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HARMONIC AND ENERGY-MINIMAL

HOMEOMORPHISMS

Jani Onninen

Abstract. These notes were prepared for International School on Nonlin-
ear Analysis, Function Spaces and Applications 9 in Třešt’ (Czech Republic),
September 11–17, 2010. They give an account of some recent developments in
which quasiconformal theory and nonlinear elasticity share common problems
of compelling mathematical interest. As this interplay developed homeomor-
phisms with smallest conformal energy became valid and well acknowledged
as generalization of conformal mappings in Rn. The main interest lies on two
type of mapping problems: i) the existence of homeomorphisms that mini-
mizes the conformal energy; ii) the existence of harmonic homeomorphisms.
Here no boundary conditions are imposed. In presenting these topics I will
rely on a few recent joint articles with Tadeusz Iwaniec and Leonid V. Ko-
valev as well as with Kari Astala, Ngin-Tee Koh and Gaven Martin.

1. Setting the stage

Throughout these notes X and Y will be nonempty bounded domains in Rn,
n ≥ 2. We will be considering mappings h : X→ Y in various Sobolev spaces
W1,p(X,Y). The basic concepts are:

1) The differential matrix, also referred to as deformation gradient,

Dh(x) =

[
∂hi

∂xj

]
∈ Rn×n, h = (h1, . . . , hn), (1.1)

where Rn×n is the space of n× n-matrices. We reserve the notation
Rn×n

+ for the space of matrices with positive determinant.
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146 JANI ONNINEN

2) The Jacobian determinant

J(x, h) = detDh, J(x, h) dx = dh1 ∧ · · · ∧ dhn. (1.2)

More generally, to all pairs of ordered �-tuples I = (i1, . . . , i�) and J =
(j1, . . . , j�), where 1 ≤ i1 < · · · < i� ≤ n and 1 ≤ j1 < · · · < j� ≤ n, there
correspond

3) the (�× �)-subdeterminants and their matrices

∂hI

∂xJ
=

∂
(
hi1 , . . . , hi	

)

∂ (xj1 , . . . , xj	)
, D�×�h =

[
∂hI

∂xJ

]
∈ R(

n
	)×(

n
	). (1.3)

For � = n− 1, we obtain

4) Cramer’s cofactor matrix

D�h =

[
(−1)i+j ∂

(
h1, . . . , hi−1, hi+1, . . . , hn

)

∂ (x1, . . . , xj−1, xj+1, . . . , xn)

]
∈ Rn×n. (1.4)

By convention, ∂hI

∂xJ
= 1 if � = 0. In this way the total number of all sub-

determinants is
n∑

�=0

(
n

�

)2

=

(
2n

n

)
. (1.5)

The �× �-minors govern the infinitesimal deformations of �-dimensional ob-
jects.

When n = 2, we write h = u+iv : X→ Y, where X,Y ⊂ C = {z = x+iy :
x, y ∈ R}. The complex derivatives of h take the form

hz =
∂h

∂z
=

1

2

(
∂h

∂x
− i

∂h

∂y

)
and hz̄ =

∂h

∂z
=

1

2

(
∂h

∂x
+ i

∂h

∂y

)
. (1.6)

1.1. n-harmonic hyperelasticity. The general law of hyperelasticity tells
us that there exists an energy integral

E [h] =
∫

X
E(x, h,Dh) dx, (1.7)

where E : X×Y×Rn×n → R is a given stored-energy function characterizing
mechanical properties of the material. The mathematical models of nonlin-
ear elasticity have been pioneered by Antman [2], Ball [7] and Ciarlet
[12]. In these lectures we are mainly interested in the n-harmonic energy,

E [h] =
∫

X
|Dh(x)|n dx. (1.8)
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HARMONIC AND ENERGY-MINIMAL HOMEOMORPHISMS 147

Here and in what follows we conveniently work with the Hilbert-Schmidt
norm of a linear map A, defined by the rule |A|2 = Tr(AtA). The primary
question is the existence of homeomorhisms that minimizes the n-harmonic
energy integral. We impose no boundary conditions on homeomorphisms

h : X onto−→ Y. Such a homeomorphism, if exists, is called energy-minimal
homeomorphism. The existence of globally invertible energy-minimal map-
ping is one of the primary pursuits in the mathematical models of nonlinear
elasticity [8], [52].

In another direction, we recall Geometric Function Theory in Rn and its

governing variational integrals. A mapping h : X onto−→ Y is conformal at x ∈ X
if |Dh(x)|n = nn/2J(x, h). This can be expressed in the form of a nonlinear
Cauchy-Riemann system of PDEs:

D∗h(x) ◦Dh(x) = J(x, h)
2
n I. (1.9)

It is evident that the n-harmonic energy of all conformal deformations

h : X onto−→ Y is the same. Indeed, we have

E [h] =
∫

X
|Dh(x)|n dx = n

n
2

∫

X
J(x, h) dx = n

n
2 |Y|. (1.10)

For other homeomorphisms g : X onto−→ Y in the Sobolev spaceW1,n(X,Y), we
have only the lower bound due to Hadamard’s inequality:

E[g] ≥
∫

X
|Dg|n ≥ n

n
2

∫

X
J(x, g) dx = n

n
2 |Y|.

