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WEIGHTED NORM INEQUALITIES FOR
INTEGRAL OPERATORS AND RELATED TOPICS

VLADIMIR D. STEPANOV

INTRODUCTION

In the first part of the paper we study integral operators of the form

xT

(1) Kf(z) = () / ko y)u()f@) dy, @ >0,

0

where the real weight functions v(¢) and u(t) are locally integrable and the
kernel k(x,y) > 0 satisfies the following condition: there exists a constant
D > 1 such that

2) D '(k(z,y) + k(y,2) < k(z,2) < D(k(a,y) + k(y,2)),
r>y>z2>0,

where D does not depend on z, y, z. The condition (2) was introduced by
R. Oinarov [O4].
Standard examples of a kernel k(z,y) > 0 satisfying (2) are
(i) k(z,y) = (z—y)*, =0
(i) k(z,y) = log” (1 + 2 —y), k(z,y) = log” (£); 52 0
and their various combinations.

Let 0 < p < co. We study (1) on Rt = (0,00), but any (a,b) C R can
be taken instead of (0,00) without any loss of generality. Also, the dual

This research was partially supported by NSERC of Canada and SERC of United
Kingdom.
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140 V.D. STEPANOV

operator of T' can be considered (see Remark 1.1 below). Let
7 1/p
1= 10.00) = {£: Ifll, = ( [ 17@ldr) " < oo},
0

We consider K as a map from LP into LY and shall characterize the
following problems:

(B) LP — L7 boundedness,
(C) L? — L7 compactness and measure of non-compactness,
(S) L? — L? Schatten-von Neumann ideal norms.

Several factors affect the problem (B). First of these are restrictions im-
posed on the kernel k(x,y) > 0. Another such factor is the range of param-
eters p and ¢, because of substantial difference between the cases p < ¢ and
q < p. Certain part is played also by the fact whether 1 < p, ¢ < oo or not.
The cases when p=1orp=o00; ¢ >1and ¢ =1 or ¢ = oo; p > 1 follow
trivially from known results ([KA], Chapter XI, Theorem 4). It also follows
from the general theory of integral operators [AS], [Sc] that if 0 < p < 1
and K: LP — L7 is bounded, then k(z,y) = 0 almost everywhere. Among
other factors, perhaps, the verifiability of a criterion is the most relevant.
For instance, Muckenhoupt’s criterion [M] for the L? — LP boundedness of
(1) when k(z,y) = 1 penetrated many areas because of its explicit form,
and being so easy to verify. On the other hand, the implicit “Schur’s test”
[Kor], [Sz], given for arbitrary kernel k(z,y) > 0, 1 < ¢ < p < 00, had also
had effective applications [Nik], [Hern].

The problem (B) was intensively studied since 1988, when the charac-
terization has been found for the Riemann—Liouville operator with ker-
nel k(z,y) = (z — y)%, a > 0 and its convolution generalizations [MS]
(1 <p<g< o), [St] (1 <p, g <o0), [Sta—Stg], [Sts], [St1g]- Unlike the
Muckenhoupt (1 < p < ¢ < o0) or Mazja (1 < ¢ < p < o0) criteria for
the case k(z,y) = 1 (see [B], [Ko], [M], [Ma], [Tal], [Tom], [Saw;], [S;] for
the case 0 < ¢ < 1 < p < o0, and [OK] for the full account), the L? — L?
boundedness of the Riemann—Liouville operator was characterized by two
conditions, which are independent in general except the case when u(y) = 1
or v(z) = 1. Later, in the papers [BK;] and [Os] (1 < p < ¢ < 0), [St12]
(1 < p, ¢ < o0), the criteria have been proved for the kernels satisfying
monotonicity or continuity conditions. The classical results with the power
weights can be found in [HLP].

The problem (C) has the background in the spectral theory of weighted
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string [G], [AO], the case k(xz,y) = 1 was proved in [Riem], and for the
Riemann-Liouville operator see [Sto—St3].

In Section 1.1 we characterize the problems (B) and (C) for the Volterra
integral operators (1) under the condition (2), which probably is a balance
point between generality of conditions imposed on a kernel and implicitness
of a criterion. A few extensions to Lorentz and Orlicz spaces are given in
Sections 1.2 and 1.3 which generalize the results of [AM], [EGP], [Saw;] and
[BK,], [HM], [L], respectively.

The problem (S) is quite a natural step from the problems (B) and (C).
The standard references in this area are the books [GK], [K], [P1], [Sim]
and the survey article [BS]. Applying the real interpolation method [BL]
we give in the Section 1.4 an analog of the Hilbert—Schmidt formulae for
the Schatten-von Neumann ideal o,-norm, 2 < p < oo, for operators of the
form (1) with extension to the range 1 < p < oo for the polynomial kernel.

In the second part we deal with weighted norm inequalities restricted to
monotone functions. This topic was recently initiated by the papers [ArM]
and [Sawsy] with further developments in [A], [Br], [CS;], [CS2], [G1—-Gs],
[H], [HSt], [N], [Str], [Ste], [St11] and others.

Our first observation is that such inequalities are helpful in the above
problem (B) for the Hardy operator, when 0 < ¢ < p < 0o, p > 1.

Secondly, we characterize the dual space to the classical Lorentz space
given by

0 = {71l = ([ ( / 9ds) oy at) " < o0},

where f*(s) = inf[z > 0: meas {z: |f(z)| > 2z} < s], and find out the
criteria for a number of operators of harmonic analysis to be bounded in
I'-spaces.

