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A NEW VIEW OF CENTER MANIFOLDS 

KNOBLOCH H.-W., WŮRZBURG, FRG 

1 Introduction 

We consider ode.'s which are written as a pair of coupled de.'s ( = differential equations) 

i = 9(t,x,y\y = h(t,x,y),'= d/dt, (1.1) 

xyy being vectors in general. Let M be a set in the (t,x)-space which is bounded and open relative to this 
space and (i,x) —• s(t,x) a mapping into the y-space. We are interested in a smooth manifold with these 
properties 

(i) it has a representation y = 5(t,x),(t,x) G M, 

(ii) it is (locally) invariant with respect to the de. (1.1), (1.2) 

(iii) 5(r,x) = s(t,x) if (t,x) G dM. 

For shortness we call a manifold satisfying these three conditions a center manifold (abbr. cmf.). The 
novelty of our definition lies in the explicit occurence of an additional side condition namely the boundary 
condition (iii). It is obvious that one cannot resort anymore to our basic knowledge about cmf's. What 
one would expect is - roughly speaking - aggravated and relaxed conditions respectively for existence and 
uniqueness respectively. We are concerned in this paper with existence only and wish to formulate two 
fundamental hypotheses - concerning the de. (1.1), the set M and the boundary data - which are sufficient 
in order that one can actually construct a mapping 5 which has all properties (1.2). The second hypothesis 
is discussed in detail in Sec. 2, the first one runs as follows 

M = {( t ,x) : W(t,x) < 0},W(t,x,.s(r,x)) > 0 if (t,x) G dM. (1.3) 

W(t-,x,y) denotes the derivative of W with respect to ( I T ) , i.e. 

W(t, x, y) := Wt(t, x) + Wx(r, x)g(t, x, y). (1.4) 

(1.3) admits a simple geometric interpretation. Note that the set {t,x,y : (t,x) G dM,y = s(J,x)} is the 
boundary of any manifold having the properties (i), (iii), cf. (1.2). (1.3) means that this boundary is crossed 
by trajectories of (1.1) in such a way that (t, x) changes from the interior of M to the exterior of t increases. 
Therefore if the manifold is locally invariant - property (ii) - then it is "outflowing". As time decreases 
one can never reach the boundary by following a trajectory starting in the interior. This kind of internal 
stability (as t --> -oo) is the main motivation for adding (iii) to the standard definition of a cmf. One of its 
implications will be discussed in Sec.4. 
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2 D ichotomy along solutions. 

Dichotomy in this spaper is seen in connection with the natural boundary value problem (abbr.: bvp.) for 
the de. (IT): Given (ti,xx),(t2,y2) find a solution x(t),y(t) satisfying x(tx) = xi,y(t2) = y2. There is a 
local version of this problem where X\,y2 are restricted to neighborhoods of the respective boundary values 
x(t\),y(t2) of some reference solution x(t),y(t). A possible approach to the modified bvp. follows then the 
standard pattern and this means first of all: Linearization. So let us.consider the variational equation (abbr.: 
ve.) along the reference solution. As it is suggested by the representation (1.1) of the given de. we will write 
it as a coupled pair of linear de.'s: 

w = A(t)w + Ai(t)z, z = Bi(t)w + B(t)z, (2.1) 

where A(t) = gx, B(t) = hy, A\(t) = gy, Bi(t) = hx and the argument behind gx etc. is t,x(t),y(t). The 
corresponding bvp. runs as follows: Find a solution w(t),z(t) of (2.1) satisfying w(t\) = w\ and z(t2) = z2. 
It is solvable for arbitrary w\,z2 iff this statement holds true for any solution (w(t),z(t)) of (2.1): 

w(h) = 0 and z(t2) = 0 => w(t) = 0 and z(t) = 0 for all t. (2.2) 

This property is of particular interest for us since it prepares the stage for applying the implicit function 
theorem. Hence if (2.2) holds true then the localized bvp. for the original de. admits a solution which depends 
smoothly upon the data a:i,y2. A possible way to ensure correctness of (2.2) is by means of estimates for 
|| w(t) ||, || z(t) ||, the bounds being linear functions of || w(t\) \\ and || z(t2) || . Such an estimate can easily 
be obtained from two basic inequalities which are stated in the next lemma. 

Lemma 2.1 Let <j>w(t,T) and 4>z(t,r) respectively be the principal matrix solutions (abbr.: pms.) of 
the linear homogeneous de. w = A(t)w and i = B(t)z respectively. Let a(t),fi(t),p(t) be functions on some 
time interval I which satisfy these conditions for all t,T € I and with some constants iw,ix : 

»(<, r)|| < 7 - e £ a (' )'" if r < t, | |^(t, T\\ < 7,e-C « * - if t < T, 

a(t) < p(t) < /J(ť). 
(2.3) 

Furthermore assume that 
« := lwlzdwdz < 1 (2.4) 

where 

*• - T fit) - °(tyd- - T m - P(ty (2-5) 

Conclusion. If conditions (2.3) - (2.5) are satisfied and if w(t),z(t) is a solution of (2.1) then these 
statements hold true: 

w(t1) = 0=>\\w(t)\\<(l-K)-1wwdw\\z(t)\\ if * 6 l , - > r i , (2.6) 

z(t2) = 0 => IKQH < (1 - /-r^^^zlKOII if tel,t<t2. (2.7) 

Remarks. 1.) Note that (2.2) follows from (2.6) or from (2.7) in case h<t2. This proviso cannot be removed. 
Hence the lemma introduces a time preference into the discussion of bvp's and does not allow to interchange 
the role of initial and terminal constraint. This lack of symmetry becomes apparent in the hypothesis (2.3). 
2.) The proof of the lemma can be carried out in a straightforward way if one borrows the method from [1], 
Ch. V, Sec. 4 where it is assumed that a,(3,p are constants. One first considers the case that p vanishes 
identically. Then one simply has to redo the proof of Hilfssatz 4.1 ([l],p.221). Next one turns to the situations 
treated in [1] on p. 222-224. They all can be reduced to the case discussed in the first lemma by means of 
the substitution 

w = wp(t) + < M M i M - i ) , * = W ) + 4>*(t,t2)z(t2) (2.8) 

where p(t) := exp(ff p(*)ds). The pair (w(t),z(t)) then satisfies an inhomogeneous linear de. and the 
boundary conditions w(t\) = Q,z(t2) = 0. 
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3 Generating a manifold out of trajectories. 