Thus, conformal mappings h : X onto−→ Y would be an obvious choice for the
minimizer of (1.8). Even in the plane, multiply connected domains are of
various conformal type. The existence of an energy-minimal homeomor-

phism h : X onto−→ Y of Dirichlet energy may be interpreted as saying that the
Cauchy-Riemann equation ∂̄h = 0 admits a diffeomorphic solution in the
least squares sense, meaning that ‖∂̄h‖L2 assumes its minimum. For this
reason, energy-minimal homeomorphisms are known under the name least
squares conformal mappings in the computer graphics literature [40], [47].

It is rare in higher dimensions that two topologically equivalent domains
are conformally equivalent, because of Liouville’s rigidity theorem. From
this point of view quasiconformal theory [4], [21], [26], [33] offers significantly
larger class of mappings. The most general class of mappings for which we
are hoping to build the theory is the following.
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148 JANI ONNINEN

Definition 1.1. A weakly differentiable mapping f : Y → X has finite dis-
tortion if

• The Jacobian determinant of f is locally integrable.

• There is a measurable function KO(y) ≥ 1, finite a.e. such that

|Df(y)|n ≤ KO(y)J(y, f) a.e. (1.11)

The distortion inequality (1.11) merely asks that the differential Df(y)
vanishes at those points y where the Jacobian detDf(y) = J(y, f) = 0. This
seems to be a minimal requirement for a mapping to carry any geometric
information. The smallest function KO(y) = KO(y, f) ≥ 1 for which the
distortion inequality (1.11) holds is called the outer distortion of f ,

KO(x, f) =

{ |Df(x)|n
nn/2 J(x,f)

if J(x, f) ∈ Rn×n
+ ,

1 if J(x, f) = 0.
(1.12)

Suppose f has finite distortion. Then the inner distortion of f is defined by
the rule

KI(x, f) =

{ |D�f(x)|n
nn/2J(x,f)n−1 if J(x, f) ∈ Rn×n

+ ,

1 if J(x, f) = 0.
(1.13)

These two distortions are borderline cases of

K�(x, f) =

⎧
⎨
⎩

|D	×	f(x)|n

(n	)
n/2

J(x,f)	
if J(x, f) ∈ Rn×n

+ ,

1 if J(x, f) = 0.
(1.14)

We obtain mappings of bounded distortion, also called quasiregular map-
pings or quasiconformal mappings if f is a homeomorphism, when KO ∈
L∞(Y). The theory of mappings of bounded distortion is by now well un-
derstood, see the monographs [48] by Reshetnyak, [49] by Rickman, [33]
by Iwaniec and Martin, and [4] by Astala, Iwaniec and Martin. Re-
cently, systematic studies of mappings of finite distortion have emerged in
Geometric Function Theory (GFT) [33].

One of the most appealing recent discoveries in the GFT is a connection

between the conformal energy of a homeomorphism h : X onto−→ Y and the

inner distortion function of the inverse mapping f : Y onto−→ X ([13], [23], [24]).
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HARMONIC AND ENERGY-MINIMAL HOMEOMORPHISMS 149

Theorem 1.2. Let f : Y onto−→ X be a homeomorphism of the Sobolev class
W1,n−1

loc (Y,X). Assume that KI ∈ L1(Y). Then the inverse map h(x) =
f−1(x) belongs to the Sobolev class W1,n(X,Y) and we have

n
n
2

∫

Y
KI(y, f) dy =

∫

X
|Dh(x)|n dx. (1.15)

One should note that in this transition the polyconvex variational integral
on the left-hand side becomes convex on the right-hand side, a rarity that we
shall enjoy when studying extremal quasiconformal mappings. The classical
Teichmüller theory is concerned, broadly speaking, with extremal mappings
between Riemann surfaces. The extremal Teichmüller mapping is exactly the
one whose distortion function has the smallest possible supremum norm. The
existence and uniqueness of such an extremal quasiconformal map within
a given homotopy class is the heart of Teichmüller’s theory. Now, in view of
the identity (1.15), minimizing the L1-norm of the inner distortion amounts
to the study of n-harmonic energy of the inverse mapping h = f−1 : X→ Y,

E [h] =
∫

X
|Dh(x)|n dx. (1.16)

2. Energy-minimal homeomorphisms:
existence and nonexistence

Annuli are where one first observes nontrivial conformal invariants.

2.1. Annuli and n-harmonics ([3], [37]). Consider mappings h : A→ A∗
between concentric spherical rings in Rn, also called annuli.

A = A(r,R) = {x ∈ Rn : r < |x| < R}, 0 ≤ r < R <∞,

A∗ = A(r∗, R∗) = {y ∈ Rn : r∗ < |y| < R∗}, 0 ≤ r∗ < R∗ <∞.

These domains are of different conformal type unless the ratio of the two
radii is the same for both annuli.

Theorem 2.1 ([50]). Let A and A∗ be two planar annuli. There exists a

conformal homeomorphism h : A onto−→ A∗ if and only if the annuli have the
same modulus; that is,

ModA := log
R

r
= log

R∗
r∗

=: ModA∗.
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150 JANI ONNINEN

Moreover, up to the rotation of the annuli, every such map takes the form

h(z) =

⎧
⎪⎨
⎪⎩

r∗z
r

, if preserving the order of boundary components,

rR∗
z

, if reversing the order of boundary components.

Concerning the domains of higher connectivity in dimension n = 2, the
conformal type of a domain of connectivity � > 2 is determined by 3� − 6
parameters, called Riemann moduli of the domain.1 For our purposes we
may as well restrict our attention to the sense-preserving homeomorphisms
that also preserve the order of boundary components (inner and outer).