Throughout the paper the expressions of the form 0 - oo, 0/0, co/co are
taken equal to zero, the inequality A < B means A < ¢B, where ¢ depends
only on D and parameters of summation (p, ¢...), and the relationship
A = B is interpreted as A < B < A or A = cB. Further, yg denotes the
characteristic function of a set E, Z the set of all integers, O means the end
of a proof.

Acknowledgement. It is a pleasure of the author to express his deep
respect and gratitude to Professors M. Krbec, A. Kufner, B. Opic and J.
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1. ProBLEMS (B) anD (C)

1,1 ¢ 1,1 _7 1_1_1
1.1 Lebesgue spaces. Denote sto=Loto=Lo—-5=1% and
T 1/p
(3) Ao = sup Ao(1) —sup(/wx Dlo(@)]dr)’ /|u )"
t>0 t>0

t

l] ’ ’ l/p’
(4) Ay = sup 1 (1) = sup / pprar) ([ wplutras)

t>0
0

’

(5) By = / /kqxt|v )lrdz)’ q(/|u(y)|P’dy)T/q |u(t)|p'dt}1/r,

0

6) B = / ([1otarar)™( / el dr) " o)

t

The mapping properties of K: LP — L7 for 1 < p, ¢ < oo (with the
usual modification if p =1, co or ¢ = 1, 00) are described by the following
statement.

Theorem 1.1. Let the integral operator K be given by (1) with the kernel
k(z,y) > 0 satisfying (2).

(a1) If 1 < p < ¢ < oo then the inequality
(7

is valid if, and only if, A = max(Ap, A1) < 0o and, moreover, || K|| =~ A

<C\fllp forall feLP

(az) If 1 < p < q < oo then the operator K: L — LY is compact if, and
only if, A < oo and

t—o00

(b1) If 1 < ¢ < p < oo then the inequality (7) holds if, and only if,
B = max(By, B1) < oo and, moreover, | K| ~ B
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(by) If 1 < ¢ < p < oo then the operator K : L? — L? is compact if, and
only if, B < 0.

Proof. (a;) We begin with the necessity. Observe that the left hand side of
(2) implies

(9) k(t,y) < Dk(x,y) and k(x,t) < Dk(z,y) forally <t < .

Now, suppose that (7) and the inequality
t

(10) [ Py <
0
hold for some ¢ > 0 (otherwise we would have [, |[v|? = 0 and the conven-
tion 0+ 0o = 0 would imply 0 = A;(t) < C). Setting
fel@) = X () (k(t, 2)|u(@)])" " sgnu(x),
then substituting f;(x) in (7) and applying (9), we find that
t

o [# et a)"”

> ( / jo(a) *dr / K)o ) (60) ) dy) ' )

>0 [uwrra) " ([ 6ot ay)

0
and the estimate D' 4; < C follows.

By duality, we have
K:IP L& K*: LY — LV,

where

K*gly) = uly) [ ke, p)o(z)g(a) .
)
Thus (7) and ||[K*g|l, < Cllglly, g € L4, hold with the same constant C.
Applying the above argument to the operator K* and
9:(y) = X111 (®) (K, ) @)) T sgno(y),
we see that D" 14g < C, D 'A< C,and D'A <infC = |

q—

K.

To prove sufficiency we need the following
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Lemma 1.1. Let f(y) be such that u(y)f(y) > 0 and k(x,y) > 0 sat-
isty (2). Put

x

G(z) = / ke, y)u(y) £ (y) dy,

0
and

X ={x>0:G@x)>(6+1)F}, kez,
xp =inf Xy if Xy #0, xp = oo otherwise; N =sup{k: Xy # 0},

where 6 > 0 is a fixed number. If § > D?, then the inequality

(G414 < / k(ak,y)u(y) f(y) dy + D / Kk, v)u(y) £ (4) dy

Th—1 Tp—2

Thk—1

+ Dk(zr. 251) / ()£ (y) dy

+ D*l(zg—1, Tk 2) /u
0

holds.

Proof. By the definition we have x;,_; < x;, and also, G(z) < (§ + 1)*
G(zy), if « € [zg_1,x). Using this, we write

(6+1) = (0 +1)2((6+1)F =606 +1)F 1)
< (6+1)*(Glay) — 8(6 +1)*1)

Tr

= @+ 02 [ kowp)u(o) ) dy - 50 +0*),
0
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Now applying (2) twice we get

(6 +1)" " <Dk(zy,z5_1) / u(y) f(y) dy + / k(e y)u(y) f(y) dy
0 Tr—1

+D / F(n— y)u(y) F ) dy — 6(5 + 1)1

T

<Dhk(ep, 1) / () f(y) dy + / k(a y)u(y) f(y) dy

0 c—1

Th_2

+ D?k(zp—1, 75 —2) / u(y) f(y) dy
0

+D / k(xr—1,y)u(y) f(y) dy

+ D?G(xp_y) — 6(6 +1)FL,

Using (9) we find that G(zp_s) < DG(z) < D6+ 1)t if oy <2 <
xp_1. Consequently, D?>G(zy_2) < 8(6 + 1)*~1, if D < §, and the result
follows. O

Now we continue with the proof of the sufficiency part of Theorem 1.1.

Without loss of generality we may and shall assume that f has a compact
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support in R, f(y)u(y) >0 and 0 < || f||, < co. By Lemma 1.1 we obtain

(11)

Tr41 Th+1

/Gq|v|q — / Gilv|? < Z(5+1)q(k+1) / |v]?
kEN k<N

Tp—1

<40~ (5+1)qzk: / |v|q{Dqkq(xk,xk_1)( 0/ uf)

Th_2

/kxk, ()dy) +D2q/€q($k717$k—2)( / Uf)q

0

+Dq( /k(xk—17y)u(?/)f(y)dy)q}

=491+ 1% (Ji1 + Jiz + Ja1 + Ja2).

