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Abstract

Le Bail fitting method is procedure used in the applied crystallography mainly

during the crystal structure determination. As in many other applications, there

is a need for a great performance and short execution time. In this paper, we de-

scribe utilization of parallel computing for mathematical operations used in Le Bail

fitting. We present an algorithm implementing this method with highlighted possible

approaches to its aforementioned parallelization. Then, we propose a sample parallel

version using the OpenMP API and its performance results on the real multithreaded

system. Further potential for the massive parallelization is also discussed.

1. Introduction

The crystal structure determination from powder diffraction is an important part
of applied crystallography science and its detailed description is out of scope of this
paper. However, certain basic principles are needed for better understanding of Le
Bail fitting method and its application (for details see [2, 3]).

Starting from the most elementary knowledge, one type of matter in solid state is
crystalline matter which has ordered, even periodical internal structure and therefore
can be described by a single cell of this structure. This fact also simplifies the process
of obtaining structure of an unknown sample because x-ray diffraction can be used
to obtain complete (from single crystal) or partial (from crystalline powder) image
of inner structure. Using powder for diffraction is becoming still more common
because powder sample is usually much easier to obtain than a single crystal of
studied substance. The main drawback of using powder is the need to extrapolate
part of the structure information which is lost due to the random orientation of
crystallites in sample. This fact (illustrated by Figure 1) requires great computing
power available only relatively recently to solve structure in acceptable time.

An example of data obtained by powder diffraction is depicted in Figure 2. Most
important information from diffraction profile (pattern) for further analysis are the
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Figure 1: Diffraction pattern image of polycrystalline (left) and single crystal (right)
of Cr2O3 (reprinted from [3])

Figure 2: Powder diffraction pattern of LaB6 with Bragg’s peaks labeled by Miller
indices of corresponding lattice plane sets (reprinted from [2])
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peak positions and their integrated intensities. Part of the result of structure deter-
mination are the properties of unit cells, namely its size (a, b, c) and angles between
them (α, β, γ). The relationship between these structure parameters and diffraction
profile can be summarized based on Bragg’s law into following equation:

2Θhkl = 2 arcsin
λ

2dhkl
, (1)

where peak position is denoted by 2Θ (diffraction angle), λ is wavelength of used
radiation and dhkl is interplanar distance, which can be calculated from structure
parameters. For the simplification of equations, intermediary variable Q is usually
used:

dhkl =

√

1

Qhkl

(2)

The calculation of Q itself then has to take into account level of symmetry present
in crystal structure, for example in monoclinic crystal system it can be obtained as:

Qhkl =
h2

a2 sin2 β
+

k2

b2
+

l2

c2 sin2 β
−

2hl cos β

ac sin2 β
(3)

The reason for relatively complicated and computationally complex determina-
tion of unit cell parameters from the powder diffraction profile is apparent from
Equation (3). It is easy to calculate Q if the unit cell parameters are known but not
vice versa (for details see [4, 5]). Here comes the advantage of parallel computing,
the details of which will be explained later.

2. Le Bail fitting

During the crystal structure determination is it often needed to refine the esti-
mated structure parameters to better fit the observed (measured) diffraction profile.
Le Bail fitting can be used exactly for this purpose. Usually, a single sample can be
evaluated by multiple methods, each providing slightly different results in the form
of different unit cell parameters. Le Bail fitting is then used to further refine these
results based on observed diffraction profile, to either increase their accuracy or to
select the best estimates for the next step of structure determination.