Now suppose that the domain annulus is substantially thicker than A∗ ⊂
Rn. Our computation reveals, despite physical intuition, that in order to

minimize the energy (1.8) of a map h : A onto−→ A∗ we must “hammer” a part
of A = A(r,R) into a circle. An effect of this hammering procedure is that
the minimizer will no longer satisfy the n-harmonic equation

div
(
|Dh|n−2Dh

)
= 0, h ∈ W1,n

loc (X,R
n). (2.1)

For simplicity, we will demonstrate this situation only in the planar case,
and refer to [37] for the complete picture of the similar phenomena in all di-
mensions. In dimension n = 2 the minimizer is a harmonic homeomorphism
(no hammering) if and only if the Nitsche bound

R∗
r∗
≥ 1

2

(
R

r
+

r

R

)
i.e. ModA∗ ≥ log coshModA (2.2)

holds. If this condition fails we then have a sub-annulus A(ρ,R) ⊂ A(r,R) =
A which together with A∗ forms a critical Nitsche configuration. Precisely,

this sub-annulus is determined by the condition R∗
r∗

= 1
2

(
R
ρ + ρ

R

)
. By way

of illustration, the extremal map we are referring to takes the form

h(z) =

{
z
|z|r∗ r < |z| ≤ ρ, hammering part,

1
2

(
z
ρ + ρ

z )r∗ ρ ≤ |z| ≤ R, Nitsche map.
(2.3)

It is true though somewhat less obvious, that this mapping h is aW1,2-limit
of homemorphisms from A onto A∗ and its energy is smaller than that of

1In this context the mappings are orientation preserving.
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HARMONIC AND ENERGY-MINIMAL HOMEOMORPHISMS 151

any homeomorphism from A onto A∗ ([3], [37]). Actually, we proved that
there is the similar phenomena in all dimensions. In [37] we found precise
condition of the form

ModA∗ < Φ(ModA), where as always ModA = log
R

r
, (2.4)

under which the hammering of the thick annulus A is necessary in order to
minimize the conformal energy (1.8).

Of course, studying the extremal deformations between circular annuli
it is natural to look for the radially symmetric solutions of the n-harmonic
equation (2.1), where h(x) = H(|x|) x

|x| . However, the answer to the question

of whether these maps minimize the n-harmonic energy (1.8) is not obvious.
When n = 2 or n = 3, the answer is “yes”, [37].

Surprisingly, for n≥4, the answer depends on the conformal width of A∗.

Theorem 2.2 ([37]). For each n ≥ 4, there are annuli A,A∗ ⊂ Rn such that
the n-harmonic energy does not assume its minimum value on any radial
mapping.

2.2. Dirichlet energy ([28]). Here we establish the existence of homeo-
morphisms between two bounded planar domains X and Y that minimize
the Dirichlet energy,

E [f ] =
∫

X
|Dh|2 = 2

∫

X
(|hz|2 + |hz̄|2) (2.5)

among all W1,2-homeomorphisms h : X onto−→ Y. As we noticed in §2.1, such
an energy-minimal homeomorphism may fail to exist when a minimizing
sequence collapses, at least partially, onto the boundary of Y.

In general, minimizing the energy among homeomorphisms need not lead
to the Laplace equation, see e.g. (2.3). Harmonicity is lost exactly at the
branch points. Outside the branch set the extremal mappings are indeed
harmonic. This latter fact follows from Radó-Kneser-Choquet Theorem
[16, p. 29] which allows us to apply the Poisson modification (and thus
decrease the energy of a non-harmonic mapping) without losing injectivity.
However, the existence of a harmonic homeomorphism does not imply the
existence of an energy-minimal one.

As we have already pointed out, energy-minimal homeomorphisms for
simply connected domains are obtained from the Riemann mapping theorem.
The doubly connected case, being next in the order of complexity, is the
subject of our next result.
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152 JANI ONNINEN

Theorem 2.3 ([28]). Suppose that X and Y are bounded doubly connected
domains in C such that ModX ≤ ModY. Then there exists an energy-

minimal homeomorphism h : X onto−→ Y, which is unique up to a conformal
change of variables in X.

Hereafter ModX stands for the conformal modulus of X. Any bounded
doubly connected domain X ⊂ C is conformally equivalent to some circular
annulus {z : r < |z| < R} with 0 ≤ r < R < ∞. The ratio R/r, being
independent of the choice of conformal equivalence (Theorem 2.1), defines
ModX := logR/r. It is rather surprising that the existence result for energy-
minimal homeomorphisms relies only on the conformal modulus of the target.
Indeed, the energy minimization problem is invariant only with respect to
a conformal change of variable in the domain, not in the target.

In the converse direction we showed that there exists no energy-minimal
diffeomorphism when ModY ≤ Φ(ModX). Here Φ: (0,∞)→ (0,∞) is a cer-
tain function asymptotically equal to the identity at infinity, lim

t→∞
Φ(t)/t = 1.

It is in this asymptotic sense that Theorem 2.3 is sharp. Precisely, we proved
the following nonexistence results.

Theorem 2.4. ([28]). There is a nondecreasing function Υ: (0,∞)→ (0, 1)
such that lim

τ→∞
Υ(τ) = 1 and the following holds. Whenever two bounded

doubly connected domains X and Y in C admit an energy-minimal homeo-

morphism h : X onto−→ Y, we have

ModY ≥ (ModX) ·Υ(ModX). (2.6)

Specifically, one can take

Υ(τ) = exp

(
−π2

2τ

)
· Λ

(
coth

π2

2τ

)
,

where Λ(t) =
log t− log(1 + log t)

2 + log t
, t ≥ 1.

