
PANM 15

Petr Kotas; Vít Vondrák; Pavel Praks
Parallel SVD computation

In: Jan Chleboun and Petr Přikryl and Karel Segeth and Jakub Šístek (eds.): Programs and Algorithms of Numerical
Mathematics, Proceedings of Seminar. Dolní Maxov, June 6-11, 2010. Institute of Mathematics AS CR, Prague,
2010. pp. 113–118.

Persistent URL: http://dml.cz/dmlcz/702748

Terms of use:
© Institute of Mathematics AS CR, 2010

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/702748
http://dml.cz


PARALLEL SVD COMPUTATION∗

Petr Kotas, V́ıt Vondrák, Pavel Praks

1 Introduction

The aim of this paper is to present experiments with parallel implementation of
large scale singular value decomposition (SVD). The SVD has remarkable properties
and it is widely used as a tool in matrix computations. However, there are prob-
lems with enormous computational demands of SVD. Recently there are many new
SVD applications in the computational science. Just for an illustration we mention
eigenfaces [5], which is probably one of the earliest computationally demanding ap-
plication of the eigenvalue analysis applied to large data sets. Another widely used
application is the Latent Semantic Indexing (LSI) [6]. LSI is used in data-mining
and information retrieval communities for reducing dimension of a problem and for
uncovering so called latent semantic, which is hidden in analyzed data.

In this paper we present a parallel implementation of bidiagonalization routine.
Our main goal is to solve SVD for large matrices which cannot fit into the memory
of standard PC and speed-up current algorithms porting them on massively parallel
computers. We have implemented our version of parallel SVD algorithm in C++ pro-
gramming language using Message Passing Interface (MPI). This allows us to utilize
distributed resources and to load even huge data directly to the computer mem-
ory. Although other parallel implementations exist, many of them utilize multicore
architectures to gain more speed-up with the same amount of local memory [8].

This paper is organized as follows: In Section 2 we present our parallel imple-
mentation of the bidiagonalization algorithm. Furthermore, in Section 3 we present
efficiency of our algorithm on numerical experiments. Final comments and conclu-
sions are presented in Section 4.

2 Computing SVD

The SVD computation consists of three consecutive steps: (i) bidiagonalization,
(ii) computation of singular values and vectors, (iii) post-multiplication of results
from previous two steps. In preprocessing stage the Householder bidiagonalization
is used. This method utilizes the Householder reflection

H = I − 2vv∗, (1)

∗This work was supported by grant #GD103/09/H078 of Grant Agency of the Czech Republic
and grant #SP/2010173 of Students Grant Competition VSB-Technical University of Ostrava.

113



Algorithm 1 Parallel bidiagonalization

1: Input:A distributed to all nodes
2: Output:B, bidiagonal matrix
3: [m,n]← size(A)
4: for k = 1 to min(m,n) do
5: activeColumn ← allGather(Aloc(:, k))
6: v ← householder(activeColumn)
7: for j = 1 to n do

8: γloc(j) = vTAloc(:, j)
9: end for

10: γ ← allReduce(γloc)
11: for j = k to n do

12: Aloc(:, j)← Aloc(:, j)− 2γ(j)
vT v

v

13: end for

14: if k < (n− 2) then
15: if node has Aloc(k, :) then
16: broadcast(Aloc(k, :))
17: activeRow ← Aloc(k, :)
18: else

19: activeRow ←receive(Aloc(k, :))
20: end if

21: v ←householder(activeRow)
22: for i = k to m do

23: γ ← Aloc(i, :)v
24: Aloc(i, :)← Aloc(i, :)− 2 γ

vT v
v

25: end for

26: end if

27: end for

28: B ← A

where v = x ± ‖x‖2e, v ∈ Rn is the Householder vector. For further details on
bidiagonalization see [1]. In Algorithm 1 we propose our parallel version of basic
bidiagonalization routine defined in [1]. This is optimized version without implicit
accumulation of orthogonal transformation matrices. Function householder in Al-
gorithm 1 denotes the standard Householder reflector as in [1]. The singular values
of bidiagonal matrix computed by Algorithm 1 are the same as the singular values of
the original matrix A. This is obvious fact since the Householder reflection preserves
the orthogonality among singular vectors, as has been proved in [1].

In the second step a diagonalization of bidiagonal matrix B computed in first
step is performed. The resulting diagonal matrix consists only from singular val-
ues of the bidiagonal matrix B. Our diagonalizatin routine uses sequential implicit
QR algorithm as it is described in [2], and can be theoretically implemented for

114



massively parallel computers. At this time, we use the LAPACK1 sequential func-
tion BDSDC, which computes singular values of real bidiagonal matrix B. Therefore,
the diagonalization part represents the bottleneck of our algorithm.

In the third step of SVD, the Householder matrices (UH and VH), the matrix of
singular values (Σ) as well as singular vectors of the bidiagonal matrix (UB and VB)
are assembled. To complete the whole decomposition, one only needs to multiply

U = UH · UB,

V = VB · VH .

After this final step the full SVD decomposition of an arbitrary real matrix A is
obtained.

3 Numerical experiments

The overall execution time of Tp Algorithm 1 is given by the following equation

Tp = tc
n3

3p
+ 2tsn+ tw

n2

√
p
, (2)

where tc is time needed for computing one FLOP2, ts and tw denote both send and
wait latencies of MPI, n = max(rows, cols) is dimension of the matrix A and p is
the number of processors.