Using the Holder and the Jensen inequalities, we find

J=Z/ |U|q(m./1 Frs, (o) £(3) dy)

<X / ol / 7 (el dy)’ /|f ray)’
/ Fwray)"" < gl

Analogously, we get

Th41 Tr—1

F=Y / ol / B (o, 9)lu()|P dy) " < ALDY| £,

ko a, T2

In case when k(x,y) = 1, the single condition A; < oo is necessary and
sufficient for (7), and Ap = A;. To obtain upper bounds for Ji; and Jy; we
need the following more general assertion.
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Lemma 1.2 ([BK3]). Let 1 < p < ¢ < oo and let y = ¢(x) be a differen-
tiable increasing function on R such that ¢(0) = 0, ¢(oc) = oo and, thus,
the inverse function * = ¢~ *(y) exists. Then

#(2)
Hv(x) / qu <C|fll, forall feLr
q

0

if, and only if,
Ay = sup ||X[e-1(t),00] ¥l Ix[0, 0l < 00,
t>0
and, moreover, C' =~ Ay.
Proof follows from the case k(z,y) = 1 by a change of variables. O

We can now estimate Ji; and Jp; as follows. We have

JH:D‘?Z( / |v|Q)kQ(xk,xk_1)( /_u(y)f(y)dy)q
o 0

Put ®(z) = Y Tk 2X[zy,04.](2) and let y = ¢(x) be such a function that
3

o(x) = x—2, D(z) < ¢(z) < z, and @(z) satisfies the hypothesis of Lemma
1.2, that is, ¢ is an increasing C'* function on (0,00). Then we obtain

nweor s ([ wrtan o[y s (o))
ko i 0

= D1(J{Y + JD).

The estimate of Jl(}) is similar to Jy2, but now we apply Holder’s inequality
and (9) to get

JS) < D? Z ( 7lkq(x,xk1)|v(x)|qu>( 71uf)q
k T T2
< Do Z (/ookq(x,xkl)w(x”qu)( 71|u|p1)‘1/1)'( 71|f|q)q/l’
L Tp_o T2
<410y ( 71|f|p)” "< D f
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For the second term we obtain from Lemma 1.2

Tl41 Tp—2

Jl(f): (/|v(x)|qu>kq(sck,xk_1)) /uf)q

0

uf) a ( Z K (2, k1) X[op,o01] (x)) |o(z)|d

uf) V(@) de < (AL £,

where

Vi) = (D2 W@k ) NG () ) 007

k
and

o0 t

1/q N1/

AP = up Af AP @), AP = ( / V(z) dx) (/|u|p) .
o=1(t) 0

Now by the definition of ¢(z) we have that if ¢=1(t) € [xy,,Zky+1), then

t € [Try—2,Thy—1) and, in particular, t < ¢~ 1(t). Applying (9) twice we find
that

(12)

o Tro+1
/ V(z)dx = k% (2, Try—1) / |v(x)|?dz
o=1(t) )

Th41
+ Z kq(xkovxkofl) / |v(x)|qu
E>ko o
Tho+1 Tr+1
D2q / ki (x, t)v(z)|?dx + Z / ki (x,t)|v(x |qu)
k>kg 5
o0

=D / k1 (z,t)|v(x)|dz.

t

Hence, Afbl) < D?Ap, and we obtain Ji; < AY||f]|2. A similar argument
shows that Jo; < A7[|f]|7, and the estimate J < A?||f[|2 is proved.
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Remark 1.1. Observe that the part (a;) has two natural versions:

(i) restricted to any interval of real line and (ii) with respect to the dual
operator K*. In the case (i), which we call a “restricted” version, we deal
with the integral operator K given by

/kxy (y)dy, —oo<a<z<b< oo,

with the kernel k(x,y) > 0 satisfying

(2') D7 (k(xz,y) + k(y, 2)) < k(z,2) < D(k(z,y) + k(y, 2)),
b>r<y<z>a.

Then [|K||zr(ap)y—Li(ap) R Aap for 1 < p < g < oo, where 4,; =
maX(AO;a,val;a,b)v and

1/p
AO;a,b sup AOab = sup /kq &, t |’U |qu /|U |p dy ’

a<lt<b t>0

/q ’ ’ 1/p’
Atjap = sup Aiap(t) = sup /Iv |qu (/kp (t,y)|u(y)|” dy) .
a<lt<b t>0

Analogously, in the “dual” version (ii) we have || K*|| v (a,0)—La(ap) * Alupy
where A , = max(Ag;a, A1;0,5), and

t

Aiun = sup A3,5(0) = sup / (2,2 o)) / uw)ay) "

a<lt<b t>0

’

« /q , , 1/
Afap = sup Ajy(6) = sup / jo(a)ode) " ( / ¥ (1) u(y) | dy)
t

a<lt<b

(a2) To prove necessity of (8) we use the well-known fact that a compact
operator maps a weakly convergent sequence into a strongly convergent one.
As before we may and shall assume (10) for some ¢ > 0 and, consequently,
for all s < t. Put

0<s<t.

1/p ’
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Then for any fixed g € L? we have by Hélder’s inequality that

’

‘/Oofs(x)g(x) dx‘ < (/S|g(x)|pfdx)1/p L0 s
0 0

Hence, fs — 0 is a weakly convergent sequence, and, by the hypotheses, we
have

lim ||K £, = 0.

s—0

However, (9) yields

e = / e / Ke) £ (ule) dy) )
Y / i) ([ 1 sl a) "

Consequently, lim;_.g A;(f) = 0. Using the same argument with the se-
quence

o @)@~ sgn u(a)
(1l ar)”

we obtain lims_.g Ag(t) = 0. The second part of (8) follows on applying
similar observations with respect to the dual operator which is compact,
too.

fs(x): , O0<s<t.