(2.7)

We conjecture that (2.6) can be specified as in the circular annuli case (2.2).

Conjecture 2.5 ([28]). If two bounded doubly connected domains X and Y
in C admit an energy-minimal homeomorphism h : X onto−→ Y, then

ModY ≥ log coshModX.

Moreover, if both sides are finite and equal, then Y is a circular annulus.
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HARMONIC AND ENERGY-MINIMAL HOMEOMORPHISMS 153

The crucial idea of the proof of Theorem 2.3 was to consider a one-
parameter family of variational problems in which X changes continuously
while Y remains fixed. We established strict monotonicity of the minimal
energy as a function of the conformal modulus of X. We denote the set of all

sense-preserving W1,2-homeomorphisms h : X onto−→ Y by H1,2(X,Y). When
H1,2(X,Y) is nonempty, we define

EH(X,Y) = inf{E [h] : h ∈ H1,2(X,Y)}. (2.8)

By virtue of the density of diffeomorphisms in H1,2(X,Y), see §4.2, the min-
imization of energy among sense-preserving diffeomorphisms leads to the
same value EH(X,Y). Let us emphasize that bounded subsets of H1,2(X,Y)
are lacking compactness, due to the loss of injectivity in passing to a limit
of homeomorphisms. That is why we introduced the class of so-called defor-
mations. Precisely:

Definition 2.6. A mapping h : X→ Y is called a deformation if

• h ∈ W1,2(X,Y);
• the Jacobian Jh := detDh is nonnegative a.e. in X;
•
∫
X Jh ≤ |Y|;

• there exist sense-preserving homeomorphisms hj : X
onto−→ Y such that

(a) hj → h uniformly on compact subsets of X and

(b) dist(hj , ∂Y)→ dist(h, ∂Y) uniformly on X.
The set of deformations h : X→ Y is denoted by D(X,Y).
This class contains H1,2(X,Y) and is closed under weak limits in

W1,2(X,Y). Due to the weak lower semicontinuity of the Dirichlet energy,
there exists h ∈ D(X,Y), called an energy-minimal deformation, such that

E [h] = E(X,Y) := inf{E [h] : h ∈ D(X,Y)}.
Furthermore, the class of deformations is closed under compositions with
self-diffeomorphisms of X; we can perform inner variation, which yield that
the Hopf differential (§4.1) of an energy-minimal deformation is holomorphic
in X and real on its boundary. We gain additional information about the
Hopf differential from the Reich-Walczak-type inequalities which is where
the conformal moduli of X and Y enter the stage.

2.3. Total conformal energy ([34]). As we noticed in §2.1, passing to a

minimizing sequence hj : X
onto−→ Y with homeomorphisms of bounded confor-

mal energy may result in a non-injective mapping. Actually, if X has at least
two boundary components, then the only way that one can loose injectivitity
is the hammering process; that is, a minimizing sequence collapses, at least
partially, onto the boundary of Y. Precisely, we have the following result.
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154 JANI ONNINEN

Theorem 2.7 ([35]). Let X,Y ⊂ Rn be bounded domains of the same topo-
logical type having k boundary components, k = 2, 3, . . . . Suppose there is a

sequence of homeomorphisms hj : X
onto−→ Y converging weakly in W1,n(X,Y)

to h. Then h is continuous and differentiable almost everywhere, Y ⊂ h(X) ⊂
Y. It has a right inverse f : Y→ X of bounded variation; that is,

h ◦ f = id: Y→ Y.

Next, we want to study energy functionals which allow us to deform the
body back, again with finite energy. In view of examples of the extremal
harmonic mappings for the Dirichlet energy (the Nitsche map) it becomes
clear that we must ensure finite conformal energy not only for the mapping in
question but also for its inverse. Our model example, from which other con-
formally coercive functionals are derived, is the average of two n-harmonic
integrals:

E = E [h, f ] = α

n
n
2 |Y|

∫

X
|Dh(x)|n dx+

β

n
n
2 |X|

∫

Y
|Df(y)|n dy, (2.9)

where α, β > 0, α + β = 1 and h : X onto−→ Y is an orientation preserving

homeomorphism (perchance in a given homotopy class) and f : Y onto−→ X
stands for its inverse. With the aid of the identity (1.15) we are reduced to
a variational integral for h alone,

E [h] =
∫

X

[
a|Dh(x)|n + bKI(x, h)

]
dx, where a, b > 0.

The key is that this integral is well defined and polyconvex in a class of
non-injective mappings of integrable distortion. The direct method of the
calculus of variations comes in handy for establishing the existence of min-
imizers. However, it is not clear why a minimizer should be an injective
map of X onto Y. We always assume that X and Y admit at least one
homeomorphism of finite total n-harmonic energy defined by (2.10).

Theorem 2.8 ([34]). Let X and Y be domains in Rn with at least two but
finitely many boundary components. Then the total n-harmonic energy E [h]
assumes its minimum value among all homeomorphisms h : X onto−→ Y.

In view of the identity (1.15) the energy (2.9) translates into the mean
total distortion,

E = α

∫

Y
KI(y, f) dy + β

∫

X
KI(x, h) dx.

