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Abstract

FRAP (Fluorescence Recovery After Photobleaching) is a measurement technique
for determination of the mobility of fluorescent molecules (presumably due to the
diffusion process) within the living cells. While the experimental setup and protocol
are usually fixed, the method used for the model parameter estimation, i.e. the data
processing step, is not well established. In order to enhance the quantitative analysis
of experimental (noisy) FRAP data, we firstly formulate the inverse problem of model
parameter estimation and then we focus on how the different methods of data pre-
processing influence the confidence interval of the estimated parameters, namely the
diffusion constant p. Finally, we present a preliminary study of two methods for the
computation of a least-squares estimate p̂ and its confidence interval.

1. Introduction

The FRAP technique is based on measuring the change in fluorescence intensity in
a region of interest (ROI - generally a Euclidean 2D or 3D domain). These changes
are induced by an external stimulus, a high-intensity laser pulse provided by the
CLSM (Confocal Laser Scanning Microscopy). The stimulus, also called bleaching,
causes an (ir)reversible loss in fluorescence in the bleached area without any damage
to intracellular structures. After the bleach, the observed recovery in fluorescence
reflects the mobility (related to diffusion) of fluorescent compounds from the area
outside the bleach.

Based on spatio-temporal 2D FRAP images, the process of diffusive transport
can be reconstructed using either a closed form model or a numerical simulation
based model. In this paper, we study both approaches. We show the results for the
oversimplified one-spatial-point Moullineaux method [4] and the results based on the
numerical integration of the Fick diffusion PDE (Partial Differential Equation) with
the realistic initial and boundary conditions [5].
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2. Parameter estimation based on spatio-temporal data

We aim to present a parameter estimation problem with spatio-temporal exper-
imental observation in a comprehensive mathematical framework allowing simulta-
neously to determine both the parameter value p (generally p ∈ R

q, q ∈ N)1 and
the corresponding confidence interval proportional to the output noise and a quan-
tity related to the sensitivity, see (7). The data are represented by a (measured)
signal on a Cartesian product of the space-points (xi)

n
i=1 and time-points (tj)

m
j=1; let

NData := m × n be the total number of spatio-temporal data points. We define the
operator S : Rq → R

NData that maps parameter values p1, . . . , pq to the solution of
the underlying initial-boundary value problem, e.g. (9), evaluated at points (xi, tj):

S(p) = {y(xi, tj, p) ∈ R, 1 ≤ i ≤ n, 1 ≤ j ≤ m}. (1)

Some commonly used FRAP methods do not employ all the NData measured
values at points {(xi, tj), i = 1, . . . , n, j = 1, . . . , m}. They either employ some of
the values or perform some preprocessing (e.g. space averaging, see [6]). Hence we
further define the observation operator G : RNData → R

Ndata that evaluates the set of
values S(p) on a certain subset of the full data space (Ndata ≤ NData):

G(S(p)) = (z(xl, tl, p))
Ndata

l=1 (2)

We now define the forward map F : p → z(xl, tl, p)
Ndata

l=1 . Here, F = G ◦ S

represents the parameter-to-output map, defined as the composition of the PDE
solution operator S and the observation operator G.2 Our regression model is now

F (p) = data, (3)

where the data are modeled as contaminated with additive Guassian noise

data = F (pT ) + e = (z(xl, tl, pT ))
Ndata

l=1 + (el)
Ndata

l=1 .

Here pT ∈ R
q denotes the true values and e ∈ R

Ndata is a data error vector
which we assume to be normally distributed with variance σ2, i.e. ei = N (0, σ2)
i = 1, . . . , Ndata.

Given some data, the aim of the parameter estimation problem is to find pT ,
such that (3) is satisfied in some appropriate sense. Since (3) usually consists of an
overdetermined system (there are more data points than unknowns), it cannot be
expected that (3) holds with equality, but instead an appropriate notion of a solu-
tion is that of a least-squares solution p̂ (with ‖ . ‖ denoting the Euclidean norm
on R

Ndata):
‖ data− F (p̂) ‖2= min

p
‖ data− F (p) ‖2 . (4)

1We prefer this more general definition of the model parameter vector instead of the single scalar
quantity because we aim to work with more complex model than (9) in the near future.

2For the one-point Moullineaux method [4], only the point with the spatial coordinate x = 0
is measured, i.e. GM : z(tj , p) := z(0, tj, p) = y(0, tj, p), j = 1, . . . , Ndata = m. For the second
method, we reduce the data space taking the so-called relevant data only [6], i.e. GPDE : z(xl, tl, p) =
y(xi, tj , p), i = 1, . . . , n∗ ≤ n, j = 1, . . . ,m∗ ≤ m, l = 1, . . . , Ndata = m∗ × n∗.
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Sensitivity analysis and confidence intervals

For the sensitivity analysis we require the Fréchet-derivative F ′[p1, . . . , pq] ∈
R

Ndata×q of the forward map F , that is

F ′[p1, . . . , pq] =
(

∂
∂p1

F (p1, . . . , pq) . . . ∂
∂pq

F (p1, . . . , p)
)

=









∂
∂p1

z(x1, t1, p) . . . ∂
∂pq

z(x1, t1, p)

. . . . . . . . .

