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GENERALIZATIONS OF HANKEL OPERATORS 

J. Peetre 
Lund, Swederi 

To Eila with love 

P r e f a c e 

I became first interested in Hankel operators in March or April 

1981. Before that period I had hardly even heard the name. The purpose 

of these notes is, roughly speaking, to narrate - without entering 

into too many details - what I have learned about them since then. In 

a way this is a sequel to my report .to the '82 Edmonton meeting [27] 

(compare also [28], [29], [30], [31]) but possibly even narrower in 

scope. To be able to read this compilation an acquciintance with [27] 

is however not required, although we occasionally give some crossre-

ferences. For a more comprehensive treatment of Hankel (and/or 

Toeplitz) operators we refer to any of the following excellent sources 

of survey character: [47], [23], especially App. 4, [24], [37], 

[25], [42], [43]. 

Looking back in time, there were two things which I learned more 

or less by accident but which turned out to be pivotal for me: 

1° the new solution of the Littlewood conjecture [21], [22], [20] 

(of which I first heard via M. Cwikel and then E. Svensson, eventually 

leading to our joint paper [32]), 

2° V. V. Peller's announcement of his now famous trace ideal 

criterion [33] (to which J. Bergh turned my attention), 

because I saw how to combine the two. In retrospect however one sees 

now that at least the former has little to do with the core of the 

matter. Moral? 

Of much greater importance, however, was my later association 

with J. Arazy, who emphasized the importance of M6bius invariant func­

tion spaces in (complex) Analysis, and S. Fisher (see [2], [3], [4], 

[5], [28], [29], [30]). At any rate, I am here expressing a most per­

sonal view of the state of affairs, not even always agreeing with that 

of my many coworkers, of which I would here especially like to men­

tion: Jonathan Arazy, Stephen Fisher, Svante Janson and Richard Roch-

berg. 



1. C l a s s i c a l m a t e r i a l 

A Hankel matrix i s a matrix of the form 
( i W • 

By comparison a Toeplitz matrix is one of the form 

K-m' ' 
Hankel (and Toeplitz) matrices have a long history (see e.g. [27] 

where there is a short bibliographical sketch of the life of Hermann 

Hankel (1839-1873)). 

EXAMPLE. The two Hilbert matrices 

n̂ ± nv' * 

Hilbert in his celebrated lectures (1906) on integral equations proved 
2 

that both were bounded in the sequence space I 

To proceed further it is better to let them act on suitable func­

tion spaces. There are several options. 

2 

1) Let H (T) be the classical Hardy class of analytic func­

tions in the unit disk D of the complex plane C , 3D • T being 

the unit circumference: 

f Є H2(Ţ) Іff í|f (Z) |2|dz| < oo , 

and let H^(T) (= H2(T)x ) be its complement in L2(T) - it consists 

of anti-analytic functions - denoting the corresponding projection by 

P x . Then we define the Hankel operator Hb : H
2 (T) •* H2(T) with 

"symbolM b , usually an analytic function, by the formula 

Hbf « P~(Ef) ( f 6 H2(T) ). 

If we in H2(T) and H^(T) use the "natural" bases (z m) m > 0 and 

(z"n) respectively we see that Hfa is given by tne matrix 

b(n + m) , 

a Hankel matrix. 

2 
2) Alternatively, we may consider the operator Hb : H (T) -• 

H (T) , likewise termed Hankel operator, defined by 

Hbf == P(bf*) , 

where now P is projection onto H (T) (P + P 1 = id); it is thus 

anti-linear over C . Now the matrix is 

S6 



b(n + m + 1) . 

Q 3) By comparison, a Toeplitz operator with symbol b (not ne-
2 

cessarily analytic) is usually defined as an operator Tb : H (T) -> 

H2 (T) such \ h a t 

Tbf - P(bf) ( f € H2(T) ) . 

I t s matrix i s 
A 

b(m - n) , 

a Toeplitz matrix.] 

The two type of Hankel operators are formally connected by the 

identity 
H, f = z~1 H f with b - g " C ( g^ 
b e z 

As we shall see, on higher levels the theory usually bifurcates. 

With the operator Hfa it is also natural to associate the bi­

linear form r\ , a Hankel form, defined by 

Г
b
(f,g) =- | Бfg|dz|/2тr (= <f,H

b
g> 

m " 
2 >' 

NOTATION. If X is any Hilbert space, we denote the corresponding 

inner product by <.,.>„. If B i 

is written ||•||
B
 (or ||•||B ). 

inner product by <.,.>„. If B is a Banach space* the norm in B 

To fix the ideas let us below only investigate the operators EL 

The natural question is now to try to relate the (smoothness) 

properties of the operator with the ones of its symbol. Thus, when 

is H
b
 of finite rank, bounded, compact, of class S ("smooth")? 

Here are the standard answers: 

L. KRQNECKER'S THEOREM (1881). H
b
 is of finite rank iff b is a 

rational function (with all poles outside D ). 

Z. NEHARI'S THEOREM (1957). B. is bounded (as an operator acting 

from H
2
(T) into H

2
(T) ) iff b - BMOA (bounded mean oscillation). 

PH. HARTMAN'S THEOREM (1958). H
b
 is compact (i.e. € Sw ) iff b <-: 

VMOA (vanishing mean oscillation). 