Clearly, the conformal deformations are exactly the ones having the abso-
lute minimum energy; that is, E = 1. However, it is rare in higher dimensions
that two topologically equivalent domains are conformally equivalent.
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HARMONIC AND ENERGY-MINIMAL HOMEOMORPHISMS 155

Theorem 2.9 ([34]). Among all deformations h : A onto−→ A∗ of planar annuli
the smallest mean distortion is attained on a C∞-smooth radial map. This
radial map is a unique minimizer up to conformal authomorphisms of the
annuli.

This raises a very interesting question: Are the mappings of smallest
mean distortion always C∞-smooth? As a starting point one can ask: Does
a deformation minimizes the energy E exactly when it satisfies the corre-
sponding Lagrange-Euler equation¡ Certainly, this is not the case for general
variational integrals such as the n-harmonic energy. Such a discrepancy oc-
curs exactly at the points where the minimizer fails to be injective. An
unexpected lack of symmetry speaks convincingly of the complexity of this
problem:

Theorem 2.10 ([34]). For each n ≥ 4 there are annuli A,A∗ ⊂ Rn such
that the minimum of the total n-harmonic energy is attained, but not on a
radial mapping.

Concerning the minimization problems between annuli, we introduced
and heavily relied on the concept of free Lagrangians [37]. In 1977 a novel
approach towards minimization of polyconvex energy functionals was de-
veloped and published by Ball [7]. The underlying idea was to view the
integrand as convex function of null Lagrangians. The term null Lagrangian
pertains to a nonlinear differential expression whose integral over any open
region depends only on the boundary values of the map, see [11], [17], [27].

But we are concerned with homeomorphisms h : A onto−→ A∗ which are not
prescribed on the boundary. There still exist some nonlinear differential
forms, called free Lagrangians, defined on a given homotopy class of home-
omorphisms, whose integral means remain independent of the deformation.
These are rather special null Lagrangians, see [37], [34]. In §5 we will give
an elementary proof for Schottky’s theorem employing free-Lagrangians [5].

3. Harmonic mappings, the Nitsche conjecture ([29], [30])

Harmonic mappings are only stationary solutions of the Dirichlet integral;
they do not always minimize the energy. Thus the hammering result (2.3)
does not rule out the existence of univalent harmonic mappings from A onto
A∗; known as the Nitsche conjecture (1962).

The Nitsche Conjecture ([41]). A harmonic homeomorphism h : A onto−→
A∗ exists if and only if

R∗
r∗
≥ 1

2

(
R

r
+

r

R

)
. (3.1)
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156 JANI ONNINEN

Nitsche studied the existence of doubly connected minimal surfaces
S ⊂ R3 with prescribed boundary curves [43]. Minimal surfaces in R3 are
fundamental forms in mathematics and physics [14], [15], [45]. For example,
the minimal surface joining some pairs of coaxial circles in parallel planes
has the shape of a catenoid, a configuration that is extremal for numerous
problems [7], [25], [39], [42], [43], [44], [46]. The basic result is that no such
surface exists if the curves are too far from each other relative to their di-
ameter. Nitsche considered curves lying in parallel planes. One way of
measuring farness is to look at the conformal modulus of the surface. It fol-
lows from Theorem 3.1 that a slab of one-sided catenoid has also the largest
conformal modulus among minimal graphs over a given annulus. Indeed,
a doubly connected minimal graph S ⊂ R3 = C × R induces a harmonic

homeomorphism h : A onto−→ Y, where Y ⊂ C is the doubly connected domain
over which the graph lies. Nitsche [41] discovered that the existence of a

harmonic homeomorphism h : A onto−→ Y implies an upper bound on the con-
formal modulus of S in terms of ModA. When the configuration domain
Y = A∗ = A(r∗, R∗) is a circular annulus, he conjectured that necessary and
sufficient condition for such a mapping to exist is (3.1).

Theorem 3.1 ([30]). The Nitsche conjecture holds.

It should be noted that harmonicity of a function h = h(z) is invariant
under conformal change of the z-variable. Therefore, the Nitsche bound
remains valid for harmonic homeomorphism defined on any doubly connected
domain whose conformal modulus coincides with that of A. It is therefore of
interest to look at the role of the boundary curves in the target annulus as
well. The circular shape of the outer boundary turns out to be inessential,
there remains a substitute of the Nitsche bound in terms of the integral
means over the circles Tρ = {z ∈ C : |z| = ρ}, r < ρ < R. In our generalized
form of the Nitsche bound the target is a half circular annulus; that is, a
doubly connected domainA∗ whose inner boundary is a circle Tr∗ . We do not
specify the outer boundary of A∗ as it can be arbitrary. LetH(A,A∗) denote
the class of orientation preserving harmonic homeomorphisms h : A onto−→ A∗
which take the inner boundary of A into the inner boundary of A∗.
Theorem 3.2 (Generalized Nitsche Bound [30]). For every h ∈
H(A,A∗), we have

[ ∫

Tσ

|h|2
] 1

2 ≥ 1

2

(σ
r
+

r

σ

)
r∗, r < σ < R. (3.2)

If equality occurs at some radius σ ∈ (r,R), then it holds for every σ ∈ (r,R).
In this case h takes the form h(z) = 1

2

(
z
r + r

z̄

)
r∗eiα.
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Such a more general statement not only strengthens the Nitsche Conjec-
ture but also was the key to the proof. In fact Theorem 3.2 should be viewed
as a sharp lower estimate for the growth of integral means of harmonic map-
pings under certain initial constraints. These constraints concern topological
behavior of h near the inner boundary Tr rather than its boundary values.
Now, to make (3.2) valid for such a harmonic function h : A(r,R) → C, we
only need the following three initial conditions:

(I) h : Tr → Tr∗ is a homeomorphism of winding number 1;

(II)
d

dσ

∫

Tσ

|h|2 ≥ 0, at σ = r;

(III)

∫

Tr

detDh ≥ 0.