. . . . . . . . .
∂

∂p1
z(xNdata

, tNdata
, p) . . . ∂

∂pq
z(xNdata

, tNdata
, p)









.

A corresponding quantity is the Fisher information matrix (FIM)

M [p1, . . . , pq] = F ′[p1, . . . , pq]
TF ′[p1, . . . , pq] ∈ R

q×q. (5)

Based on the book of Bates and Watts [1], we can estimate confidence intervals.
Suppose we have computed p̂ as a least-squares solution in the sense of (4). Let us
define the residual as

res2(p̂) = ‖F (p̂)− data‖2 =
Ndata
∑

i=1

[datai − z(xi, ti, p̂)]
2
. (6)

Then according to [1], it is possible to quantify the error between the computed
parameters p̂ and the true parameters pT .

Having only one single scalar parameter p as unknown, the Fisher information

matrixM collapses into the scalar quantity
∑Ndata

i=1

[

∂
∂p
z(xi, ti, p) |p=p̂

]2

, and the 1−α

confidence interval for full observations is described as follows

(p̂− pT )
2

Ndata
∑

i=1

[

∂

∂p
z(xi, ti, p) |p=p̂

]2

≤ res2(p̂)

Ndata − 1
f1,Ndata−1(α), (7)

where f1,Ndata−1(α) corresponds to the upper α quantile of the Fisher distribution
with 1 and Ndata − 1 degrees of freedom.

In (7), several simplifications are possible. Note that according to our noise

model, the residual term res2(p̂)
Ndata−1

is an estimator of the error variance [1] such that
the approximation

res2(p̂)

Ndata − 1
∼ σ2 (8)

holds if Ndata is large. Moreover, we remind the reader that the Fisher distribu-
tion with 1 and Ndata − 1 degrees of freedom converges to the χ2-distribution as
Ndata → ∞. Hence, the term f1,Ndata−1(α) can approximately be viewed as indepen-
dent of Ndata as well and of a moderate size.
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3. Two FRAP methods: Assessment of uncertainty

Let us proceed to the FRAP measurement technique [4, 5]. We assume the
special geometry residing in one-dimensional simplification getting the measured
fluorescent intensity level y as a function of the spatial coordinate x, time t and
diffusion coefficient p (generally time dependent, e.g. p = (pj)

m
j=1):

∂y

∂t
− p

∂2y

∂x2
= 0 , (9)

in (t0, T )×Ω, with suitable boundary conditions on (t0, T )×∂Ω and initial conditions
in Ω, where Ω ⊂ R. Problem (9) represents a reliable model of the FRAP process.
The corresponding inverse formulation is used in our software CA-FRAP3 for the
processing of the real FRAP data resulting in the solution vector (p̂j)

m
j=1. Here,

in this paper, the software CA-FRAP is further used (in Subsection 3.2) for the
simulation of virtual FRAP data and the subsequent evaluation of the FIM.

According to [2], the standard error of a parameter pk estimate, i.e. SE(p̂k), is

SE(p̂k) = σ̂
√

Mkk
−1, (10)

where σ̂ is the data error variance estimate. Relation (10) highlights the importance
of the FIM and is further used for the comparison of two FRAP data processing
methods.

3.1. The one-point Moullineaux method

C.W. Moulineaux et al. [4] measured one-dimensional bleaching profiles (with
common variance σ2) along the specimen long axis. They took the ROI as coincident
with the real axis (x ∈ R) and the initial bleaching profile (of bleached particles)
as the Gaussian with half-width r0 at height y0,0e

−2, i.e. y(x, t0, p) = y0,0 exp
−2x2

r02
.

Here t0 corresponds to the initial time and can be set to zero. Then, the solution
y(x, t, p) of the diffusion equation (9) for the bleached particles is

y(x, t, p) =
y0,0 r0

√

r02 + 8pt
exp

−2x2

r02 + 8pt
, x ∈ R, t ∈ [0, T ]. (11)

The time evolution of the maximum depth y(0, t, p) is taken by Moullineaux et al.

as the single observed spatial data point zM (t, p).4 It holds zM(t, p) =
r0 y0,0√
r02+8pt

.

