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INSTABILITY OF MIXED FINITE ELEMENTS
FOR RICHARDS’ EQUATION∗

Jan Březina

Abstract

Richards’ equation is a widely used model of partially saturated flow in a porous
medium. In order to obtain conservative velocity field several authors proposed to use
mixed or mixed-hybrid schemes to solve the equation. In this paper, we shall analyze
the mixed scheme on 1D domain and we show that it violates the discrete maximum
principle which leads to catastrophic oscillations in the solution.

1 Introduction

A standard model for the water flow in a partially saturated porous medium is
Richards’ equation which can by written as the system:

∂tθ(h) + div(u) = f in (0, T )× Ω, (1)

u = −k(h)∇(h+ z) in (0, T )× Ω. (2)

The unknowns are the pressure head h and the water velocity u while the other
involved quantities are the density of volume water sources f , the z-coordinate,
assumed to be in opposite direction to the gravity force, the water content θ and
the hydraulic conductivity k, where θ and k are given nonlinear function of h. Both
equations are considered on the domain Ω ⊂ RN and during the time interval (0, T ).
Through this work we consider the Dirichlet boundary condition hD on ΓD ⊂ ∂Ω,
the homogeneous Neumann condition u = 0 on the remaining part of the boundary,
and the initial condition h0 for the pressure head.

The characteristic functions θ(h) and K(h) are empirical. We assume the most
common Mualem – van Genuchten model [6], [5]:

θ(h) = θr + (θs − θr)θ̃(h), (3)

θ̃(h) = (1 + (αh)n)−m, m = 1− 1/n (4)

k(h) = ksθ̃
0.5

(
1− (1− θ̃1/m)m

)2

, (5)

where θr, θs, n, α, and ks are suitable soil parameters.

∗This work was realized under the state subsidy of the Czech Republic within the research
and development project “Advanced Remediation Technologies and Processes Center” 1M0554 –
Programme of Research Centers PP2-D01 supported by Ministry of Education.
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System (1 – 2) represents a quasilinear degenerated parabolic-elliptic equation.
The existence and uniqueness of the solution as well as some regularity properties
were proved by Alt, and Luckhaus [1]. When solving Richards’ equation numerically,
we want to obtain a discrete velocity field which satisfies a discrete version of the
continuity equation (1) up to the given tolerance of the nonlinear solver. This is
important for a subsequent simulation of the water transport. That is why mixed or
mixed-hybrid finite elements are used by many authors, e.g. [4], [3].

Motivated by these works, we want to develop a simulator that can solve cou-
pled Richards’ equations on domains of different dimension. Since the solution of
Richards’ equation evolves substantially only around a small wetting front region,
adaptivity is crucial to achieve reasonable performance. To meet these two require-
ments, we have decided to try C++ finite element library DEAL II [2]. The library
allows to produce a dimension independent code with h, p, and hp versions of adap-
tivity and provides a rich palette of finite elements. The only but fundamental
restriction of the library is that elements have to be topologically equivalent to hy-
percubes. However, during tests of our code we have observed serious oscillations
of the solution. Aim of this paper is to present these observations and give an
explanation of this behavior.

The paper is organized as follows. First, the mixed discretization is described.
Then, in Section 3, we make its comparison with a primary discretization and we
demonstrate the presence of instabilities. In the last section, we derive a condition
under which the mixed scheme obeys a discrete maximum principle in 1D and we
discuss some similar results.

2 Mixed finite elements

In order to derive mixed formulation of the system (1 – 2), we multiply the first
equation by a scalar test function ϕ, while in the second equation we divide by k, test
by a vector valued function ψ and integrate by parts in the pressure term. Finally,
we are looking for a solution h ∈ L2(Ω), u ∈ H(div,Ω) which satisfies

∫

Ω

k−1(h)(u ·ψ)−
∫

Ω

hdivψ =

∫

Ω

zdivψ −
∫

∂Ω

(hD + z)ψ · n, (6)

−
∫

Ω

∂tθ(h)ϕ−
∫

Ω

ϕdivu = −
∫

Ω

fϕ (7)

for all ψ ∈ H(div,Ω) and ϕ ∈ L2(Ω), where H(div,Ω) is a space of vector valued
L2-function with divergence in L2(Ω).