V. V. PELLER'S THEOREM (1980). H, *-" S iff b € B1//p,PA(T) (a Be-
111 D p p — 
sov space). 
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COMMENT. This formulation is of course quite "unhistorical", because 

neither BMO nor VMO were invented at the time. Peller proved his theo­

rem first in the case 1 < p < °° ( [34"] , research announcement in 

[33] ) and the extension to the full range 0 < p < «° was given only 

later by him [35] and, independently, by Semmes [48] (and, implicitly, 

by Pekarskii [38]). If X is any space of functions or distributions 

on T we denote by XA the subspace of those elements of X which 

are (distributional) boundary values of functions analytic in D . 

Thus BMOA consists of the "analytic" functions in BMO etc. A good 

example for Nehari's theorem is otherwise b = - log (1 - z) , which 
A 

gives the Hilbert matrix ( b(n) = 1/n ). Let us also point out that 

the standard proof essentially depends on the idea of (weak) factori­

zation (cf. especially [10]). Kronecker's theorem has a purely alge­

braic content (cf. the concluding paragraph of §5). 

For completeness sake, we also recall the basic notions connected 

with the Schatten (-von Neumann) or trace classes (ideals) S . Let 

H and K be any two Hilbert spaces. If T is a compact linear ope­

rator from H into K , its Schmidt, s- or approximation numbers s 

= s (T) ( n = 0,1,... ) may be defined as the eigenvalues of the 
n - 1 / 2 

compact positive selfadjoint operator (T"T) ' : 

sn(T) = An((T*T)
1/2) (= Xn((TT*)

1/2) ). 

We say that T 6 S , where 0 < p <. °° , iff (s ) n € I . The class 
p > r — n o p 

S~ consists of the Hilbert-Schmidt operators ( E|a | < °° where 
(a ) is the matrix of T with respect to any two orthonormal bases nm 
in H and K respectively) . T e S,. means that T is nuclear (and 

T e S , 0 < p < 1 , that T is p-nuclear in Grothendieck's sense). 

S^ is the class of all compact operators. An extensive treatment of 

the Schatten classes can be found in [49] or in [12]. For the inter­

polation theory see the relevant divisions in [8] or [54]. 

Returning to the Hankel operators a remarkable fact is that the 

entire theory is oonformally invariant. Indeed, let the group SU(1,1) 

(the factor group PSU(1,1) = SU(1,1)/center is the Mobius group of 

1 

2 
all conformal selfmaps of D ) act on L (T) via the formula 

f (z) -> UAf (z) = f (4>z) (cz + d) 

* = (c d) € S U< 1> 1 ) • 

2 2 

Then both H (T) and its complement H_(T) are left invariant under 

this action. It is an easy excercise to show that then symbols of Han­

kel operators transform according to the rule 
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b(z) •* b(<|>z) (== (b o <j>) (z) ) . 

More precisely, one has the formula: 

b <J> <f> b o <f> * 

REMARK. In all what we say the MSbius group plays just the role of 

the "model" case. To some extent similar considerations can be made 

with other (semi-) simple Lie groups G of non-compact type such 

that the Lie algebra of its maximal compact subgroup K has a non-

-zero center; this makes it possible to introduce a complex structure 

on the associated symmetric space G/K (which takes the place of the 

unit disk in the general case). 

The above is reflected by the fact that the symbol classes appear­

ing in the above theorems (Krohecker etc.) likewise display this in 

invariance. Conversely, as I observed (in the summer of 1983?), the 

invariance can be used to give a very simple proof ("by handwaving") 

of Peller's theorem at least in the special case 1 < p < <» . (Pel-

ler»s own proof was quite complicated ("hard analysis")!) For more or 

less detailed accounts we refer to [28], [29], [30], [31]. Here we 

restrict ourselves to giving just the main idea. 

Consider the class X , say, of symbols b such that H. € S.. . 

By Kronecker's theorem certainly X f o . We equip X with the norm 

||b|| x = ||H, ||S- , which is Mobius invariant. But by the basic facts 

on MSbius invariant spaces of holomorphic functions (£4J ; for this 

theory see also [2], [3] , [45], [11], [28], [29], [30]) the Besov 

space B<.' A(T) is the minimal such space. This gives us at once one 
1 1 

endpoint result, viz. b € B ' A(T) 4 H. € S, , the other one coming 

from Nehari»s theorem: b e BMOA(T) =£> H, bounded. From there half 

of the theorem (for 1 < p < °°) follows by routine application of 

suitable interpolation theorems. The other half follows by duality 

(as in Peller). This again resides basically on an essentially group 
2 2 

(representation) theoretic fact. As B2» A(T) is the (up to a factor 
in the metric) unique Hilbert space among all M6bius invariant spaces 

2 2 
[3], we see that (up to a factor) the two norms ||b||B2' and 
||H, ||S1 must agree. This gives us an isometric imbedding I : 

B2,2A(T) -• S2 . The adjoint J = I* : S2 ->» B
2,2A(T) then formally 

satisfies J o i = id so we have a retraction of the map which to 

a symbol assigns the corresponding Hankel operator. This suffices 

to complete the proof. 
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The virtue of this proof is that it is so general and in the 

sequel we shall see ample illustrations of it at the hand of a large 

variety of "trace ideal criteria" for various generalizations of Han-

kel operators. 

As a first instance let us mention - a rather easy extension -

iase of the weighted Bergman spaces Aa (D) , a > -1 : 

f G Aa2(D) iff JJ|f (z) |2(1 - |z| 2) a da(z) < «» , 

2 

which as a limiting case ( a •> -1 ) comprise the Hardy space H (T) 

(if a -*• -1 the 2-dimensional measure (1 + a) (1 - |z| 2) a da(z) -

here as well as in the sequel dc(z) = 1/iT-dxdy is the normalized 

area measure - formally tends to the 1-dimensional (boundary) measure 

|dz|/2iT); another important limiting case ( a •* » ), to be treated 

later (§4), corresponds to the Fock space. 

