correctly 

defined for arbitrary maps in W ,P(M,N) , pl-=* m . 

The simplest example is the Hopf degree, deg f of a mapping f : 

M-+N from the class W1,m(M,N) , (dim M = m = dim N) , M, N orient­

ed with the orientation form to on N, dx on M . The formula 

deg f = TTTT- Jfdx = j-q-- f*u) , (3f - the Jacobi determinant) 

valid for smooth maps, is meaningful for any fEW ,m(M,N) and defines 

the integer valued function deg : W , m(M,N)—*Z .If a sequence f, —•* f 
1 m 

in W ' (M,N) then deg f,—* deg f . The degree deg f cannot be de­

fined for an arbitrary f in W ,P(M,N) if l ^ p < m . This example 

illustrates a rather general and delicate fact that for ^ i=t o , 

including the limiting v^lue y = o , the topological behaviour of the 

Sobolev maps in the class W ,P(M,N) is similar to that of continuous 

maps. New phenomena will appear only for V < o . This is closely re-* 

lated with the following density result: for X — ° *ne space 

Lip (M,N) of Lipschitzian maps f , or the class of smooth maps 

C°°(M,N) is dense in W1,P(M,N) .For # < o this is no longer the 

case. Define H1,P(M,N) = C°°(M,N) in W1,P(M,N) . In contrast with 

the basic fact for the linear Sobolev spaces W , P ( .Q ) , in which 

C°°(.Q. )W 1 , P(£ ) - W1,P(Q.>) it may happen that H1 ̂ ( M - N ^ W 1 ,P(M,N) . 

The counter example [9] , [10] is given by the retraction of the ball 

B n + onto the boundary sphere Sn 

X ( x ) = TxT ' x E B n + 1, ( \ ) £ W 1 , p ( B n + 1,S n) for lp<n+l . 

The basic questions here are: Under what conditions on M and N 

H1,P(M,N) = W1,P(M,N) ? Describe H1,P(M,N) as a subspace of 

W ,P(M,N) . Partial answers are known. 

Theorem [l] . For l£ p< n W 1 , p(M,S n) = H 1 , p(M,S n) . For n < p < n + l 

every map f <E W 1 , p(B n + 1,S n) can be approximated in the W ,p norm by 

a sequence f., f. —*f , smooth, except at most at a finite number 
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of isolated points. 

Theorem [8] . If a map f£W ^(MjN), p>m-l, may be approximated by 

smooth maps locally, then f£H1,p(M,N) . 

The obstacles to global smooth approximations thus depend on topolo­

gical actually homotopical properties of the target [l] , [3] , [l3] . 

III. Homotopy classes and functional properties 

The discussion of homotopy properties of the classes W ,P(M,N) 

as well as the smooth approximation properties is most naturally done 

by composition with the deformation of the self-mappings of the source 

manifold M and the target manifold: f— * a > ° f ° Y , *u, : M —> M and 

0? : N—>H . 
Theorem [3\ . Let M be compact and p< m . For any s, 0<s=^l, any 

t >0 and any regular, sufficiently fine triangulation T = {<A} of 

M, (A-simplices in T) with diam/\<rj , for rj small enough, 

there exists an f £W1,P(M,M) such that a) II f (x)-x || < t for 

each x€M ; b) f .-I - n ^ Cs for some constant C = C(M,p), 
11 s,£- "wi,p(M,M) 

(I - the identity map); c) f is a Sobolev retraction of M onto 

a tubular neighbourhood U of the Tpl - skeleton TLPJ of T . 
p,s,^ LrJ 

The mapping f, can be chosen as a Sobolev strong deformation re­

traction of M onto TLPJ ; d) The singularity set zLf of fi 

lies on a subpolyhedron of M of dimension ^ m-[p] -1 ; e) The singu­

larity set zLf and the skeleton TLPJ are "transverse" in the sense 

of Borsuk [5], i.e. TLPJ is a strong deformation retract of M\/ ., 

and zLf is a deformation retract of M\ T L P J . 

B. White in his discussion of homotopy classes in Sobolev spaces con­

siders a closure H1,P(M,N) of C°°(M,N) (or Lip(M,N)) in the weak-

-bounded topology of W1,P(M,N): f£H1,p(M,N) iff there exists a 

sequence fj[€Lip(M,N) such that || f-f J p — * o , || DfJ -̂  K(f) for 

some K and all i, f(x)GN for all xGM . 

Theorem [l3] . Let d be the greatest integer strictly I.TSS then p . 

Any two sufficiently close in the sense of H ,P(M,N) Lipschitz maps 
J w 

have the same d-homotopy type. Each f€• H ,P(M,N) has a well-defined 

d-homotopy type and d-homotopy types are preserved by bounded weak 

convergence. 

We recall that the d-homotopy type of a continuous map from M 

to N is the homotopy class of its restriction to the d-dimensional 

skeleton of a triangulation T of M . This implies that maps in 

H (M,N) determine conjugacy class of homomorphisms from nd(M) to 

n.(N) . Maps in W ,P(M,N) determine these homomorphisms for d = •f-«]' 
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The composition of Sobolev maps is a delicate matter. 

The strongest non trivial result in this direction is 

Theorem [f] , [lo] . Let if be a map if z M—»M, m = dim M . Then the 

induced map y*(f)' = fo LP , y* : W1,P(M,R)-• W1,P(M,R) is an iso: 
morphism of Banach spaces iff a) for p i m, u? - is a homeomorphic 

quasi-isometry; b) for p=m, \o - is quasiconformal [3] , [7] . 

The discussed examples show that the class of Sobolev maps pro­

duces a variety of specific geometric effects and phenomena, which 

arise in several important areas of mathematical research. 
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