For the proof of sufficiency observe that if A < co and there exists ¢ > 0
such that

t
/ W (6,9 [u()” dy = oo
0]

/Oo|v(sc)|qu =0

and we have to restrict our considerations to the interval [0,¢]. Together
with the similar observation at the other end of the real semiaxis this shows
that without loss of generality we may and shall assume that all the factors
in A;(t), i =0, 1 are finite when 0 < t < 0.

then
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Let 0 < a<b< oo and

Paf = X[O,a]fv Qbf = X[z,oo]fv Pabf = X[a,b]f‘

Then we have

I(f = (Pa + Pab + Qb)I{(Pa + Pab + Qb)f
= PL‘LKPELf + QbKQbf + PaerPabf + QbI(Pabf + QL‘LKPELf'

By (ay) restricted to the intervals [0,a] or [b, o0], and (8), we have

|P.KP,|| <max{ sup Ap(t), sup Ai(t)} -0, a—0,
0<t<a 0<t<a

Qs K Q|| < max{sup Ao(t),sup 4;(t)} — 0, b— 0.
t>b t>b

To finish the proof of (az) we need the following

Lemma 1.3 ([ES;], Lemma 1). Let 1 < p<g<ooand 0 < a <b < o0,
let K be an operator of the form (1) with a kernel k(x,y) > 0 satisfying (2).
Then if A < oo, the maps P, K P,y,, QK P,;, and Q,K P, are compact.

Thus, K is compact as a limit of compact operators.

(b1) We begin with the necessity part. Let 1 < ¢ < p < o0, 1/r =
1/q¢ —1/p, and let (7) hold. Put

[ee]

Vo) = [p@lde, Vi) = [ k@ 0leta) iz,

t
t

%mz/W@W@, mmz/wﬁmm@W@

0 0

and assume that By < oo. To get this inequality we can proceed by changing
the weight functions v and v without changing C.

We set
fr = (VU Ty P sgn o,
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Then By = ||fk||p/r and replacing in (7) f by fi, we get

Cllfelly = CBy* > K fill

= ([ Wt [ w.g)uw feto) dy
= (/fk(y)U(y) dy/ (t,y)|o(t qut

(by (9))

k(t, 2)u(z) fu (z) dx)q_l)l/q

S
o .

k(t fe(x) dx)q_1>1/q

o\

Yy

/fk dy/kq (& 9)[o(t |th(/“($)fk(x) dx)qjl)l/q

0
(applying (9) again we find that Vi(z) > D7 WV (y) if 0 <z < y)

([ f@utw () ylu(w)l”'Uo(x) i) )"
(0/ k(y)uy) (Vily y(o/ ) )

~ Bg/q.
The above estimate gives
p—q\V4
c > ( ) DBy,
p—1

and the temporary assumption By < oo can be removed thanks to the Fatou
lemma. A similar argument applied to the dual operator gives

c > ( 1) g,

p—
and the required lower bound follows.

The proof of the sufficiency part begins exactly in the same way as the
proof of (a;). Preserving the notation (11) we write

I < (Jin + Jiz + o1 + Joz).

Applying twice Holder’s inequality and then Jensen’s inequality we find
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that
DD /||(/ ki y)u()f (1) dy)’

sz/u(/ ¥z () dy)' / rwray) "

< (2( /| / & () ) dy) q”(; / Fwledy)"”
<! Z/ /|v| ) ltda /k eepludn)” )1

Tp—1

Th41 xT ,

r p . r/p 7 r/q a/r
<(X / ( / e lal dy) " ([ 1) o) g

xT

r
< ngDqllfll}i

Similarly we get
T
Jap < ngDqllfllﬁ

As in the proof of (a;) it is clear at the moment that in the case
k(xz,y) = 1, the single condition B; < oo is necessary and sufficient for
(7), . Let us show that By < By in this case. This is
obvious if By = 0o, therefore suppose By < co. Then

(o (foe " = o) fa [y
< / ( 7 ol7)"af / )"
- ( [ ()™ e

s 0

r
—,Bo < 00,

IN
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and, consequently,

(7|v|q>r/q(/t |u|p’)r/pl —0 fort—0
t 0

by the Lebesgue Dominated Convergence Theorem. Hence, integrating by

parts, we see that
/q P’
([ 1) / )" ut e

[o o]

=2 [ /|v| qd(/|u|p’) ’
0
< %7(/|v| )””(/t|u|p’)”p'|v<t>|wt= Y.
0

t 0

0\8

’E

o

Also, as in the proof of (a;), we need the slightly extended version of this
case which can be proved easily by the change of variables.

Lemma 1.4. Let 1 < ¢ < p < oo and let y = ¢(x) be a differentiable
increasing function on R*, such that ¢(0) = 0, ¢(o00) = oo, and thus the
inverse function * = ¢~ 1(y) exists. Then

#(z)
Hv(x) / qu <C|fll, forall feLP”,
q

0
if, and only if,

o0

o) t
/p T/ roNLT
Bo=([( [ 1) (Jrr) " werar)” <o,
0 0

_1 t
and, moreover, C' = By.

Now we continue with the proof of sufficiency in (by) by applying the
construction from (a;), involving the functions ®(z) and ¢(z) which have
been used for the upper bound of J;; and J5;. As before we have

Ju < DI + ID).
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The estimate of Jﬂ) is similar to that of Ji3, so we have Jﬁ) < B{D1|f]|.

