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Abstract

This work deals with the numerical solution of generalized Newtonian and
Oldroyd-B fluids flow. The governing system of equations is based on the system
of balance laws for mass and momentum for incompressible laminar viscous and vis-
coelastic fluids. Two different definition of the stress tensor are considered. For
viscous case Newtonian model is used. For the viscoelastic case Oldroyd-B model is
tested. Both presented models can be generalized. In this case the viscosity is defined
as a shear rate dependent viscosity function µ(γ̇). One of the most frequently used
shear-thinning models is a cross model. Numerical solution of the described models
is based on cell-centered finite volume method using explicit Runge Kutta time inte-
gration. The numerical results of generalized Newtonian and generalized Oldroyd-B
fluids flow obtained by this method are presented and compared.

1. Mathematical model

In order to simulate the fluids flow in the channel the system of balance laws of
mass and momentum for incompressible fluids are considered, [1], [4]:

div u = 0 (1)

ρ
∂u

∂t
+ ρ(u.∇)u = −∇P + div T (2)

where P is the pressure, ρ is the constant density, u is the velocity vector,
u=(u, v, w)T . The symbol T represents the stress tensor.

1.1. Stress tensor

In this work the different definition of the stress tensor are used.
In the case of viscous fluids the used model corresponding to Newtonian fluid is

Newtonian model:
T = 2µD (3)
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where µ is dynamic viscosity and tensor D is symmetric part of the velocity gradient
defined by the relation D = 1

2
(∇u+∇u

T ).
If viscoelastic fluids are considered Maxwell model as the simplest viscoelastic

model is used:

T + λ1
δT

δt
= 2µD (4)

where λ1 has dimension of time and denotes the relaxation time. The symbol δ
δt

represents upper convected derivative (see (8))
By combination of these two models the behaviour of mixture of viscous and

viscoelastic fluids can be described. Such a model is called Oldroyd-B model and it
has the form

T+ λ1
δT

δt
= 2µ

(

D+ λ2
δD

δt

)

(5)

the parameters λ1, λ2 are relaxation and retardation time.
The stress tensor T can be decomposed to the Newtonian part Ts and viscoelastic

part Te (T = Ts + Te) and

Ts = 2µsD, Te + λ1
δTe

δt
= 2µeD, (6)

where

λ2

λ1
=

µs

µs + µe

, µ = µs + µe. (7)

The upper convected derivative δ
δt
is defined (for general tensor M) by the relation

(see [2])
δM

δt
=

∂M

∂t
+ (u.∇)M− (WM−MW)− (DM+MD) (8)

where D is symmetric part of the velocity gradient

D =
1

2
(∇u+∇u

T ) =
1

2





2ux uy + vx uz + wx

uy + vx 2vy vz + wy

wx + uz wy + vz 2wz



 (9)

and W is antisymmetric part of the velocity gradient

W =
1

2
(∇u−∇u

T ) =
1

2





0 uy − vx uz − wx

vx − uy 0 vz − wy

wx − uz wy − vz 0



 . (10)

The governing system (1), (2) of equations is completed by the equation for the
viscoelastic part of the stress tensor

∂Te

∂t
+ (u.∇)Te =

2µe

λ1

D−
1

λ1

Te + (WTe − TeW) + (DTe + TeD). (11)
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Both models could be generalized. In this case the viscosity µ is no more constant,
but is defined by viscosity function according to the cross model (for more details
see [11])

µ(γ̇) = µ
∞
+

µ0 − µ
∞

(1 + (λγ̇)b)a
(12)

where

γ̇ = 2

√

1

2
tr D2 (13)

µ0 = 1.6 · 10−1Pa · s µ
∞

= 3.6 · 10−3Pa · s

a = 1.23, b = 0.64 λ = 8.2s.

2. Numerical solution

In this work the steady state solution is considered. In this case an artificial
compressibility method can be applied. It means that the continuity equation is
completed by the time derivative of the pressure in the form (for more details see
e.g. [3], [8]):

1

β2

∂p

∂t
+ div u = 0, β ∈ R

+. (14)

The system of equations (including the modified continuity equation) could be
rewritten in the conservative form.