It is convenient now to work with H, , not with H. (cf. how­

ever §5). The only major difference is then (what the trace ideal 

criterion goes) that the Besov spaces experience a shift: H, € S 

as an operator on Aa2(T) iff b € B1/p+a+1,PA(T) . To put the above 

machinery at work one has however to invoke another "symbol" than the 

previous b , namely the "true" symbol B , which transforms nicely 

under the group. The relation between b and B is most simply writ­

ten in terms of the associated bilinear form FY : 

rb(f,g) - JjBfgd - |z| 2) 3 da(z) , 3 « 2a + 2 . 

D 

(This will be explained later (see §4).) For details about this theory 

see [26] , [28] , [29] and also [1] , where an extension to the case of 

the unit ball in C is briefly outlined. 

2. P a r a c o m m u t a t o r s 

In this § we discuss a recent quite general extension o'f the 

theory of Hankel operators (forms) as outlined in the previous §. 

For full details we refer to [16j. Related (parallel) work can be 

found in [51], [52], [39], [40], [41]. (See also [53] where the cor­

responding set-up over local fields is investigated.) 

To arrive at this generalization in a natural ("historical") 

order let us for a moment return to the Hankel operators H. as de­

fined in §1. Because of conformal equivalence we may replace the unit 
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2 

disk D ( 6D =- T ) by the upper (Poincare) half plane U in .R 
( dU = R ). Then the study of Hankel operators is essentially equi­

valent to the study of the commutator 

2 2 
where now P is orthogonal projection in L (R) onto H (R) and Mĵ  

multiplication with b , M,f = bf . This connection, apparently, was 
first (in 1976) pointed out by Coifman-Rochberg-Weiss [10] and goes 

as follows. If as before H b : H
2 (R) -• (H2(R))X is defined via 

Hbf - P-Mbf) ( f € H2(R) ) 

we can also write this as (as Pf - f ) 

H,f - bf - P(Bf) - bPf - P(bf) - [M ,p]f , 
B 

i.e. we have 

H. « C |H2(T) , 

this formally also for non-analytic symbols b . As plainly CjJ » -C 
-> o o i ^ 

it follows that C b in the decomposition IT (R) =- H* (R) G> H*(R) X 

is given by the "block matrix" 

-H* 
H 
Б 

The paper [10] likewise in i t iated the study of analogous commu­
tators 

<T> - CMfa.K] . 

where K is a Calderdn-Zygmund operator in R (i.e., convolution 

with a kernel k which is homogeneous of degree -d and has vanish­

ing spherical averages; if d « 1 there is up to a factor only one 

Calder&n-Zygmund operator, namely the Hilbert transform H * 2P - id). 

As far as boundedness and compactness (even in L
P
(R ) , p ̂  2 ) 

goes, their theory was later completed by Janson [14] and Uchiyama 

[55]. A trace ideal criterion was then proved by Janson and Wolff 

[19]: Unless K / 0 (and d / 1 ) one has C
b
 e S iff b e 

B
d / p

'
p
(R

d
) for p > d ; if p < d then C

b
 £ S »> b constant. (The 

characterization of symbols b with C. *- S, (Lorentz-Schatten 
class) seems to be open even in this simple case.) A new phenomenon 
is thus the complete failure of Kronecker in higher dimensions (no 
finite rank operators at all!). The proofs in [19] were quite compli­
cated, especially for the converse part. 
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In [15] a new approach to this theory was given. It went via 

higher order commutators of the type 

Cb= [•"[-VKllK2V--*H] ' 
where each Ki is as before a Calderon-Zygmund operator. Then the 

limit p > d in the single commutator case gets replaced by p > d/N: 

c£ € S iff b € Bd/p»p(Rd) in the latter hypothesis. The virtue 

of this is that by taking N sufficiently large one could include 

the limit p = 1 in the "good" parameter-range and so the pattern 

in Peller's proof (see §1) could be more or less copied. What is re-
s 1 d levant here is the minimality of the Besov spaces B?» (R ) with 

respect to the affine group (translations + dilations); the complete 

statement can be found in e.g. [29] . (Invariance with respect to the 

full M6bius group §1 was therefore not that vital after alii) It then 

became clear that in the same way one could treat a much more general 

class of operators (or forms), which were termed paraoommutators9 be­

cause of the apparent analogy with the paraproducts of Bony (see e.g. 

[9]; see also [50] for a more informal account). Recall that Bony 

applies his theory to analyze the singularities of semi-linear P.D.E.; 

roughly speaking, paramultiplication helps to "linearize" the problem, 

the paraproduct containing all the essential information about the 

singularity. 

Leaving history here is, finally, the formal definition. A para-

commutator is an operator P, , usually acting on L (R ) , of the 

form 

Pbf(£> = (2ir)~d | b(c - Ti)A(£,n)f(n) dn 

Rd 

where b is the symbol of the paracommutator and A its Fourier 

kernel; A is usually considered as "fixed". If A(£,n) = 1 one re­

covers the multiplication operator M, . The idea is thus that in the 

general case P, is a multiplication operator perturbed by a Schur 

multiplier A (on the Fourier side). To get something which resem­

bles a Hankel operator A must drop off sufficiently fast on the 

diagonal { (£,n) * € = n} ; otherwise one gets something which is 

more like a Toeplitz operator. 