Applying Lemma 1.4 for the upper bound of Jl(f) we find Jl(f) < (Bél))q 1%,

where
BV (t) = (/( / V(x) dx)r/q(/|u|p’)r/q,|u(t)|p'dt>1/r,
0 ) 0

(¢

and using (12) we obtain Jl(?) < Bg|lf|4. The upper bound of Jo; follows
by a similar argument. Thus, combining the above estimates, we get J <
B?||f||4 and the part (by) is established.

(bs) Necessity follows immediately from (b;), and the Ando theorem
[An] implies sufficiency.

Theorem 1.1 is proved. O

Remark 1.2. The measure of non-compactness of K : LP — L is given by
a(K) =inf ||K - P|,
where the infimum is taken over all bounded linear maps P: LP — L% of
finite rank. Using the restricted version of Theorem 1.1 we can show that
in the case 1 < p < ¢ < oo we have
a(K) ~ max(Ayp, Ag),

where A;, = lim, o [|P.KP,|; Ar = limp_ o || P K Py||. (See [ES] for
details.)

1.2. Lorentz spaces. For 0 < r < 00, 0 < s < 00, and a locally inte-
grable function ¢(z) on R*, the Lorentz space L}® = L}*(RT) consists of
all measurable functions f such that ||f]|,s,4 < oo, where

r sdin1/s
||f||rs7¢ = (/ (tl/rf**(t)) 7) for 0 < s < o0,

0
| fllro0,6 = sSup tl/rf**(t) for s = oo,
>0

and

@) Z/tf*(S) ds,

f*(t):inf{x>0:)\f(x): / q&(z)dzgt}

{yeR*: |f(y)|>z}
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If r = s, then
N . 1/7‘
17l = ([ @00 o)
0
There is a natural extension of Theorem 1.1, (a), to Lorentz spaces. We set
Ag = sup Ag(t) = sup || xpo,q(k(t,.) (u(.)/(.))
t>0 t>0

Ay = sup Ay () = sup [Ixqo,0(w/ D)l s 6 1X[t,00) (VR )0 () lpg,u»
t>0 t>0

|rrsr’¢||X[t7OO]v||pQ7¢7

Theorem 1.2 ([LS]). Let K be the integral operator (1) with a kernel
k(z,y) > 0 satisfying (2), and let 1 <r,p < 00,1 < s, ¢ < 0o be such that

(13) max(r, s) < min(p, q).
(a;) Then
(14) ”Kf“pqﬂ/i < C”f“h%d» € L;S

if, and only if,
A = max(Ap, A1) < 00

and, moreover, ||K| ~ A, where ||K|| is the norm of K, i.e., the least
possible constant C in (14).

(ag) If 1 <r,p<oo,1<s,q< oo and (13) holds, then K : Ly — Liq
is compact if, and only if, A < oo and

Proof of Theorem 1.2 can be obtained by applying the scheme of the proof
of Theorem 1.1 and Lemma 3 from [EGP], which is a substitute for Jensen’s
inequality in the Lorentz spaces. O

Remark 1.3. (a) The case k(x,y) = 1 of Theorem 1.2 has recently been
proved in [EGP], Theorem 3.

(b) The results on the measure of non-compactness, analogous to those
mentioned in Remark 1.2, are valid for Lorentz spaces. Moreover, using the
“restricted” version of Theorem 1.2 and schemes from [EEH] and [ES;] it is
possible to obtain upper and lower bounds of the approximation numbers
of K (see [LS] for details).

(c) In Section 2.1 below a criterion is given for the boundedness of the
Hardy operator in Lorentz spaces in the case when (13) is not satisfied.
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1.3. Orlicz spaces. Let ®: Rt — RT be a nonnegative, convex function

such that o o

lim _(x) =0, lim _(x) =

r—0 €T T—00 T
Following [KR] we call ® an N-function. Several authors ([BK:], [HM], [L])
have recently established criteria for the validity of the inequality

[e]

(15) 2, ( / @, (|1 f(2)) () d)

o0

o' ([ au(clf@Dlp) dr).

0

where w(z) and p(z) are locally integrable, ®;, ®5 are two N-functions
satisfying appropriate conditions, and K is an integral operator of type (1)
with a kernel monotone with respect to x and y. Using the arguments from
[BK>], [L] and Lemma 1.1 we obtain the following

Theorem 1.3. Let K be the integral operator (1) with a kernel k(z,y) > 0
satistying (2), let ®;, ®; be two N-functions with complementary
N-functions W, Wy, respectively, and such that ®; o ®;* is convex. Then
(15) holds if, and only if, A < oo, where A = Ay + Ay and

Ay = inf{T >0: sup sup/t‘Ifl(a()\ t)k(t,x)|| u@ )|) |p(x)t| dx

t>0 >\>00 7'/\|P(5U (A1)

A; = inf {T > 0: sup sup/‘I’l (ﬂ()\,t)|u(x)|)[|3p(f\x7)t|) dz < 1}

t>0 A>0 / T)\|P(5U)|

IN

1},

with

a(r1) = 10 25" ([ B2 (Au(@))) o) dz),

and
o0

B 1) = B o @;1(/<1>2(Ak(x,t)|u(x))|w(x)| dx).

Moreover, the best possible constant from (15) satisfies C' =~ A.

Remark 1.4. The statement of Theorem 1.3 is essentially taken from [BKs],
Theorem 1.7. An alternative version is given in [L], Theorem 1, which
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also has an extension for the kernels satisfying (2) without monotonicity
conditions (we omit the details). Both papers as well as [O2] and the present
one make use of the Martin—-Reyes and Sawyer method ([MS]), which is
applicable to the non-monotone kernels in view of the technical Lemma 1.1,
which, in particular, allows to resist the temptation to reduce the problem
to a continuous kernel.