Next, we consider a decomposition T = {Ki} of the domain Ω ⊂ RN into lines
(N = 1), quadrilaterals (N = 2) or hexahedrons (N = 3). On this computational
grid we use Raviart-Thomas finite elements RTd with order d for discretization of the
velocity and discontinuous polynomial finite elements Pd of order d for discretization
of the pressure head. More specifically, we consider discrete solution in a form
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u(t,x) =
∑
i

ũi(t)ψi(x), h(t,x) =
∑
i

h̃i(t)ϕi(x), (8)

where ũ and h̃ are unknown coefficient vectors. The backward Euler is used for
temporal discretization. A fully implicit scheme is necessary to avoid oscillations on
the saturated part of the domain where the equation becomes elliptic. Finally, we
obtain a nonlinear system of equations which we solve by simple Picard iterations.
Resulting linear system for the solution h̃k, ũk in iteration k of time tn reads

A(hk−1)ũk +Bh̃k = F (9)

BT ũk +D(hk−1)h̃k = G(hk−1) (10)

with

Ai,j(h
k−1) =

∑
K∈T

∫

K

k−1(hk−1)(ψi ·ψj),

Bi,j = −
∑
K∈T

∫

K

ϕidivψj ,

Di,j(h
k−1) =

∑
K∈T

∫

K

−θ′(hk−1)

dt
ϕiϕj ,

Fi =
∑
K∈T

∫

K

zdivψi −
∫

K∩ΓD

(z + hD)ψi · n,

Gi(h
k−1) =

∑
K∈T

∫

K

−θ′(hk−1)hk−1

dt
ϕi +

θ(hk−1)− θ0

dt
ϕi ,

where hk−1 is the actual discrete pressure head field according to (8) and θ0 is the
water content field from the previous time tn−1. Before solving system (9) – (10), we
use the last pressure head h̃k−1 to resolve equation (9) and compute a residuum rk−1

of the equation (10). Iterations are stopped, when l2-norm of the residuum drops
under the prescribed tolerance. Then the residuum is subtracted from the actual
water content which forms θ0 for the next time step. This way we achieve a perfect
conservation of the total water content over the whole domain.

3 Comparison of mixed and primary discretization

The described mixed finite element approximation with the lowest element order
d = 0 (MFE) have been compared with a mature one dimensional solver based on
the primary linear finite element (FE) approximation of the pressure. The latter
solver was thoroughly tested against experimental data in cooperation with Vogel
et al. [7].

The setting of the one dimensional infiltration test problem was as follows: a verti-
cal domain (−5, 0) [m], the constant initial pressure head h0 = −150 [m], the Dirichlet
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Fig. 1: Infiltration velocity on the top of the vertical 1D domain. The stable FE scheme
(left) and the unstable MFE scheme (right).

boundary condition hD = 1 [m] on the top and the homogeneous Neumann condi-
tion on the bottom. The parameters of the soil model were n = 1.14, α = 0.1 [m−1],
θr = 0.01, θs = 0.480, ks = 2 [mh−1]. This setting leads to a steep wetting front
during the initial phase, thus we have to use short time steps. The wetting front
goes from the top to the bottom so that the pressure head should be monotonous
in time and space, increasing from −150 up to 1 + z. The velocity should be always
negative. The MFE code was run on meshes with steps 0.01, 0.1, and 0.5 the FE
code was run only for steps 0.01 and 0.5. All simulations were started with the time
step 10−6 and the time step is enlarged if the number of nonlinear iterations drops
under 3.

Figure 1 shows the infiltration velocity on the top of the domain up to the full
saturation of the domain. For the fine mesh step 0.01 the results are comparable. The
infiltration computed by the MFE code takes just little bit longer compared to the
FE code. On the other hand, for the coarser meshes, the MFE code produces terrible
oscillations while the FE code still provides satisfactory results. The oscillations are
not only in time but also in space and they get worse with shorter time steps or
larger mesh steps. Values of the pressure head leave the valid interval [−150, 1] and
positive values of the velocity appear.

