
PANM 17

Vojtěch Rybář; Tomáš Vejchodský
Irregularity of Turing patterns in the Thomas model with a unilateral term

In: Jan Chleboun and Petr Přikryl and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and
Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June 8-13, 2014. Institute of
Mathematics AS CR, Prague, 2015. pp. 188–193.

Persistent URL: http://dml.cz/dmlcz/702683

Terms of use:
© Institute of Mathematics AS CR, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/702683
http://dml.cz


Programs and Algorithms of Numerical Matematics 17
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Abstract

In this contribution we add a unilateral term to the Thomas model and investigate
the resulting Turing patterns. We show that the unilateral term yields nonsymmetric
and irregular patterns. This contrasts with the approximately symmetric and regular
patterns of the classical Thomas model. In addition, the unilateral term yields Turing
patterns even for smaller ratio of diffusion constants. These conclusions accord with
the recent findings about the influence of the unilateral term in a model for mammalian
coat patterns [3]. This indicates that the observed effects of the unilateral term are
general and apply to a variety of systems.

1. Introduction

Systems of reaction-diffusion equations are widely used to model various phenom-
ena in biology and chemistry. Spatio-temporal ecological models (e.g. predator-pray
models), chemical kinetics and tumour growth can serve as examples. In addition,
reaction-diffusion systems have successfully explained the spontaneous emergence of
skin and coat patters in mammals, fish, gasteropods and others. One of the well-
established reaction-diffusion models is the Thomas reaction kinetics model [9]. It
has originally been used for modelling of chemical reactions involving oxygen and
uric acid. However, Murray in [7] showed that this model can successfully model the
formation of coat patterns in mammals.

The mechanism responsible for the creation of spatial patterns is known as the
Turing diffusion driven instability [10]. This instability occurs if a spatially homo-
geneous stationary solution is stable with respect to small spatially homogeneous
perturbations and unstable with respect to small spatially heterogeneous perturba-
tions. A new stable and spatially heterogeneous steady state solution can evolve in
this case and it is called a pattern. Turing instability is well known and necessary
conditions for its emergence are derived, e.g. in [7], under the condition that the
corresponding nonlinear terms are smooth.

The main idea of this paper is to consider the Thomas model appended by a non-
smooth unilateral term. Reaction-diffusion systems with unilateral terms, mainly
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in the form of variational inequalities, have been studied in [1, 4, 5] and several
interesting and surprising properties have been reported. For example, there are
theoretical studies showing that certain unilateral systems can produce Turing pat-
terns for virtually arbitrary ratio of diffusion coefficients. This is surprising, because
the corresponding classical reaction-diffusion system (without any unilateral term)
produces Turing patterns only if this ratio is sufficiently away from one.

This motivates us to study the system of reaction-diffusion equations for the
evolution of concentrations u = u(t, x, y) and v = v(t, x, y) of two morphogens in the
following form:

∂u

∂t
= ∆u+ γ(a− u− h(u, v)) in (0, T )× Ω, (1)

∂v

∂t
= d∆v + γ

(
αb− αv − h(u, v) + τ(v − v̂)−

)
in (0, T )× Ω (2)

where
h(u, v) =

ρuv

1 + u+Ku2
.

The model parameters a, b, d, α, γ, τ,K, and ρ are constants, v̂ stands for the second
component of the ground state, which is defined below, T denotes the final time,
Ω ⊂ R2 is a domain, and τ(v− v̂)− is the unilateral term which is multiplied by γ in
order to make it proportional to the size of the domain Ω in the same manner as the
other nonlinear terms. Notice that the negative part is defined as w− = max(0,−w).
For τ = 0, system (1)–(2) coincides with the original Thomas model. However, in
this paper we mainly consider τ > 0 and study the effect of the unilateral term
τ(v − v̂)− on the emerging patterns.

We will couple the model (1)–(2) with zero flux boundary condition

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω, (3)

where n stands for the outward unit normal vector to the boundary ∂Ω. The spatially
homogeneous steady state solution mentioned above is known as the ground state
and it is defined as a pair û, v̂ ∈ R, which solves the nonlinear system

a− û− h(û, v̂) = 0 and αb− αv̂ − h(û, v̂) = 0.

Clearly, the constant functions u(t, x, y) = û and v(t, x, y) = v̂ form a stationary
solution to system (1)–(2) with boundary conditions (3). The component v̂ of the
ground state is used in (2) to define the unilateral term. Notice that it is nonsmooth
exactly at the point v̂. The biological motivation for the nonsmooth unilateral term
in (2) and its further properties are discussed in the next section.

2. Unilateral terms

A general biological motivation and existing theoretical results for reaction-diffusion
systems with unilateral terms are thoroughly discussed in [3]. In this short contri-
bution, we only offer a short overview for the sake of completeness.
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System (1)–(2) for concentrations of two morphogens diffusing within a tissue is
biologically plausible, because we can expect receptors in the cell membrane that
detect the local concentration v of the second morphogen. The cell then reacts
in such a way that if the concentration v drops below the threshold value v̂, the
cell will commence to produce the second morphogen. Similarly, as soon as the
concentration v reaches the threshold v̂ the cell stops to produce it.

This mechanism is modelled in equation (2) by the unilateral term τ(v − v̂)−.
When v is smaller than the threshold v̂, the term (v − v̂)− becomes positive and
the concentration v starts to increase with the rate γτ |v − v̂|. In other words, the
unilateral source term starts to be active. When the concentration v decreases to the
level of the threshold v̂, the unilateral term τ(v − v̂)− vanishes and ceases to have
any effect in the system.