In §5 we give a proof of Schottky’s theorem employing circular means of
|h|2 and condition (I). This proof is from [30].

A natural question arises if we consider minimal surfaces instead of mini-
mal graphs. Here one might expect the extremal surface to be a symmetric
slab of catenoid for which

R∗
r∗
≥ 1

2

(√
R

r
+

√
r

R

)
. (3.3)

We must assume that the mapping is not nullhomotopic within the punc-
tured plane C \ {0}.

Conjecture 3.3 ([30]). Let h : A(r,R)→ A(r∗, R∗) be a harmonic mapping
(not necessarily injective or surjective) with nonzero winding number; that
is, ∫

Tσ

dh

h
	= 0, for some (equivalently, for all) σ ∈ (r,R).

Then

R∗
r∗
≥ 1

2

(√
R

r
+

√
r

R

)
.

Equality occurs for the double cover Nitsche map:

h(z) =
1

2

(
z√
rR

+

√
rR

z̄

)
for r < |z| < R.
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4. Hopf differentials and diffeomorphic
approximation of Sobolev homeomorphisms

4.1. Hopf differentials ([31]). A quadratic differential on a domain X in
the complex plane C takes the form Q = F (z) dz⊗dz, where F is a complex
function on X. For a complex harmonic function h : X → C, the associated
Hopf differential

Qh = hzhz̄ dz ⊗ dz

is holomorphic, meaning that

∂

∂z̄
(hzhz̄) = 0. (4.1)

Naturally, the Sobolev space W1,2
loc (X,C) should be considered as the do-

main of definition of equation (4.1). This places hzhz̄ in L1
loc(X), so the

complex Cauchy-Riemann derivative ∂
∂z̄ applies in the sense of distribution.

By Weyl’s lemma hzhz̄ is a holomorphic function.
Every energy-minimal deformation h ∈ D(X,Y), §2.2, is stationary; that

is,
d

dt

∣∣∣∣
t=0

E [h ◦ φ−1
t ] = 0 (4.2)

for every family of diffeomorphisms φt : Ω → Ω which depend smoothly on
the parameter t ∈ R and satisfy φ0 = id.

It follows from the fundamental theorem ofRadó,Kneser andChoquet
that for mappings between domain X,Y in C any minimizer of the Dirichlet
energy is harmonic outside the branch set and therefore has holomorphic
Hopf differential. A natural question arises whether a Sobolev homeomor-
phism h ∈ W1,2

loc (X,C) with holomorphic Hopf differential is harmonic. This
question was originated in a series of papers by Eells, Lemaire and Sealey
[19], [20], [51].

Theorem 4.1 ([31]). Every homeomorphism h of Sobolev class W1,2
loc (X,C)

that satisfies equation (4.1) is harmonic.

Especially, if a Hopf differential Qh = hzhz̄ dz
2 is holomorphic for some

C1-mapping h, then h is harmonic at the points, where the Jacobian deter-
minant J(z, h) := detDh = |hz|2 − |hz̄|2 	= 0, see also [18, 10.5]. Here the
assumption that J(z, h) 	= 0 is critical, see e.g. (2.3).

The Eells-Lemaire problem under the additional assumption that h is
a quasiconformal homeomorphism was settled earlier by Hélein [22] in the
affirmative. Theorem 4.1 dispose with the quasiconformality condition and
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treat general planar W1,2-homeomorphisms. Since the inverse of such a
homeomorphism need not be in any Sobolev class, some difficulties were
expected. They were overcome with the aid of our approximation theorem
which we will present next.

4.2. Diffeomorphic approximation of Sobolev homeomorphisms
([32]). By definition, the Sobolev space W1,p(X,R), 1 ≤ p < ∞, is the
completion of C∞-smooth real functions having finite Sobolev norm

‖u‖W1,p(X) = ‖u‖Lp(X) + ‖∇u‖Lp(X) <∞.

Question 1. Let n = 2, 3. Suppose that h : X onto−→ Y is a homeomorphism

in W1,p(X,Rn). Can h be approximated by diffeomorphisms hj : X
onto−→ Y in

W1,p(X,Rn)?

A different, but equivalent, version of Question 1 asks for hj to be piece-
wise affine invertible mappings. In this form the approximation problem was
put forward by J.M.Ball [9], [10], who attributed it to L.C. Evans. The
paper [32] provides an affirmative solution of the Ball-Evans problem in the
planar case when 1 < p <∞. The case p = 1 remains open.

Our construction of an approximating diffeomorphism heavily relies on
the following p-harmonic replacement argument. Let U ⊂ C be a bounded
simply connected domain. For any h◦ ∈ W1,p(U,C) ∩ C(U), 1 < p < ∞,
there exists a unique coordinate-wise p-harmonic mapping h : U → C; that
is, {

div |∇u|p−2∇u = 0

div |∇v|p−2∇v = 0
, 1 < p <∞, h = u+ iv

such that h|∂U = h◦|∂U .
The Radó-Kneser-Choquet Theorem (p = 2) and the Alessandrini-

Sigalotti extension [1] of the Radó-Kneser-Choquet Theorem (1 < p <∞)
give a great tool for constructing coordinate-wise p-harmonic homeomor-
phisms. Namely if, in addition, h◦ : ∂U → ∂Γ is sense-preserving homeo-
morphism onto a convex Jordan curve Γ, then h is a C∞-diffeomorphism
from U onto the bounded component of C \ Γ. In particular, J(z, h) > 0
in U.