1.4 Schatten-von Neumann ideal norms. Let H be a separable Hilbert
space. Then the set of all linear bounded operators T: H — H forms the
normed algebra B, where o, is the ideal of all compact operators. The
theory of symmetrically normed (s.n.) ideals 0¢ C o.was developed by
using the s.n. functions ® defined on the space of sequences with a finite
number of non-zero terms ([GK], Chapter 3). If T € 0, then T* € 04
and (T*T)'/? € 0. To construct o, the sequences of singular numbers
5;(T) = \;[(T*T)"/?] were used with eigenvalues \; > 0 taken with respect
to their multiplicity and in a decreasing ordering. The formula |T||,, =
®(s;(T)) defines the norm (quasinorm) in the s.n. ideal 6. The most well-
known s.n. ideals are those, related to the space of sequences [,,, 0 < p < o0,

and called 0,. The norm (quasinorm) ||T]| = (E] 5§(T))1/p is usually
called the Schatten-von Neumann norm (quasinorm). Thus, ||T|,.. = |||
and ||T|,, is the Hilbert-Schmidt norm defined for an integral operator
Tf(x) = [ T(x,y)f(y)dy by the formula |T|l,, = ([[|T(z,y)2dxdy)"".
It is known [BS], that in general the norm [|T||,, of an integral operator
essentially depends on the smoothness of its kernel when p < 2. The aim of
this section is to present a brief account of some results from [ES2] about
the Schatten-von Neumann ideal norms for the integral operator (1) under

the condition (2) for its kernel.

Let H = L%(0,00) and

t>0

[e'e) t
42 = sup / K2 (2, o) Pde / fu(y)Pdy,
t 0

t

A2 = sup / lo(z)?da / K () |u(y) dy.

t>0
0
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Theorem 1.1 and the Hilbert-Schmidt formula yield

“Kr |Uoo ~ A() + Al,
- ! 2 f 2 2 1/2
1Kl = ([ o@Pds [ K pluwPay)
0 0

= (/|u(y)|2dy/kQ(x,y)|v(x)|2dx)l/2.
0 Yy

Using these formulas and applying the real interpolation method we obtain
the following

Theorem 1.4. Let K be an operator of the form (1) with a kernel satisfying
(2) and K € 0. Then

(16)

T

150, =( [ [( [ latra)™( [lowra)™ e
0 0 T

([ ReanwPa)”( [lwPa)” wwr] )"

0

2<p<oo.

Remark 1.5. In the case k(z,y) = 1 the formula (16) can be simplified as
follows. If N
Hf(x) = vlz) [ fu)u(w)do.
0
then
(17)

S, < ([ ([latray)™ ( [lowra)* wwra)”
0 0 T

< Hll,, 2<p<oc

For the values 1 < p < 2 we obtain the following necessary conditions,
using the approach of the recent paper by K. Nowak [Now].
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Theorem 1.5. Let 1 < p < oo and let the integral operator K € o, be
given by (1) with a kernel k(z,y) > 0 satisfying (2). Then

|| K

[0 2%%% Q41
<) s (S [( [ BlamentuPa)” ([ wpa)”
{ELm m QA —1 Ay,
i 5, 2941
([ wra) ([ weani@ra) "}
Q1 .
where the supremum is taken over all sequences 0 < -+ < Gp_1 < Ay <

A1 < ovn

Corollary 1.1. In addition to (17) we have

o 22 / ( / ) ( [lowlas)* wpac)”,

1<p<2.

1H]

Now we restrict our consideration to the convolution operators with poly-
nomial kernels of the form

/P z —y)u(y)f(y) dy,

where

P, () =anz™+ - -+ a1z + ag,a, #0
is a polynomial with real coefficients. Using the scheme developed in [ES;],
we get an upper bound for ||T'[|s,. Denote |P,|(z) = |an|z"™ +-- -+ |ai|z +
|aol-

Theorem 1.6. Let 0 < p < 0co. Then

I,
am, Q41
< s (T / 1P o = luto)Par)" ([ otwtar)”

A A 41

# ([ wwran) ([ e - anwra) T

Am—1 Am
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When a,, =1, a,,_1 =0, ..., ag = 0, so that
T, f(z) = o(x) / (x — ) u() fy) dy, n >0,
0]

we obtain the following supplement to the results of Theorems 1.4 and 1.5.

Corollary 1.2. Let 1 < p < oo and let n > 0 be an integer. Then

ITalle, ~ w0 { S [(f (o =wrtutban)” ([ o)™
o [ rran)™( /( —am)utoar) |}

Remark 1.6. An alternative method to obtain the estimates of the Schatten-
von Neumann norms for T,,, n > %, in the case when u(y) = 1, is given in
[NS].

2. WEIGHTED INEQUALITIES ON THE CONES OF MONOTONE FUNCTIONS
2.1. Let 0 < p, ¢ < o0, and let v(z) > 0 and u(z) > 0 be locally inte-
grable weight functions on R*, let f | denote a non-negative non-increasing

function on R*, and let the similar notation f | stand for a non-decreasing
function. Put

Our first result is the following

Theorem 2.1. (a) Let 0 < p < ¢ < 0. Then

-0 7 o 1/q 1/p() =

~sup WHHVP(t) = A.
oo 1/

fl (ffpv) Tooo
0
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(b) Let 0 < g < p< o0, 1/r =1/q —1/p. Then

o 1/q
() W (50)

(19) SUp — ~BrxB+ ——7—,
T s
0
where
7 1/r 7 1/r
B = (/WT/PV*’“/Pw) , B= (/WT/QV*T/%) .
0 0

(¢) The same results hold for non-decreasing functions.