We return to the discussion of the de. (1.1) and use the notation introduced in Seel . Our aim is to show that 
certain sets of "outflowing" trajectories constitute a cmf. in the sense of definition (1.2). To this purpose we 
introduce the sets 

M A : = { ( * , s ) e M : A < t < T } (3.1) 

(cf. (1.3)), where A > - co and T > A is a fixed real number. The sets 

{ ( t , . r ) : A < r <T,W ( t , . r ) = 0} and {(T,x): W(T,x) < 0} (3.2) 

belong to dM\. Except for a sufficiently small neighborhood of their intersection their union can be identified 
with the set 

X 0 := {(*,*): t> A, V(t,x) = 0}. (3.3) 

Here V(t,x) is a sufficiently smooth function satisfying 

Vx(T,x) = 0 if V(T,x) = 0]\r(t,x,s(t,x))>0 if V(t,x) = 0 (3.4) 

(for the definition of V etc. cf. (1.4)). How to construct such a function (given W(t,x)) is demonstrated in [2], 
Sec.3. For any (to,xo) € Xo let .ro(t),yo(-) be the solution of (1.1) satisfying xo(to) = x0,y0(t0) = s(t0,x0),J0 

the maximal interval ( . . . , to) such that (t,x0(t)) G M A for t 6 Jo and k(t0,x0) the trace of the curve 
{(t,x0(t),y0(t)),t 6 Jo- Furthermore if the hypotheses of Lemma 2.1 - with I = Jo and the ve. along 
(x0(t),y0(t)) as underlying linear de. (2.1) - hold we put T\(t0,x0) := (1 - K)~1'yz'ywdw (cf.(2.6)), otherwise 
we put TA(to,-5o) = co- Finally we denote by S\ the union of the k(t0, x0) : 

S\ := {t,x,y : 3(t0,x0) 6 X0 such that (t,x,y) 6 k( t 0 ,x 0 )} . (3.5) 

SA is locally invariant and outflowing. 

Theorem 3.1 Hypotheses, (i) (2.4) holds, (ii) we have for (t,.r) G X0 

r A ( * - ~ H h [h(t,x,s(t,x))-s(t,x,s(t,x))]Vx(t,x) + sx(t,x)\\ < 1. 
V(t,x,s(t,x))/ 

Claim. There exists a mapping (t,x) —• S(t,x) into the y-space which is as smooth as the right hand 
side of the de. (1.1) such that SA = {t,x,y : (t,x) € MA,y = S(t,x)}. 

Corollary. Under the hypotheses of the theorem the following statement holds true for solutions (x(t), y(t)) 
of (1.1): 

W(T,x(T)) < 0,y(T) = s(T,x(T)) => W(t,x(t)) < 0 for A < t < T. 

The statement of the theorem is somewhat more general than that of Theorem 4.1 in [2], the proof is 
pracitally the same. Explicit dependence upon t (of g,h,W,s,a,/3,p) presents no extra problems. Note that 
the quantity xG appearing in [2] is an upper bound for rA(t,.r),(t,.r) € dM. 

4 Application: Singular Perturbations. 

If the right hand sides of (1.1) have the form 

9(t,x, y) = ep(t, x, y, e), h(t,x, y) = B(t,x, e)y + eq(t, x,y,e),e> 0, (4.1) 

one can verify both hypotheses of Theorem 3.1 quite easily if: (i) The eigenvalues of the matrix B have real 
parts which are positive and bounded away from zero, (ii) € < e0, where c0 can be determined explicitly 
from conditions stated in Lemma 2.1. (iii) One chooses s(t,x) = 0. The conclusion of the theorem and its 
implications (see [2], Sec.5) comprise then our knowledge concerning the role of imf.-techniques in singular 
perturbation problems (cf. e.g. [3]). It contains also various new informations (concrete estimates for €o and 
extensions to situations where the "bounded away from zero" - requirement is weakened). 
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5 Application: Stability, Zero Dynamics . 

If y — 0 is a "basic" imf. for (1.1), i.e. if h(t,x,0) = 0 identically in (t,x) and if one chooses s(t,x) such 
that W(t,x) = 0 =J> s(t,x) = 0 the hypothesis (ii) of Theorem 3.1 need to be verified only for t = T, 
i.e. under the proviso t = T, Vx = 0 (cf. (3.4)). Note that the cmf. y = S(t,x) then bifurcates from the 
basic imf along oM. We give an example of stability criteria exploiting this fact and assuming t —» oo : 
x,y scalar, h(t,x,y) = b(t,x,y)y with b(t,x,y) < 0,x = 0 is a uniformly asymptotically stable equilibrium 
of the "zero-dynamics"- equation x = g(t,x,0).(x,y) = (0,0) is then a stable equilibrium of (1.1) if h,g and 
their partial derivatives with respect to x,y are bounded uniformly in t and if 6(t,x,0) - gx(tyX,Q) < 0 on 
every set {t,x : t\ < t < t2, £o < x < £i], the bounds depending on fo > 0,Zi>h ~ *i only. 
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