From both the biological and mathematical point of view it is natural to set the
threshold to the value v̂ of the ground state. Naturally, the parameter τ governs the
intensity of the unilateral term.

If τ = 0 then all nonlinear terms in system (1)–(2) are smooth and the standard
linear analysis, see e.g. [7], can be performed to derive the necessary conditions
for the Turing instability to occur. In case of system (1)–(2) this analysis restricts
the diffusion coefficient d to be sufficiently large, see below. However, recent re-
sults [1, 4, 5] surprisingly revealed that this condition on d can be relaxed if certain
unilateral terms or conditions are added to the system. This is an interesting feature
both mathematically and biologically. Especially, in the light of the common critique
of the Turing pattern formation mechanisms, that the diffusion constants of the two
morphogens should be similar, because both the morphogens are presumed to be of
a similar chemical nature.

The effects of the unilateral term on the resulting patterns have been studied in [3]
using a model for generating pigment patterns on coats of leopards and jaguars [2, 6].
Paper [3] concludes that the unilateral term leads to nonsymmetric and irregular
patterns and that the patterns appear even for ratios of diffusions violating the
condition from the linear analysis. In this contribution, we investigate the Thomas
model to see if we can obtain comparable results as in [3]. This would confirm that
the conclusions of [3] are more general and do not apply to one specific model only.

3. Numerical results

We solve system (1)–(2) numerically using own finite element solver based on
triangular meshes. The Matlab built-in adaptive time-stepping ODE solver ode15s

is used for the time integration. We use the following set of parameters:

a = 150, b = 100, α = 1.5, γ = 252, K = 0.05, ρ = 13. (4)

We vary the diffusion coefficient d between 22.5 and 27.5 and the intensity of the
unilateral source τ between 0 and 2. The domain is a square Ω = (−2, 2)2 and the
computation is terminated at the final time T = 4 as the solution of the system
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is already close to the steady state at this point. The ground state for parameter
values (4) is approximately (û, v̂) = (37.7380, 25.1588). The initial condition is
chosen as a small random noise around this ground state. The same initial condition
is used for all presented results.

Using these parameter values, we perform a numerical experiment to study the
effects of the intensity of the unilateral source τ and the diffusion coefficient d on the
resulting Turing patterns. Since both components u and v provide complementary
results, we present plots based on v only. Figure 1 shows the resulting Turing patterns
for various values of parameters τ and d.

First, we observe the qualitative change of the patterns with growing τ , see the
first column in Figure 1. For τ = 0 the pattern consists of close-to-circular spots with
similar sizes. These spots are almost symmetrically placed. As the intensity of the
unilateral term τ grows, the spots become irregular and gradually more and more
elongated. The larger spots seem to be fused from several smaller ones. Starting
from the value τ = 1 the pattern is already substantially nonsymmetric and it is
qualitatively distinct from the close to regular pattern for τ = 0.

Another outcome of the performed experiment is that the unilateral term enables
patterns even for d smaller than the usual linear theory [7] permits. Indeed, if τ = 0
system (1)–(2) contains no unilateral term, the remaining nonlinearities are smooth,
and the standard linear analysis of the Turing instability [7] yields the following
critical value [8] for the diffusion coefficient d:

dcrit =
detB − b12b21 + 2

√
−b12b21 detB

b11

≈ 27.027, (5)

where

B =

[
b11, b12

b21, b22

]
= −γ

[
1 + ∂h/∂u,−∂h/∂v
∂h/∂v, α + ∂h/∂v

]
(û, v̂) ≈

[
226.7,−1124.5
478.7,−1502.5

]
is the Jacobi matrix of system (1)–(2) evaluated at the ground state and the numerical
values correspond to (4). The original Thomas model (i.e. the case τ = 0) can exhibit
Turing instability only if d > dcrit.

We may verify this condition in the first row of Figure 1. The second and sub-
sequent columns of Figure 1 show that as the intensity of the unilateral source τ
grows, Turing patterns emerge even for the diffusion coefficient smaller than the
critical value (5). In general, this indicates that the additional unilateral term can
weaken the condition on the diffusions and enables the emergence of patterns for
diffusion coefficients of the two morphogens closer to each other.

4. Conclusions

This contribution evaluates the effect of the additional unilateral source term in
the Thomas reaction-diffusion system. We have observed that patters in systems
with sufficiently intensive unilateral term are less regular and symmetric compared
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Figure 1: Patterns for various values of the intensity of the unilateral source τ and
diffusion coefficient d

to patterns in systems with a weak or no unilateral term. Further, in comparison
with classical systems with no unilateral regulation, the unilateral term can enable
the emergence of Turing patterns even for those values of the diffusion coefficient d
which prevent the Turing instability in the classical systems.

These results accord with conclusions of a more detailed study [3], where a re-
action-diffusion model for coat patterns of leopard and jaguar [2, 6] is analysed.
Thus, the reported effects of the unilateral source term seem to be more general and
valid for more types of reaction-diffusion systems. Beside this, the observed effects
verify and illustrate theoretical findings of [4], where a unilateral regulation in terms
of variational inequalities is presented.

From the practical point of view, it has been suggested in [3] that the unilat-
eral source term can explain the irregular mutant colouration observed in certain
mammals, such as king cheetahs.

Reaction-diffusion systems have been studied for several decades, the correspond-
ing literature is wide and various perspectives are already covered. However, this
contribution as well as the paper [3] confirm that there are still aspects, such as the
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unilateral source terms that are interesting from both theoretical and practical point
of view and that deserve further investigations.
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