N EXAMPLE. The previous higher commutators Cb arise if we take 

N „ 
A(c,n) = n (k.u) - k.(n)) 

j=i 3 J 

where k. is the kernel (a homogeneous function of degree -d with 



vanishing spherical means) associated with the operator K. ( j * 

1,...,N) . 

The theory in [16] is quite technical, mainly due to the rather com­

plicated assumptions one has to impose on A ; indeed, there appears 

a whole series on conditions labelled AO through A8 . The essential 

ingredients of the proof are however already present in [15] (the 

case of higher commutators). As far as the trace ideal criterion goes, 

the main result, however, still can be condensed into the simple im­

plication: 

"THEOREM". Pb £ S iff b £Bp/p»P(Rd) for p > d/N . 

This, in suitable assumptions on A ; in particular, the number 

N gives the order of vanishing of A on the diagonal. In the model 

case of the example (the higher commutators) N is in general the 

number of factors K. . 

REMARK. For technical reason it i& also convenient to consider more 
s t general operators P. » , which are defined by an analogous formula 

with A(£,n) replaced by A(£,n)|£|S|n|t . (N.B. - A(£,n) should 

be thought of as homogeneous of degree o ; this is precisely the 

content of Ao .) Alternatively, one considers PK as an operator 

from BI ' (R ) into B ' (R ) . One can also formulate everything 

in terms of certain bilinear forms. More precisely, let us put 

-S'^f.g) 

= (2w)"d | | A(c.n)|5|s|n|tb(5 + n)f(€)g<n) <*5dn ; 

RdxRd 

such forms will be termed paracommutators too. Finally, this suggests 

that one can treat similar multilinear forms too (cf. |129J, Lect. 5, 

for some more hints on this). 

3. ' H i g h e r w e i g h t s 

Let us return to the original Hankel situation of §1, especially 

to the "group theoretic" proof of Peller's theorem given there. At the 

end of that § we also indicated that the same proof works in the more 

general case of Hankel forms over the weighted Bergman spaces 

Aa'2(D) , a > - 1 . This due to the fact that the "true" symbol B 

of the form in question transforms in a nice way under the group. 
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If * - (*•*} € SU(1,1) then B(z) -• B(<f>z) (cz + d ) ~ ( 2 a + 4 ) for f e 

Aa' (D) ; more about this in the next §. (If a is not an integer 

one has to pass to the universal covering group of SU(1,1) •) 

We now give the above another twist. For convenience, let us introduce 

the following notation: 

G « SU(1,1) , 

V -- Aa2 (D) , 

where in the sequel we let a be an integer. Let us put 

v =- a + 2 . 

Then G has a natural action on the Hilbert tensor product V ^ V , 

which may be viewed as the space of Hilbert-Schmidt forms on V . 

What are the irreducible constituents of V ® V under this action? 

They were determined in £17] (cf. also £44]). it turns out that they 

are labeled by their lowest weights 2v, 2v + 2, 2v + 4,... (in the 

sense of £. Cartan's theory) and that the component of lowest weight 

2v corresponds precisely to the Hankel forms. It likewise turns out 

that the forms belonging to a given component may be treated as spe­

cial paracommutators (after a conformal transplantation to the half-

plane) so the theory in £18] is applicable (§2). In particular, for 

each (irreducible) component one has a theory entirely parallel to 

the usual theory of Hankel forms, especially including a Peller's 

theorem. 

Rather than carrying out this spectral analysis in detail (for 

this see £17]) let us start from scratch. 

Exploiting the aforementioned conformal invariance we may as 

well replace the disk D by the upper (Poincare') halfplane U and 

the unit circumference T = 3D by the real line R = 3U (in the 

usual identifications). 

Let f, ( k « 1,2 ) transform according to fk(z) -> 

f. (<j>z) (cz + d)" v ( v integer >. 1 ). Then we have the following re­

sult, the proof of which we leave as an excercise to the reader (else 

see £17]). Set 

J = V-" S" U (u>(v) 1<v)s u
 DUf1pS"Uf2 < D = I.>-u=0 - u s-u 

-2r 
LEMMA. J transforms according to the rule J(z) -> J($z) (cz + d) 
where r = s + v . 

We can then define a generalized Hankel form (of weight 2r ) by the 
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formula 

Vf1'f2> gj dx . 

As for s -= 0 clearly J =- f-f, , this is consistent with the pre­

vious notation. It is easy to see that this is formally a paracommuta-

tor n (see §2) with 

A<£ n) = /J<*.n) i f « > o , n > o A^.n) - t0 else 

where J(£,n) is the symbol of the "bi-PDO" J . Therefore the theory 
o f DC. (see §2) is in principle applicable. Here is the result; for 

the details of the proof we refer to 0 7 ] . 

THEOREM, r is a) bounded (in Aa2(U) ) iff g 6 Ir"1BMOA(R) 

(where I * D ) and b) in S , 1 < p < » , iff g £ 

REMARK. For technical reasons it is necessary to replace the pre­

vious Fourier kernel A by the Fourier kernel B given by 

B(S,n) -- A(£,n)/(€ + n ) s 

[this in order to maintain the "homogeneity"] and g by h » Dsg . 

Then we apply the theory in [_18] to the paracommutator IT. ' , where 

A - (a + 1)/2 ( - (v - 1)/2 ). 

4. F o c k s p a c e 

Let us write down the definition of weighted Bergman space for 

the case of a concentric disk D_ with radius R : 

f eA a 2(D R) iff ff |f(z)|2(1 - |z|2/R2)a do(z) < • . 