We end this section asking a version of Question 1 for bi-Sobolev map-
pings. Recall that the inverse of a Sobolev homeomorphism need not be
a Sobolev mapping. Even in the one-dimensional case, the homeomorphism
u(x) = x + C(x), where C is the usual Cantor function, fails to be abso-
lutely continuous but the inverse of u is a Lipschitz function. Similarly, in
higher dimensions, the mapping g(x1, . . . , x2) = (u(x1), x2, . . . , xn) provides
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us with a Lipschitz homeomorphism whose inverse fails to be a Sobolev map.
Nevertheless, every homeomorphism and its inverse have bounded variation
in the one-dimensional case. The similar duality result holds in the plane,
see [24].

Theorem 4.2. Let X,Y be domains in R2 and suppose that h : X onto−→ Y
is a homeomorphism. Then h has bounded variation if and only if the in-
verse mapping h−1 has bounded variation. Moreover, both h and h−1 are
differentiable almost everywhere.

The crucial reason why the above mentioned mapping g−1 fails to have
a Sobolev regularity is that the differential of g−1 does not vanish in the
zero set of the Jacobian. This means that g−1 does not have finite distor-
tion. The following beautiful symmetry result was proved by Hencl and
Koskela [23].

Theorem 4.3 ([32]). Let X,Y be domains in R2. Then h : X onto−→ Y has
finite distortion if the inverse mapping h−1 has finite distortion.

The promised question reads as follows.

Question 2 ([32]). A bi-Sobolev homeomorphism h : X onto−→ Y is a mapping

of class W1,p(X,Y), 1 ≤ p < ∞, whose inverse h−1 : Y onto−→ X belongs to
a Sobolev class W1,q(Y,X), 1 ≤ q < ∞. Can h be approximated by bi-
Sobolev diffeomorphisms {h�} so that h� → h inW1,p(X,Y) and h−1

� → h−1

in W1,q(Y,X)?

5. Two proofs of Schottky’s theorem

Here we give two different proofs of Theorem 2.1. The first one uses free-
Lagrangians together with sharp estimates. These techniques were developed
to study minimization problems between circular annuli §2.1 and §2.3.

5.1. Free Lagrangians. Let A = A(r,R) and A∗ = A(r∗, R∗) be two
circular annuli in C. We shall work with one particular homotopy class

F(A,A∗) of W1,2-homeomorphisms h : A onto−→ A∗. Let F+(A,A∗) be the
class of orientation preserving homeomorphisms h : A → A∗ in the Sobolev
classW1,2

loc (A,A∗) which also preserve the order of the boundary components;
that is, |h(z)| = r∗ for |z| = r and |h(z)| = R∗ for |z| = R. Similarly,
F−(A,A∗) is the class of orientation preserving homeomorphisms h : A→ A∗
in W1,2

loc (A,A∗) which reverse the order of the boundary components; that
is, |h(z)| = R∗ for |z| = r and |h(z)| = r∗ for |z| = R.
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In this context a free Lagrangian refers to a differential 2-form
L(x, h,Dh) dx, formulated for h ∈ F±(A,A∗), whose integral over A does
not depend on a particular choice of the mapping h ∈ F±(A,A∗). Naturally,
polar coordinates

x = ρ eiθ, r < ρ < R and 0 ≤ θ < 2π (5.1)

are best suited for dealing with mappings of planar annuli. The radial and
tangential derivatives of h : A→ A∗ are defined by

hN (x) =
∂h(ρ eiθ)

∂ρ
, ρ = |x| (5.2)

and

hT (x) =
1

ρ

∂h(ρ eiθ)

∂θ
, ρ = |x|. (5.3)

For a general Sobolev mapping we have the formula

J(x, h) = Im(hThN ) ≤ |hT | |hN |. (5.4)

We shall make use of three free Lagrangians.

(i) Pullback of a form in A∗ via a given mapping h ∈ F(A,A∗);
L(x, h,Dh) dx = N(|h|)J(x, h) dx, where N ∈ L1(r∗, R∗).

Thus, for all h ∈ F(A,A∗) we have
∫

A
L(x, h,Dh) dx =

∫

A∗
N(|y|) dy = 2π

∫ R∗

r∗

N(τ)τ dτ.

(ii) A radial free Lagrangian

L(x, h,Dh) dx = A(|h|) |h|N|x| dx, where A ∈ L1(r∗, R∗).

Thus, for all h ∈ F±(A,A∗) we have
∫

A
L(x, h,Dh) dx = 2π

∫ R

r

A(|h|)∂|h|
∂ρ

dρ = ±2π
∫ R∗

r∗

A(τ) dτ.

(iii) A tangential free Lagrangian

L(x, h,Dh) = B(|x|) Im hT

h
, where B ∈ L1(r,R).