R̃βWt + F c
x +Gc

y +Hc
z = F v

x +Gv
y +Hv

z + S, R̃β = diag(
1

β2
, 1, · · · , 1) (15)

where W is the vector of unknowns, F c, Gc, Hc are inviscid fluxes, F v, Gv, Hv are
viscous fluxes, and the source term S.

The following special parameters settings related to four specific models will be
used in our numerical simulation:

Newtonian µ(γ̇) = µs = const. Te ≡ 0
Generalized Newtonian µ(γ̇) Te ≡ 0
Oldroyd-B µ(γ̇) = µs = const. Te

Generalized Oldroyd-B µ(γ̇) Te

The (15) is discretized in space by the cell-centered finite volume method (see [7])
and the arising system of ODEs is integrated in time by the explicit multistage
Runge–Kutta scheme (see [8], [10], [11]).

2.1. Boundary conditions

The flow is modelled in a bounded computational domain where a boundary is
divided into three mutually disjoint parts: a solid wall, an outlet and an inlet. At the
inlet Dirichlet boundary condition for velocity vector is used and for a pressure and
the stress tensor Neumann boundary condition is used. At the outlet the pressure
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value is given and for the velocity vector and the stress tensor Neumann boundary
condition is used. The homogeneous Dirichlet boundary condition for the velocity
vector is used on the wall. For the pressure and stress tensor Neumann boundary
condition is considered.

3. Numerical results

This section deals with the comparison of the numerical results of Newtonian
and Oldroyd-B fluids. Numerical tests are performed in an idealized stenosed vessel.
The stenosed vessel is assumed to be three-dimensional with circular cross-section.
Figure 3 shows the shape of the tested domain. The computational domain is dis-
cretized using a structured, wall fitted mesh with hexahedral cells and uniform axial
cell spacing. The similar numerical results can be found in [1], [2].

2R

2R R 2R 5R

10R

R

(a) Newtonian
(b) Generalized Newtonian

Figure 1: Structure of the computational domain.

The following model parameters are:

µe = 4.0 · 10−4Pa · s µs = 3.6 · 10−3Pa · s

λ1 = 0.06s λ2 = 0.054s
U0 = 0.0615m · s−1 L0 = 2R = 0.0062m
µ0 = µ = µs + µe ρ = 1050kg ·m−3

Note that the fluid motion can be characterized by parameters: Reynolds number
and Weissenberg number. Weissenberg number is proportional to the relaxation time
of the fluid. These special data corresponds to Reynolds and Weissenberg numbers:

Re =
ρU0L0

µ0
= 100, We =

λ1U0

L0
= 0.6 (16)

In Figure 2 the comparison of the axial velocity isolines is presented. To empha-
size the flow separation behind the stenosis the regions of reversal flow (with respect
to axial direction) are marked with white color.

Pressure and velocity distribution along the axis for both tested fluids models is
shown in Figure 3. By simple observation one can conclude that the main effect of
the Oldroyd-B fluids behavior is visible mainly in the recirculation zone.
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(a) Newtonian (b) Generalized Newtonian

(c) Oldroyd-B (d) Generalized Oldroyd-B

Figure 2: Axial velocity isolines for generalized Oldroyd-B fluids.
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Figure 3: Pressure and axial velocity distribution along the central axis of the chan-
nel.

4. Conclusions

Newtonian and Oldroyd-B models with their generalized modification have been
considered for numerical simulation of fluids flow in the idealized axisymmetric steno-
sis. The cell-centered finite volume solver for incompressible laminar viscous and
viscoelastic fluids flow has been described. For time integration the explicit Runge–
Kutta method was considered. The numerical results obtained by this method are
presented. The differences between these tested fluids are given mainly in the separa-
tion region. These results clearly show that for shear-thinning flows the recirculation
zone becomes shorter. This could be explained by the specific choice of the charac-
teristic viscosity µ

∞
for the reference Newtonian and (non-generalized) Oldroyd-B

solution.
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