DR 
2 

If we write a = XR and if we let R -> » , what evolves is formally 

the famous Fock spaoe: 

f € $X2(C) iff ff|f (z) |2e""Alzl do(z) < • . 

C 

The role of the semi-simple group SU(1,1) is now taken on by its 

"contraction" the equally famous Heisenberg group, a nilpotent Lie 
X 2 

group, the corresponding representation of it in $ (C) being known 

9.S 



as the Bargman-Segal representation^ very familiar in quantum field 

theory. 

We now wish to outline a theory of Hankel forms which applies to 

both the weighted Bergman space and as a limiting case the Fock space. 

As the theory of Besov spaces is not available in the latter case, we 

must proceed differently. Another bonus is that we at the same time 

capture the extension to several (complex) variables. For details we 

refer again to Q18] . 

Let ft be any domain in C equipped with the measure u 

(supp p Q f i or, possibly, ft ) , which we assume to be absolutely con-
2 

tinuous with respect to Lebesgue (volume) measure, and define H (ft,u) 
2 

(also written A (ft,u) in the literature) to be the Hilbert space of 

square integrable (with respect to u ) analytic functions in ft . 

Let K( 

kernel: 

Let K(z,w) (also written K (z) ) be the corresponding reproducing 

— 2 
Denote by L(z,w) the reproducing kernel in the space H (ft,v) . Then 

f(z) = <f,Kz> for z e ft , f e H2(ft,u) . 

Along with u we now associate the measure v defined by 

dvu, dlf SHIS!-. 
K(z,z) 

reprc 

we make the assumption that 

(V) L(z,z) « c(K(z,z)) 2 

where c is a constant > 1 (independent of z e ft ) . In this assump­

tion it is possible to develop a satisfactory theory of Hilbert forms 
2 

on H (ft,u) • As a definition of the latter we take 

rb(f,g) « f FTiT f(z) g(z) dv(z) 

ft 
where b (an analytic function) again is termed the "symbol" of the 

form r. . Writing u)(z) = 1/K(z,z") consider the weighted Lp-space 

3-S(f2'v) = ifl j l f < z H P w ( z ) P ~ 2 dv(z) < co} 

ft 
and let Hp(ft,v) be the subspace of Lp(ft,v) consisting of analytic 

functions. Then we can at least formulate the main result in [J8] to 

which paper we have to refer for proofs and further details and exam­

ples. 

THEOREM. In the assumption (V) (and some other (more) natural supple­

mentary assumptions) one has 
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a) r. is bounded (on H2(fl,u) ) iff b e Hw(Q,v) . 

b) Tb is in S , 1 < p < °° iff b € HP(ft,v) . 

(Note especially that r, is in S0 (Hilbert-Schmidt!) iff 
2 D z 

b e H (ft,v) . The case o < p < 1 is still open.) 

The assumption (V) is fulfilled in all cases when the set-up is 
invariant for a sufficiently large group of "symmetries". Are there 
any other cases? This we do not know. 

EXAMPLE. In the case of tne weighted Bergman space A (D) ( d • 1 ) 
we have 

K(z,w) -= (1 - z w ) ~ ( a + 2 ) , 

if we normalize the measure properly ( du • 

(a + 1)(1 - |z| ) a da(z)/iT ). It follows that the associated measure 
is dv = (a + 1) (1 - | z | 2 ) 2 a + 2 da(z) so that, with (3 - 2a + 2 , 
upto normalization 

L(z,w) - (1 - z w ) " ( 3 + 2 ) . 

As 2 (a + 2) = $ + 2 we see by inspection that (V) indeed is fulfil­
led. Similar considerations can be made in the limiting case of the 
Fock space $ (£) . One finds: 

K(z,w) - e Xzw" , L(z,w) -= e 2Xzw" , 
2 2 

dy - X/iT-e""Xlzl da(z) , dv « 2X/7r-e"*2X'z' da(z) . 

Clearly again (V) is fulfilled. In this case it is thus question of 
the form 

H2A(f,g) - 2X if B f g e"2Alzl da(z) . 
C 

Actually, we can also treat the more general forms H£ with x ar­

bitrary (note coupled to X ). We prove that 
2 

H£ € Sp (on $X,2(C) ) iff b € *A /2T»P(C) . 

The special case x *- 2X gives then 

H2X € S iff b € $2X,P(C) . 

Both examples generalize to higher dimensions, the space 
Aa,2(B.) , where B, is* the unit ball in Cd (the "Rudin ball"), 

a d — 
and $A'2(Cd) . 

But there is a deeper reason why a condition like (V) indeed 
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turns up at all. Namely, the whole theory is invariant for certain 

"supersymmetries" informally termed (generalized) gauge transforma­

tions. Let us briefly indicate what this is about. (For a related 

point of view, see the work of Berezin on "quantization", e.g. the 

expository paper [7] .) 

More precisely, the idea is the following. Consider, quite gene-
2 

rally, a closed subspace H of L (ft,y) consisting of continuous 

functions, where ft is any locally compact space equipped with a mea­

sure y . Let K = K(z,w) = K (z) be the corresponding reproducing 

kernel. (As we are not any longer dealing with (necessarily) analytic 

functions, we drop the bar in the notation for "anti-analytic" argu­

ments.) We argue that if we simultaneously replace f by <j>f and y 
2 

by | (j> | «y where <J> 'is any non-vanishing continuous function, we 
get an equivalent theory. Especially, H gets replaced by a space 
denoted H with the reproducing kernel cf> (z)(f> (w) K(z,w) . This is 

what we mean by "change of gauge", the philosophy being that we should 

deal only with gauge invariant quantities. 