The FIM, based on the semi-relative sensitivities, collapses to a scalar quantity

MM =
∑m

j=1

[

∂zM (tj ,p)

∂p
p
]2

=
∑m

j=1
(4r0ptj)

2

(r02+8ptj)3
= 1

4

∑m

j=1
(8sj)

2

(1+8sj)3
, where sj :=

ptj
r02

and

an estimate p̂ is taken instead of p.

3See [3, 5] for more details or mail to: matonoha@cs.cas.cz.
4The authors of [4] used the weighted linear regression based on equation zM (t, p) =

r0 y0,0√
r02+8pt

in order to estimate the diffusion coefficient p. They calculated neither the FIM nor the standard
error of the parameter p estimate using (10).
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Let us assume that we have an equidistant spacing ∆s := sm−s1
m−1

such that the
sum can be approximated by an integral.5 Then we get the following expression for
the FIM (after some algebraic manipulation assisted by the Mathematica software)

MM ≈ m− 1

32(sm − s1)

[

ln

(

1 + 8sm
1 + 8s1

)

− 8(sm − s1)(1 + 12(s1 + sm) + 128s1sm)

(1 + 8sm)2(1 + 8s1)2

]

+

[

8s1
2

(1 + 8s1)3
+

8sm
2

(1 + 8sm)3

]

. (12)

The expression for MM is positive, increasing with the number of measurement
points, i.e. with T = t1 + (m− 1)∆t (for fixed ∆t and t1), and represents the lower
bound for the FIM as a scalar quantity (when a scalar p is estimated).6

3.2. Initial boundary value problem for PDE (9) and the FIM

As the above approach has several limitations, e.g. cell geometry restriction
(infinite domain is required), bleach profile must be gaussian-like, etc., we propose
to model the diffusion process by the Fick diffusion equation with realistic initial and
boundary conditions instead. Then the parameter estimation problem is formulated
as an ordinary least squares problem (4) resulting in the estimate p̂PDE. This problem
is treated elsewhere [3, 5, 6]. Here, we present the uncertainty assessment based on
the numerical evaluation of the FIM (implemented in the CA-FRAP). For each time
instant tj we denote pj = p̂PDE. The CA-FRAP solves the inverse problem (9) and
takes the simulated output y(xi, tj , pj), i = 1, . . . , n. Then, according to (5), we
obtain the FIM (diagonal in this case) using central differences as

M
j
PDE =

n
∑

i=1

[

∂y(xi, tj, p)

∂p
|p=pj

]2

≈
n

∑

i=1

[

y(xi, tj , pj + ε)− y(xi, tj , pj − ε)

2ε

]2

(13)

where ε is a small positive number. The corresponding quantity MPDE for the
estimation of an overall p̂PDE is the sum

∑m

j=1M
j
PDE, cf. (5).

3.3. Numerical evaluation and comparison of the FIM for both method

We have performed several computations of the FIM for both above mentioned
approaches. For a particular case y0,0 = r0 = p = 1 and the time step between
m = 10 measurements equal to 0.1, the evaluation of (12) is straightforward and
gives MM ≈ 0.296 for s1 = 0.1 and sm = 1. The evaluation of MPDE is more compli-
cated. In order to compare both method, the output y(xi, tj, pj) were computed for
the same parameter settings as before by solving the forward problem (9), showing
the correspondence with (11), indeed. The numerical evaluation of (13) gives then
MPDE ≈ 0.363. We see that the PDE based method, which uses more spatial points
at each time level, gives a lower standard error of the estimated parameter p.

5The quantities corresponding to the first t1 and final T measurement time are s1 = pt1/r
2
0 and

sm = pT/r20, t1 < T, respectively.
6The one-point Moullineaux method is the simplest method. Other methods, see e.g. [6] for

review, use more data points, thus add more (positive) terms to the FIM.
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4. Conclusion

We present two methods for the estimation of the fluorescent compounds mobil-
ity from the spatio-temporal FRAP measurement. The first and simplest method is
based on the curve fitting to a closed formula and needs some unrealistic or hard-to-
accomplish conditions. The second method is based on a numerical approximation of
the Fick diffusion PDE with either a scalar or time dependent diffusion coefficient p.
Both methods are implemented in our software CA-FRAP, which simultaneously
provides the parameter estimate (this is not discussed here, in this paper) and the
corresponding standard error (using (10)). This aims to promote the following idea
across the FRAP community. The bioprocesses are inherently stochastic, thus the
mathematical framework related to the model parameter identification should deter-
mine both a parameter mean value and a certain confidence interval, which depends
on the output noise and the corresponding sensitivity, cf. (10).
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[5] Papáček, Š., Kaňa, R., and Matonoha, C.: Estimation of diffusivity of phycobil-
isomes on thylakoid membrane based on spatio-temporal FRAP images. Math.
Comput. Modelling 57 (2013), 1907–1912.
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