All experiments presented in this section are computed on cluster Teri with hard-
ware configuration: 32x Intel Xeon QuadCore 2.5 GHz, 18 GB RAM, 4XDDR IB
Mezzanine HCA 20Gb/s FullDuplex (per node). All experiments were performed on
dense random matrices with sizes: 8× 8, 16× 16, 32× 32, . . ., 4096× 4096.

Figure 1 compares theoretical time computed by (2) with real execution times
of our implementation of Algorithm 1. Times ts, tw and tc are estimated from
measurements performed on cluster Teri. However, latency times ts and tw are
heavily dependent on current load of computational cluster, which means execution
time Tp could vary. Significant increase of execution times for 64 and 128 processors
is caused by raising rate of MPI communication. This problem could be solved with
more suitable decomposition scheme.

In order to measure the performance of our implementation of bidiagonalization
with fixed number of processors, we carried out several series of tests with varying
size of the problem. Figure 2 shows total bidiagonalization time (including MPI
communication) and MPI communication itself.

Similar tests were run to show behavior of our algorithm with increasing number
of processors.

1LAPACK - Linear Algebra PACKage http://www.netlib.org/lapack/
2FLOP is abbreviation for floating point operation.

115



1 2 4 8 16 32 64 128
10

100

1000
1500

Number of processors

E
xe

cu
tio

n 
tim

e 
(s

)

 

 

theoretical
our implementation

Fig. 1: Bidiagonalization of the 4096 × 4096 matrix.

16 32 64 128 256 512102420484096

10

100

1,000
2,000

Matrix size

E
xe

cu
tio

n 
tim

e 
(s

)

 

 

bidiagonalization time
mpi communication

(a) Processors = 32

64 128 256 512 1024 2048 4096

10

100

1,000
2,000

Matrix size

E
xe

cu
tio

n 
tim

e 
(s

)

 

 

bidiagonalization time
mpi communication

(b) Processors = 64

Fig. 2: Fixed number of processors.

2 4 8 16 32 64

5
10

100

1,000
2,000

Number of processors

E
xe

cu
tio

n 
tim

e 
(s

)

 

 

bidiagonalization time
mpi communication

(a) Matrix size = 512

2 4 8 16 32 64

10

100

1,000
2,000

Number of processors

E
xe

cu
tio

n 
tim

e 
(s

)

 

 bidiagonalization time
mpi communication

(b) Matrix size = 4096

Fig. 3: Fixed matrix size.

116



8 16 32 64 128 256 512 1024 2048 4096
0.0001

0.001

0.01

0.1

1

10

100

1000
2000

Matrix size

E
xe

cu
tio

n 
tim

e 
(s

)

 

 

LAPACK
Our implementation

Fig. 4: Sequential version of bidiagonalization compared to LAPACK.

Figure 4 plots the execution times taken by bidiagonalization routine DGBERD
from LAPACK/ATLAS library and our sequential version of Algorithm 1, respectively.
We can see that both implementations have similar time evolution. But finally, the
LAPACK sequential implementation seems to be faster because it uses optimized BLAS

libraries.
The main advantage of our algorithm is its ability to process even large-scale data.

We tried to decompose some very large problems. The largest matrix decomposed
by our algorithm had dimension 32768 × 32768, which required 8.1GB of memory.
We used 32 processors and our algorithm had been running for 32.32 hours. The
MPI communication required 1.79 hours.

4 Comments and conclusions

The advantage of our implementation is effective handling of large dense prob-
lems. On the other hand, it seems that our algorithm is less effective in term of par-
allel scalability for more than 32 processors. This problem could be solved by more
sophisticated decomposition scheme, which is left for further research. Further, im-
provements could be done utilizing the parallel implementation of the diagonalization
routine and by using both MPI and OpenMP libraries. These improvements could
lead to a significant speed-up, especially for large tasks running on large numbers of
processors.

References

[1] Golub, G.H. and Van Loan, Ch.F.: Matrix computations. The Johns Hopkins
University Press; 3rd edition, 1998.

[2] Kotas, P.: Efficient implementation of SVD and its application to biometric data

processing. VŠB - Diploma thesis, 2009.

117



[3] Gu, M. and Eisenstat, S.C.: A divide-and-conquer algorithm for the bidiagonal
SVD. SIAM J. Mat. Anal. Appl. 16 (1995), 79–92.

[4] Jessup, E. and Sorensen, D.: A parallel algorithm for computing the singular
value decomposition of a matrix. Mathematics and Computer Science Division
Report ANL/MCS-TM-102, Argonne National Laboratory, Argonne, IL, Decem-
ber 1987.

[5] Turk, M. and Pentland, A.: Face recognition using eigenfaces. In Proc. IEEE

Conference on Computer Vision and Pattern Recognition, pp. 586–591, 1991.

[6] Letsche, T.A. and Berry, M.W.: Large-scale information retrieval with latent
semantic indexing. Information Sciences 100 1-4 (August 1997), 105–137.

[7] Larsen, R.M.: Lanczos bidiagonalization with partial reorthogonalization. Part
of documentation to software package PROPACK, 1998.

[8] Ltaief, H., Kurzak, J., and Dongarra, J.: Parallel two-sided matrix reduction to
band bidiagonal form on multicore architectures. IEEE Transactions on Parallel
and Distributed Systems 99 (2009), 417–423.

118