More generally, one can allow a homeomorphism Y of ft followed 

by a gauge transformation in the previous sense, corresponding to a 

continuous function <j> . We refer to such object as generalized gauge 

transformation; a generalized gauge transformation is thus determined 

by a pair (<f>,Y) . 

Indeed, there is a canonical (up to sign unique) gauge in which 

the reproducing kernel is identically one on the diagonal {z = w} 
2 

C ft x ft: take | <j> | = w where as before a) = 1/K(z,z) . It follows 

that the measure X = y/o) , -which is the given measure y transformed 

to the canonical gauge, has a gauge invariant meaning. In situation, 

when one has a sufficiently large group of automorphisms (consisting 

of generalized gauge transformations), it turns out that this is the 

usual invariant measure (the Poincare measure in the special case of 

the unit disk D ). 

We can now also understand the meaning of the definition of the 

"associated" measure v and condition (V): v transforms according 

to the rule v -»• I <f> I v_ (whereas y + | <J> \~ y ). Consider the corres­

ponding Hilbert space H generated by products f-g where f, g £ H 
2 2 

and let L be its reproducing kernel. Then L(z,w) ->• <f)(z) (j> (w) L(z,w) 

(whereas, as we already know, K(z,w) -> <j> (z)<~ (w)K (z,w) ) so (V) has 

indeed an invariant meaning. Symbols of Hankel operator pertain to 

H , not H (because a symbol b transforms as a product f-g : 

b + b(f>2 ) . 
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REMARK. Above we raised the question whether the hypothesis (V) can 

be true in other than "group theoretic" cases. Let us write down what 

condition (V) means in a simple case. Take d = 1 and a simply con-
2 

nected domain ft . Assume that H (ft,u) admits a one parameter grout 

of automorphisms induced by confofmal self maps of ft fixing a point. 

Thus we have virtually the case ft = D , u ~ a radial measure. (If 

the fixed point sits at the boundary one has a corresponding "conti­

nuous" situation, with the Fourier transform instead of the Taylor 

development.) Then (V) becomes a condition of the moments y. - f^ 
k 

|z| du (k = 0,1,2,... ). Indeed, it is question of solving an infi­
nite system of equations: 

1 " 
£ - - _ £ <$kYn+k =

 c (= constant) , 
n+m=p YnYm k=o P 

? -iS- - f 1 p - ° 
k=o V k ° P * ° ' 

(The numbers y, determine the 6k uniquely.) Thus, are there other 

solutions than the ones which come from weighted Bergman spaces (li­

miting cases included) given by 

Yk -
 const' r(k +

kl + 2) Rk ? 

(The letter r now stands for Euler's gamma function, of course.) 

Finaly, concluding this Section, let us mention that in [18] there is 

also a very general Kronecker's theorem, essentially without "any" 

assumption on the measure \x (we are now thinking of the "analytic" 

case, of course). This is more or less an excercise in commutative al­

gebra (Hilbert's "Nullstellensatz", primary ideal decomposition and 

all that). Indeed, modulo some simple functional analysis, it is just 

question of the structure of ideals of finite codimension in a poly­

nomial ring. As a young student I bought a copy of Q56]; finally, af­

ter so many years, I found a use for it ... Moral? 

5. A x 1 e r 

In this § we shall mostly deal with the weighted Bergman space 
a2 A (D) , a > -1 (especially we are back in the case d = 1 ) and we 

shall report on the recent paper [5], which in turn is a sequel to 

Sheldon Axler*s work [6] (the case a = 0 (Bergman's own space!) and 

boundedness and compactness criteria only) . In §1 already in the case of 
2 

the Hardy classes H (T) we indicated two different (but essentially 
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equivalent) ways of defining Hankel operators. Especially, we defined 

the anti-C-linear operator 

Hbf = P(bf) . 

In the Bergman case one might want to consider instead 

j£f = pa (bi> , 

where P is the Bergman projection (orthogonal projection onto 

Aa (D) in the Hilbert space L2(D,ua) ). The operators H, and H^ 

are essentiallly the same from the formal point of view, because there 

is a simple relation between those symbols. That this is the case is 

easily seen if one notes that the associated bilinear forms, viz. 

<g,Hbf> 2 and <g,Haf> 
10 HZ(T) D Aa2(D) 

respectively, both are Hankel forms in the sense that they only depend 

on the combination f»g . However, if we instead use the complementary 

projection Pa = id - Pa mapping L (D,u ) onto the orthogonal com­

plement Aa (D)-~- , one gets an entirely different theory. We thus set 

Haf = Pal(Hf) , 

where b is an analytic function (cf. however infra); H? will be 

considered as an operator from Aa (D) into Aa (D)-*- . An important 

fact about this definition is that it is conformally invariant. The 

main result in [5] can now be formulated as follows. 

THEOREM, (a) Ha is bounded iff b is in the Bloch space B^AfT) 

and compact iff b is in the "little" Bloch space hJ°K{X) (-= the 

closure of analytic polynomials in the Bloch metric). 

(b) Ha is in S where 1 < p < «> iff b € B1,1/pA(T) . 