Of special interest is the particular case ¢ = 1, which provides the prin-
ciple of duality, that is, reverse Holder inequality for monotone functions.

Corollary 2.1. (a) Let 1 <p < oo, 1/p+1/p’ =1, and let g(x) > 0 be
locally integrable. Then

(b) If0 < p <1, then

[ fg ¢
(21) supoooi A sup Vﬁl/p(t)/g.
7l (ffpv)l/p >0 J
0

Remark 2.1. The original proof of (20) is due to E. Sawyer ([Saws], Theorem
1), as well as Theorem 2.1 for the range 1 < p, ¢ < 0o, which was established
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in [Saws] in terms of embeddings of classical Lorentz spaces. In full scope
one can find the proof of Theorem 2.1 in [Stg], Proposition 1. Also, (21)
was independently proved in [CS4].

Corollary 2.1 is useful in many ways. In particular, it allows to reduce
the weighted inequalities for monotone functions to those for arbitrary func-
tions. Another, rather curious application is that, conversely, ordinary in-
equalities can be proved by using (20), too. The following theorem demon-
strates this fact. Recall that the Lorentz space Lj* = L7°(R™) (see Section
1.2) is equipped with an equivalent quasinorm [SW]

, Ji yedty -
e = ([ @) )" 0<rs<on
0

Theorem 2.2. Let0<q<r<oo,1“>1 0<p<oo 1/vy=1/q—1/r,

and let the operator H be given by H f(x ff y) dy. Then
(2T 7’ o

T e, . Xt,o0 X ) u ¢ r"'r" = Bp.

T, L e ) o (@/6)0) ) =B

Proof. We begin with the sufficiency part. Suppose that f(z) > 0 is a
function with a compact support and such that 0 < || f][;, , < co. We have

N 1 7T q/p 1/q
e = / ) agrm)?) "

t

Applying (20) in the form

[es] [es] [es] t t
1/5 s'—1 1—s' 1/5’
/Gdu<< /Gsdv / /du) (/dv) d,u(t)) .G,
0 0 0 0
where
7 _ q/p _ v

t

dv(t) = d([[xj0 (/) i)
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and using Muckenhoupt’s criterion [M], we get

T /v
12200 < [ Ovocil) a0 0/ D))
0
<
:BO(

<8y [170)" =Bl
0

]

« 1—s' s 1/‘15,
(o (/) 0e,0) " dlE)™)

_r 1/7‘
(H ) d(Ixp0,0(/ D 6) )

g O3y O —

Let r > 1 and |Hf;, ., < Clfll;.4 be held for all f € Ly". Suppose
By < oo and let fy be defined by the formula

Folt) = (ooglzo) " (o W/ )47 (u(t) o))"

then || follrr,e = Bg/r < 00. We may and shall assume for the time being
without changing the constant C' that suppv¥ C R*t. Integrating by parts
we find

Clifollire = CBY™ > [ Hfollby

= ([ oy ( o) nomoa)™

Employing
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we continue

CB’Y/T

00 t

WW N2 T \alp\1/4
>(q7+qr é / 7 /ur¢1—r)7 d[_(/w) Dl

t t

[
o EJ (e =[]
e

o0

/ vﬁ j’wlrwam

t 0

( 1
’y+q1‘ !

= (7 = 5By,

q(y+q'r
and C > (ﬁ) (r')~1/4By follows.

The limiting case r = 1 is proved in [SS]. O
Remark 1.7. (i) Theorem 2.2 has been proved in a different form in [Saw],

Theorem 3 and an alternative proof of it in the case 0 < ¢ < r < 00, r > 1,
p = ¢, was given in [S;].

(ii) The same theorem for the dual operator follows from the inequalities
for nondecreasing functions.

2.2. If p > 0 and v(t) > 0 is a locally integrable function on RT and
the nonincreasing rearrangement on RT of a measurable function f(z) is
defined by

f5(t) =inf {s: meas (z € R™;|f(z)| >s) <t}, t>0,

then the classical Lorentz spaces A,(v) and I',(v) are defined by

, 7 1/p
I = ([ (@) v de) " < .
0

and

17l = ]O / ) vwar)” <.
0
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respectively. These spaces were introduced by G. G. Lorentz [L1], [Lo].
E. Sawyer [Saws] found that (20) gives a powerful tool for the study of a
number of problems in A,(v)-spaces. In particular, it follows from (20) and
(21) that A,(v) has the dual space of the form

N (v) =Ty ((silV(s)) prl/(s)), 1<p<oo,

P

provided V(oco) = oo [Saws], and
A5() =To ((s 7V(s))"), 0<p<1.

P

The same and some other problems for I',(v)-spaces were recently solved in
[GHS] by using suitable criteria like (20), (21) for the functions representable
as f(z) = % fox g, 0 < g |. To this end the discretization method from [G4],
Go], [G3] was used for the class of functions Qg; of the form

21 = {£2) > 0,7@) 1,2 7(@) 1 },

and a Borel measure d3 on Rt with the following nondegeneracy properties

22) O/(Sj_l) 4B(z) <
(23) / 4B(s) = /oospdﬂ@) = 00

Under these conditions the fundamental function of the measure df of the
form

oo

ot = ([ () as) "

0

for any fixed number a > 1 has a discretising sequence {ux} such that

po =1,

Pep(br)  topp(t)
Pp.p(t )’ 1P, p (k)
Pe.p(t)  Hipsp(tik)

pap(tr)’ tpsp(t)

Such a sequence was first used by K. I. Oskolkov and then by a number of
authors (see [Gz] and the references given there).