Le Bail fitting itself is an iterative process which can be difficult to parallelize.
The process can be crudely described as adjustment of structure parameters based
on difference between observed diffraction profile and diffraction profile computed
from current structure parameters estimates. This is achieved by the decomposi-
tion of diffraction profile into separate peaks with approximately Gaussian shape
and then applying following operations on all peaks. The main idea behind profile
decomposition is illustrated by Figure 3. This principle is of course applicable on an
arbitrary number of peaks and variable profile size, which allows to regard the peaks
as independent data and thus allow simple parallelization.
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Figure 3: Pattern decomposition principle

Each iteration of Le Bail fitting consists of two main steps. The goal of the first
one is to determine the integrated intensities of individual peaks in the calculated
profile, basically performing the aforementioned decomposition. That itself is an
iterative process of applying the following equation:

IK(obs) =
∑

i

(

wi,K · S2
K(obs) ·

yi(obs)

yi(calc)

)

, where (4)

• IK(obs) is the new integrated intensity of a peak, which is calculated for all
peaks in profile,

• wi,K is the weight of considered point meaning its distance from currently
calculated peak,

• S2
K(obs) is the integrated intensity obtained in previous iteration (or selected

constant in the first iteration),

• yi(obs) is the observed value of yi (single point in the profile),

• yi(calc) is the calculated value of yi (single point in the profile).

While it may seem that all points in profile are considered for increments of each
peak, in practice only points in certain neighbourhood of a peak position are actually
involved in calculation and this fact is reflected by wi,K .

The second step in each iteration of Le Bail fitting includes application of non-
linear least squares method on the structure parameters. The detailed explanation
of least squares is again out of scope of this document but it uses the fact that each
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point of diffraction profile can be viewed as a result of certain function of structure
parameters. As the set of equations for all points in profile is non-linear, the non-
linear least squares method has to be used to adjust the structure parameters to
better fit the calculated profile to the observed one. The usual solution can be
expressed as:

∆~x = (ATA)−1AT~y, where (5)

• ~x is the result of this step (adjustments to the structure parameters),

• A is the Jacobi matrix (matrix of partial derivations with one row per point
in profile),

• ~y is the vector of differences between observed and calculated diffraction profile.

The structure parameters adjustments are then applied on current parameters, diffrac-
tion profile replotted and another iteration starts if needed. The sequential algorithm
basically follows the described process.

3. Parallelization using OpenMP API

There are several possible approaches to parallelizing Le Bail fitting algorithm.
First and most obvious option offers the number of processed samples, that is sets of
parameter estimates. Since these are independent, except in using common observed
diffraction profile for reading only, each sample can be assigned to one process or
thread.

Second approach is based on number of points into which is the diffraction profile
discretized. This is applicable mostly in the first step in main iterations since the
second step consists predominantly of matrix operations.

Another way to parallelize can be derived from a number of peaks into which the
diffraction profile is decomposed. Even though it is usually less independent data
than in previous options, it is nonetheless still a viable option.

Now that the possible parallelism in the algorithm was discussed, let’s focus on
the possible implementation tools. First step is usually to utilize full CPU capabili-
ties which means to use threads or processes to run code in parallel. The OpenMP
API can be used for this purpose. OpenMP API is defined by a collection of com-
piler directives, library routines and environment variables extending the C, C++
and Fortran languages [1]. These can be used to create portable parallel programs
utilizing shared memory. It has the fork-join execution model meaning the pro-
gram starts as single thread and certain blocks of code are run in separate threads.
Shared memory implies requirements on memory management during implementa-
tion to avoid inconsistencies and undefined behaviour. Even though the changes in
the parallel version using OpenMP are relatively small, the speed-up it provides is
significant on systems with multiple CPUs or multi-core CPU as is apparent from
Table 1 with data measured on single CPU Intel Core i5-2500@4 Ghz with 4 cores.
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#data sets 40 80 120 160 200
Sequential (sec) 3.39 7.11 10.04 13.71 16.89
OpenMP@4 cores (sec) 1.23 2.37 3.30 4.16 4.99
Speedup 2.75 3.00 3.04 3.30 3.38

Table 1: Achieved performance of OpenMP accelerated version.

Moreover only parallelization based on number of processed samples is used, showing
only the fraction of potential for more massively parallel platforms.

4. Conclusions

Le Bail fitting is a great example of acceleration of practical applications by
the parallel computing. The multithreaded version using OpenMP API achieves
a great performance and almost linear speedup. Massively parallel platforms like
GPU (CUDA, OpenCL) will be able to enhance the application’s performance even
more, but at a cost of more extensive code changes.
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