COMMENT. Again we shall not enter into the details of the proof but 

content ourselves with some comment. First of all part (a) is an easy 

extension of Axler's result [6] (the case a = 0 ). As for part (b), 

one might also think that it is a simple variant of Peller's theorem 

(§1). But this is not the case, because the result breaks completely 

down in the end point case p = 1 . The only thing one can prove is 

that b ̂  B] , 1A(T) 4 Ha € SQ , where Sfi is the Macaev ideal (the 

smallest normed ideal containing the Marcinkiewicz (quasi-normed) ideal 

S1oo ; T e S iff S R(T) - 0(1/n) so that T € SQ iff' EJ^s^T) 

= O(log n) ; see e.g. [12], [49]) and also that if Ha is in any 

smaller normed ideal S„ (i.e. the sequence space E is strictly 
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contained in the "Macaev sequence space" ft ) then b = constant. So 

one must proceed differently. Passing to the upper halfplane one read­

ily sees that the operators H? formally may be viewed as special 

paracommutators (§2) but with a vector valued Fourier kernel (func­

tions of the variable z =- x + iy are then viewed as functions of x 

whose values are functions of y ). As there is (not yet) a theory of 

"vector valued" paracommutators, the results of |J6J (see §2) do not 

apply directly. (Obvious challenge: Develop such a theory! In this 

connection it is perhaps pertinent to recall Peller's paper [36] on 

vector valued (ordinary) Hankel operators.) It is however easy to give 

an ad hoo construction which somehow mimicks the proofs in the para-

commutator case; in one way or other one has to imbed the given object 

into a one parameter family so that one can do the interpolation, 

which breaks down if one tries to proceed in the naive way. Roughly 

speaking, the idea is the following. One knows that if (en)n-=i --
s 

any orthonormal basis and 1 < p < 2 , then (I |Te II) _.. € I en-
-=-«--» ' ' n11 n— i p 

tails that T € S (give your own proof or else consult |~12] or [47]). 

We use the analogous result for the natural "continuous" bases 

(K ) D . One is then lead to prove the following statement: If 
f 6 B1//p,pA(T) , where p > 1 , then the following integral is finite: 

ÍJ'II< (K(Z,Z)
1/2K(w,w)1/2|f(Z) - f(w)| y

2
 đ П ( г ) }

P / 2

 đ П ( w ) 

D D
 K ( Z , W ) 

where K(z,w) = (1 -
 Z
w ) "

( a + 2 )
 i

S
 the reproducing kernel in A

a , 2
(D) 

2 2 
(see §2) and dll(z) -= da(z)/(1 - |z| ) is the Poincare* measure. 

(Incidentally, this leads to a new (?) characterization of Besov spa­

ces too.) The hard thing is p £ 2 and this is this case which really 

is needed. Actually, in the strict sense the statement is true only 

for a £ 0 and in the case 0 < a < 1 a modification of the argument 

is needed (another related perhaps less natural "basis" has to be 

used). 

Non-analytic symbols. In connection with the operators H? there 

is no a-priori need of requiring the symbol b to be analytic. Below 

we indicate briefly what happens if we drop the latter assumption. 

It is convenient (cf. §2) to formulate the results in terms of 

the commutator 

<£ = [Mb,P
a] . 

where M, is multiplication with b , M.f = bf , which in the decom­

position L2(D,v» ) = Aa,2(D) kB A a' 2(D)~ is given by the block matrix 
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a b 

Hr 0 

Here it is interesting to look already at the S2-theory. (Indeed, some 

of what we say can also be developed in the more general setting of 

such that §4. ) More precisely, let Fa be the class of symbols b 

Ca 
Cb is in S2 , i.e. 

JJJJ|K(z,w)|2|b(z) - b(w)|2 dpa(z) dya(w) < 

DxD 

wit h K(z,w) as before and dy (z) = (1 - |z| 2) a dö(z) . It is plain 

that the Mobius group acts via isometries on F u but this action is 

not reducible. One irreducible factor F1 consists of analytic sym-
1 2 

bols and is identified with the Dirichlet space Dir = B'» A(T) . 

Another one F 2 consists of anti-analytic symbols (= the conjugates 

of the elements in F. ) and is, consequently, identified with Dir 

A third invariant factor F_ (but not an irreducible one; it is a 

continuous sum of irreducible representations) is obtained by taking 

the closure of C~(D) in F a . One can show that F a = F1 © F^ ® F~ 

(orthogonal sum). Thus there are three types of symbols: 

1) analytic symbols, 

2) anti-analytic symbols, 

3) symbols "vanishing on the boundary". 

2 

Actually, one can show that F 3 = L (D,dII) , where again dll is 

the Poincare" measure, but only upto equivalence of norm. This is done 

by invoking some more group theory. Let A be the MSbius invariant 

Laplacian 
A = d - | z|2)2A , 

where A is the ordinary Euclidean Laplacean. Then by general prin­

ciples it is clear that 

||f|| = ||h(A)f|| ( f € C~(D) ) 

F a LZ(D,dn) U 

for some positive Borel function h . Using the spherieal (Fourier) 

transform (see e.g. |Jl 3J ) one can write down h explicitly (in terms 

of, once more, Euler's gamma function r ) and this shows that h 

indeed is bounded and bounded from below. 

Let us now turn to Lp-theory. The natural L p space to be consi­

dered (cf. §4) is A p (ad /z<?e-notation) defined by the condition 

J J|f (z) | 2 K ( z , z ) 1 ~ p / 2 dya(z) < - . 

DxD 
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a 1 
One then readily shows that C, is a bounded map from A onto it­
self (or from A into itself) iff the symbol b satisfies the con­
dition 

sup I 
*w <= Л jJ 

b(z) -b(w)| ЩŞ^ ------ du(z) < 
K(zД)

1 / 2
K(w,w)

1 / 2 a 

By (Schur) interpolation then in the same hypothesis C
a
 is bounded 

on A^ for all 1 < p < °° . 