Thus, for all h ∈ F±(A,A∗) we have
∫

A
L(x, h,Dh) dx =

∫ R

r

B(t)

(∫

|x|=t

∂Arg h

∂θ
dθ

)
dt = ±2π

∫ R

r

B(t) dt.
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5.2. Proof of the theorem. This proof is from [5]. The analytic descrip-
tion of conformality goes via the Cauchy-Riemann equations which we may
state in polar coordinates

1

ρ

∂h

∂θ
= i

∂h

∂ρ
, equivalently hT (z) = ihN (z) for a.e. z = ρ eiθ. (5.5)

Therefore, via (5.4), we have

J(z, h) = |hN |2 = |hT |2. (5.6)

Suppose that h belongs to F±(A,A∗) and satisfies (5.6). Choosing N(t) =
t−2, A(t) = t−1 and B(t) = 1 for t > 0 in (i)–(iii), we have

2π log
R

r
· 2π log

R∗
r∗

=

∫

A

dz

|z|2 ·
∫

A

J(z, h) dz

|h(z)|2 ≥
(∫

A

√
J(z, h) dz

|z| |h(z)|

)2

=

{ (∫
A
∣∣hN

ρh

∣∣)2
(∫

A
∣∣hT

ρh

∣∣)2 ≥
{ (∫

A
|h|N
ρ|h|

)2
(∫

A Im hT

ρh

)2 =

{ (
2π log R∗

r∗

)2
(
2π log R

r

)2 .

Hence, a necessary condition for the existence of a conformal map h : A→
A∗ is that ModA = ModA∗. Once this condition is satisfied every conformal
map h : A→ A∗ must give equality in every step of the above computation.
A close inspection of these inequalities reveals that

J(z, h)

|h(z)|2 =
m2

|z|2 and

{ ∣∣hN

h

∣∣ = ±hN

h∣∣hT

h

∣∣ = ±ihT

h ,

where m is a real number. The sign in each equation remains at our choice
but must be the same for all points in A. This can easily be summarized in
two differential equations

{
∂h
∂ρ = m

ρ h

∂h
∂θ = imh

for some constant m ∈ R. (5.7)

Solving these equations poses no difficulty. First the real constant m can be
identified from the second equation via the argument principle as follows

m =
∂Arg h

∂θ
= ±1.

The plus sign applies when h preserves the order of the boundary components
and the minus sign otherwise. Now the general solution takes the form
h(z) = λz±1, where λ is a complex number whose modulus is uniquely
determined by requiring that |λ|r = r∗ or R∗, respectively. �
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5.3. Proof of the theorem and circular means. The second proof gives
a flavor of our approach to proving the Nitsche conjecture. The presented
proof is from [30]. As in Theorem 3.2 we like to prove a sharp lower estimate
for the growth of the circular means of |h|2

U(ρ) =

∫

Tρ

|h|2.

Namely, let A∗ be a doubly connected domain whose inner boundary is the
unit circle. We do not specify the outer boundary of A∗. Let C(A(1, R),A∗)
denote the class ofW1,2-homeomorphisms h : A(1, R)

onto−→ A∗ satisfying (5.5)
which take the unit circle into the unit circle. Our goal is to prove that if
h ∈ C(A(1, R),A∗), then

U(ρ) =

∫

Tρ

|h|2 ≥ ρ2, U̇(ρ) ≥ 2ρ, Ü(ρ) ≥ 2. (5.8)

Equality occurs, somewhere at ρ ∈ (1, R), if and only if h(z) = λz, |λ| = 1.
The classical Schottky theorem follows by imposing the outer boundary

condition, |h(z)| = R∗ for |z| = R, to infer that R∗ ≥ R. This can be
reversed via consideration of the inverse conformal mapping, ascertaining
Theorem 2.1.

Proof of (5.8). Let us begin with the Laurent expansion

h(z) =
∑

n∈Z
anz

n, 1 < |z| < R. (5.9)

The system {zn}n∈Z is orthogonal on every circle Tρ, 1 < ρ < R. Thus,

U(ρ) =
∑

n∈Z
|an|2ρ2n, 1 < ρ < R.

All that matters is to find a certain second order differential operator
L : C2(1, R)→ C(1, R), acting on U , that fits into the following scenario:

L[U ] ≥ 0 with equality if and only if h(z) = λz, |λ| = 1. (5.10)

A direct computation shows that

L[U ] :=
1

ρ

d

dρ

[
ρ3

d

dρ

(
U

ρ2

)]
= 4

∑

n∈Z
n(n− 1)|an|2ρ2n−2 ≥ 0. (5.11)
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Hence,

ρ3
d

dρ

(
U

ρ2

)
≥ ρ3

d

dρ

(
U

ρ2

) ∣∣∣∣
ρ=1

= U̇(1)− 2U(1) = U̇(1)− 2. (5.12)

Note that h is C1-regular up to the inner boundary of A. Even more, since
|h(z)| ≡ 1 on the unit circle T, it extends as a conformal map slightly inside
the unit circle. Being sense preserving homeomorphism, h has the winding
number 1 along the unit circle; therefore,

1 = Im

∫

T

hθ

h
.

Combining this with (5.5), we have

U̇(1) = 2Re

∫

T
h̄ hρ = 2 Im

∫

T
h̄hθ = 2 Im

∫

T

hθ

h
= 2.

By (5.12) we infer that the function ρ → ρ−2U(ρ) is nondecreasing, and
hence U(ρ) ≥ ρ2. We actually have slightly stronger inequality (ρ−2U)′ ≥ 0,

which yields U̇≥2ρ−1U≥2ρ. Then it follows from (5.11) that Ü≥ρ−1U̇≥2.
Finally, if equality occurs in one of (5.8) for some 1 < ρ < R, we infer

from (5.11) that an = 0, except for a0 and a1, which gives a linear function
h(z) = a0 + a1z. Since |h(z)| ≡ 1 on T, we conclude that h(z) = λz with
|λ| = 1, as desired. �
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