4 Discrete maximum principle

Maximum principle for elliptic PDEs states that a solution of the equation

div(−k̃∇h) + c̃h = f̃ on Ω, h = g̃ on ∂Ω, (11)

with k̃ > 0, c̃ ≥ 0, is non-negative provided f̃ and g̃ are non-negative. If a similar
property holds for a discrete problem, we say that it obeys the discrete maximum
principle (DMP).

In view of the previous section it seems that the MFE scheme violates DMP for the
short time steps. To show this, we shall analyze one linear step, i.e. system (9)–(10),
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which can be viewed as the discretization of the linear elliptic problem (11) with
k̃ = k(h), c̃ = θ′(h)/dt, and suitable positive f̃ . We consider one dimensional
domain with grid points x1 < x2 < · · · < xn and the lowest order elements d = 0.
Further, we use equivalent mixed-hybrid discretization of (11). On every element
Ki = (xi, xi+1) the discrete solution is represented by the pressure head hi in the
center of the element, by the traces h̊1,2

i on the element boundary, and by the velocity
ui = u1

iψ
1 + u2

iψ2. The velocity is linear combination of discontinuous RT0 base
functions

ψ1
i (x) =

xi+1 − x

xi+1 − xi

, ψ2
i (x) =

x− xi

xi+1 − xi

where coefficients u1,2
i are the outer normal fluxes from the element i. Proceeding

similarly as in the case of mixed formulation we obtain a discrete version of (11):

∑
j=1,2

k̃−1
i uj

i

∫

Ki

ψm
i ψ

j
i = hi − h̊m

i for m = 1, 2 (12)

c̃ihi|Ki|+ u1
i + u2

i = f̃i|Ki| (13)

u2
i = −u1

i+1, h̊2
i = h̊1

i+1. (14)

We denote h̊i = h̊2
i = h̊1

i+1. The integral in (12) evaluates to |Ki|/3 and −|Ki|/6
for m = j and m 6= j, respectively. On the Dirichlet boundary xn we set h̊1

n = hD.
Then, eliminating hi and u1,2

i from the system, we obtain an equation for h̊i:

ai−1̊hi−1 + (bi−1 + bi)̊hi + ai̊hi+1 = ci−1 + ci (15)

where

ai =
2k̃i
|Ki| −

αiαi

βi

, bi =
4k̃i
|Ki| −

αiαi

βi

, ci =
αi|Ki|f̃i

βi

, (16)

αi =
6k̃i
|Ki| , βi = |Ki|c̃i + 2αi. (17)

Equation (15) is one row of a linear system Åh = c, where vector c is non-negative
provided f̃i and hD are non-negative. In order to obtain a non-negative solution h̊,
the matrix A has to have positive inverse. This holds if A is so called M -matrix,
that is a matrix with positive diagonal entries, non-positive off diagonal entries, and
positive row sums. In our case this is equivalent to ai ≤ 0, bi > 0, and ai + bi > 0.
The later two inequalities are always true, while the first one holds only if

|Ki|2
6

≤ k̃i
c̃i

= dt
k(hi)

θ′(hi)
. (18)

For positive f̃ and g̃, this condition implies positive nodal pressures h̊i. Then the
elemental pressures hi are also positive since

hi =
|Ki|f̃i + αi(̊h

1
i + h̊2

i )

βi

.
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Further numerical experiments reveal that oscillations of the solution appear
exactly on that elements where the condition (18) does not hold. Thus to get stable
scheme one has to adapt the element size |Ki| according to the condition. However,
the right hand side tends to zero as hi → −∞, at least for the soil model (3)–(5). It
means we should use small mesh step on the dry region which is highly ineffective
since the solution is mainly constant there. Situation is even worse for mixed elements
on 2D quadrilaterals or 3D hexahedrons since they never lead to M -matrix even for
c̃i = 0.

In the paper due to Younes, Ackerer, and Lehmann [8] authors prove stability
conditions similar to (18) for mixed-hybrid elements on triangular and tetrahedral
meshes. We can conclude that the mixed scheme for the Richards’ equation is stable
only for large time steps and therefore is not suitable for a robust solver. However,
one can try to modify the mixed scheme to make it more stable. In fact two such
modifications were already proposed in [8].
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