Finally, applying Russo's theorem [46] (the "Hausdorff-Young" 

theorem for integral operators; cf. [27j) one can get an S -result in 

one direction at least for 2 < p < °° . 

6. M a n i f o l d s 

In this Section we take up a theme treated already in [27], App. 

1, and then again briefly mentioned in [39], Sec. 11. In all the pre­

vious discussion we have exclusively been dealing with situations 

with lots of symmetries (invariance for a large class of automor­

phisms) . These again may be viewed as "flat" (or "isotropic") cases 

on which more general "curved" (or "non-isotropic") object may be 

modelled (in a sense familiar from Differential Geometry). 

For instance, it is conceivable that much of theory of Hankel 

forms over a weighted Bergman space, even in the case of several va­

riables (we are thinking of the theory in [l], in the first place), 

can be extended to the case of general strictly pseudo-convex domains, 

in as much as the unit ball in C may be viewed as a "flat" model 

for a general strictly convex domain (the sphere is of course not flat 

in the naive sense). This is connected with to what extent one can 

define Besov spaces for a strongly pseudo-convex domain. One has to 

take care of the complex geometry of the boundary. More precisely, in 

dealing with "boundary values" of analytic functions one has to impose 

smoothness (differentiability) in complex tangential directions only 

(cf. [29], p8],). 

Let us now instead consider a real variable extension of the 

theory of Hankel and Toeplitz operators (essentially we repeat only 

in some greater detail what was said already in [39]). One can assoc­

iate a theory of Hankel and Toeplitz operators with any injective 

elliptic P.D.O. For simplicity we consider only the following model 

case: The Laplace-Beltrami operator A on a Riemannian manifold Q 

with boundary S = dti , d = dim S . Then there is a natural Hilbert 
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2 2 
space associated, namely L «* L (S) consisting of square integrable 

vector fields "along" S (section of the tangent bundle Tft of Q 
2 2 2 

restricted to S ). Let H = H (S) be the subspace of L obtained 

by taking restrictions of f = grad u to S for solutions u of the 

equation Au -» 0 . (Then f is a harmonic field; if Q is not simply 
connected one should perhaps work with the harmonic forms themselves.) 

2 
Informally, we may think of H as the space of Cauchy data and it is 
the Cauchy data we should consider also in more general situations. 

(Notice that the above situation with several complex variables then 

also becomes formally a special case, in as much as the Cauchy-Riemann 

equations written in real form may be viewed as an injective (overde-

termined) elliptic system.) Let P be the orthogonal projection of 
2 2 

L onto H . By a Hankel-Toeplitz operator we mean an operator of 

the form Tf =- PVf , where V denotes multiplication by a "matrix-

-valued" function v , i.e. strictly speaking, a section of the bundle 

of linear endomorphism of the bundle Tft | S ; in terms of local co-

h 
of the form IlV-sufi,.. • (More generally, we could let V be a f.D.O. 

of degree o .) 

EXAMPLE. Q = D = unit disk, S -= T = unit circle. In this case we 

identify f with the analytic function 8u/3x - idu/dy . Now the for­

mula for T takes the form Tf -= P(af + bT) . (Notice that in our 
2 2 treatment L and H are a priori taken as R-vector spaces.) This 

formula comprises thus in one stroke both what is classically consi­

dered as a Toeplitz operator ( b =- 0 ) and a Hankel operator ( a = 0 ) . 

In p7j we proved (with some effort) a theorem to the effect that (in 
2 

the general case) T is bounded in L iff both its Toeplitz and 

its Hankel part are bounded, that is, by Nehari's' theorem (§1) and 

its unnamed Toeplitz counterpart, iff a € L and b e PBMO . (Later 

Svante Janson pointed out to me that this trivially follows by just 

separating real and imaginary parts in the obvious way.) 

Let us return to our general (model) case. In general a Hankel-

-Toeplitz operator is a y.D.O. of degree 0 in the technical sense. 

However, it may "accidentally" happen that it has lower degree. When 

this is the case we say that we have a pure Hankel operator.. This is* 

very nice, because than T may be replaced by a commutator. Indeed, 

let p(x,£) be the (principal) symbol of the projection P (this is 

a "matrix-valued" function on the cotangent bundle T*S of S ). The 

symbol of T is then (in general) v(x)p(x,£) . But if T is pure 

Hankel we must have v(x)p(x,£) = 0 ; in other words, there are rela-
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tions between the components v.. of v . Write T = PV • VP 

+ QP,VJ . Here the first term may be written as VQ where Q is a 

y.D.O. of order -1 . It can easily (?) be dealt with directly. What 

remains is thus the commutator [P,Vj and then the Janson-Wolff theo­

ry (commutators of Calderon-Zygmund operator; see §2) is at. our dis­

posal, as the latter is essentially of local character. Assuming that 

S is compact one can also derive global results, at least in one di­

rection. Especially, one finds that T e S , where d < p < «> , iff 
P 

v belongs to a suitable Besov space BJ~'P'P(S) (of sections of the 

bundle in question). As there are relations between the components 
vik w e g e t n o w e v e r n o conclusions in the other direction. For instan­

ce, it is not clear if there ever exist (pure) Hankel operators in 

our sense which have finite rank (analogue of Kronecker's theorem; 

see §1), except of course in the classical case (see the above exam­

ple). 
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