Ler1 =t min{ }:a,kZO,

Me_1 =t: min{ }:a,kSO.

Applying the methods developed in [G1], [Gs], [G3], we obtain the fol-
lowing
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Theorem 2.3. Let df and dvy be Borel measures such that for df the
nondegeneracy conditions (22) and (23) are valid. Then for any p > 0 there
exists a > 1 and a discretizing sequence {p,} of the fundamental function
pp,p such that for 0 < ¢ < p < oo the following formula is satisfied

B - Py, () 17\ T
o0 e e (T

where 1/r =1/q—1/p. If 0 < p < q < 00, then J = sup py,4(t)/ps,p(t).
>0

Now, to obtain analogues of (20) and (21) for functions represented by
flx)= % foz g, 0 < g | we consider the particular case of Theorem 2.3, when

g=1<p<oo,dB(s) =sPv(s)ds, and {v} is the discretizing sequence
of the function

(25) pantt) = ([ 2212)" = i,
0

Theorem 2.4. (a) Let 1 < p < 00, 0 < g(z) |, and let the nondegeneracy
conditions (23) and (24) be valid for the measure df3(s) = s Pv(s) ds, where
v(s) > 0 is a locally integrable function on R*. Then

where
(26) V()= 6, @)V 7+ (2)

and 6, (x) is the Dirac é-function at the point vy,.
(b) Let 0 < p <1, g(x) > 0. Then

g) VP (.

=)
N
=
—
o3
—
8=
O%—4y
e
S
=
o
=
~——
—
~
=
Q
~ N
=
o
—
o .
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2.3. This section is devoted to some applications of Theorem 2.4 to the
theory of operators in the I',(v)-Lorentz spaces and, in particular, we obtain
analogs of some results from [Saws| proven for A,(v)-spaces. Throughout
this section we assume that the nondegeneracy conditions for a weight func-
tion v(s) > 0 of the form

1

(27) /Oo(z(i) f)sp < 00; /s*pl/(s) ds = /Ool/(s) ds = o0
0 1

0

are satisfied and the measure dV(x) is given by (26).

Theorem 2.5. Let the nondegeneracy conditions (27) be valid for a locally
integrable function v(s) > 0. Then

)

P

)

P

=T, (" V(t)), 1<p< oo,
=D (tVY/P(t)), 0<p<1.

Now we consider the problem of the boundedness of the Hardy-Little-
wood maximal operator

1 Yo
Mf@) = sup o ! FW)ldy, @€ R,

where the supremum is taken over all the cubes Q@ C R"™, containing the
point x and having sides parallel to the coordinate axes. Using the results
from [Stg], [St10], we obtain the following

Theorem 2.6. Let 1 < p, ¢ < oo and let v(x) > 0, w(xz) > 0 be locally in-
tegrable functions such that the nondegeneracy conditions (27) are satisfied
for v(x).

(a) If 1 < p > q < o0, then the inequality

(28) 1M fllgw < Cllfllpo,  fETpy

is valid if, and only if, M = max(Ao, A1, By, B1) < 0o. Moreover, C =~ M,
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where

t t
Bo = i‘iﬁ’ (t]osqlogq (f)w(S) ds)1 (t/oospIV(s) ds)l/p,7
Bi=su (]O T ds)l/q(j g ()vioyas) "

(b) Ifl<g<p<oo,1/r=1/q—1/p, then the inequality (28) is true
if, and only if, £ = max(Ag, Ay, By, B1) < co. Moreover, C' = L, where

[

A= ([ (orwon) ([ verm) enna)”
/
[

Bo = ( (/S_qw(s) ds)r/p(/gp' log” (E)V(s) ds)r/plt—qw(t) dt)l/r,

0

0

(¢) If 0 < p <1< q < o0, then the inequality (28) is valid if, and only
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if, N' = max(Gy,G1.G2) < oo. Moreover, C' =~ N, where

t
1/

sup (/w) qV_l/”(t),

>0

Go =
0
G, :sup( s qw(s)ds) tV—HP(,
>0
Gy = sup (7sqlogq (f)w(s) ds)l/thfl/p(t).
t>0 1) t
An analogous assertion holds for the Hilbert transform
[ f)d
Hfx) = pov fy) dy
T -y

Theorem 2.7. Let the hypotheses and the notation of Theorem 2.6 be
preserved.

(a) If 1 < p < q < o0, then the inequality
(29) IHfllgyw < Cllfllpws  fETHL
is valid if, and only if,
M'}—[ = 1’[13;)((1407 A17 BO7 Bl7 1)07 Dl) < 0.
Moreover, C' ~ M4y, where

Do =y (0/ o) (Joet (i),

t
t

t Ve, T \1/P
_ q(Z
D, —ilil(:))(/log (S)w(s)ds) (/V) .
0 t
(b) Ifl<g<p<oo,1/r=1/q—1/p, then (29) is true if, and only if,
Ly = max(Ag, A1, By, B1,Dy,D1) < 00. Moreover, C = Ly, where
oo t 00

= ([ (o) (o) oy

t

o0

7 'r'/q 1/r
Dy = / /logq /V ) .
0
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() If0 < p <1< q < oo, then (29) is fulfilled if, and only if, N3 =
max(Go, G1,G3,G4) < 0o. Moreover, C' ~ Ny, where

[A]

[AM]

[B]

[Br]

[BrS]

[CS4]

[CS2]

t

G3 = sup (/logq (;)w(s) ds)l/qV_l/”(t).

t>0
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