
PANM 15

Pavel Kůs
Integration in higher-order finite element method in 3D

In: Jan Chleboun and Petr Přikryl and Karel Segeth and Jakub Šístek (eds.): Programs and Algorithms of Numerical
Mathematics, Proceedings of Seminar. Dolní Maxov, June 6-11, 2010. Institute of Mathematics AS CR, Prague,
2010. pp. 131–136.

Persistent URL: http://dml.cz/dmlcz/702751

Terms of use:
© Institute of Mathematics AS CR, 2010

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/702751
http://dml.cz

INTEGRATION IN HIGHER-ORDER FINITE ELEMENT
METHOD IN 3D∗

Pavel Kůs

1 Introduction

Integration of higher-order basis functions is an important issue, that is not as
straightforward as it may seem. In traditional low-order FEM codes, the bulk of
computational time is a solution of resulting system of linear equations. In the case
of higher-order elements the situation is different. Especially in three dimensions the
time of integration may represent significant part of the computation.

In first part of the text we describe Gauss quadrature and product quadrature
rules on the reference brick. In Section 4.1 we describe algorithm calculating the
local stiffness matrix en bloc, which allows to save a lot of calculations that would be
repeated for many of the integrals of the stiffness matrix. Calculation is than much
faster thanks to creation of auxiliary fields and multiple use of the values, which is
shown in Section 5.

2 Gauss quadrature rules

The choice of quadrature type is very important. Even though two quadrature
rules integrate exactly polynomials up to certain order, their performance can differ
significantly when integrating non-polynomial functions (which is in reality always
the case, since the inverse Jacobi matrix is non-polynomial for general mesh ele-
ments). The usual choice for higher-order integration are Gauss quadrature rules.
A 1D integral over the segment (−1, 1) is then approximated by the formula

∫ 1

−1
f(ξ)dξ ≈

n∑

i=1

wn,if(ξn,i), (1)

where ξn,i and wn,i are integration points and weights.

3 Product quadrature rules

Since the integration is performed on reference element, which is a cube in our
case, the most natural choice of the integration rules is to use tensor products of
1D Gauss rules described in the previous section. A construction of such integration
rules is described in [4].

∗This work was supported by grant GAAVCR IAA100760702.

131

3.1 Computational cost of the integration

Let us estimate the computational cost of calculation of the local stiffness matrix.
Consider hexahedral element. In hp-FEM it is usually equipped by basis functions
constructed as products of 1D polynomials of degrees up to p. In total there are
(p + 1)3 basis functions. In order to evaluate the local stiffness matrix, we have to
calculate integral from the weak form for each pair of basis functions. Therefore we
have (p+1)3×(p+1)3 integral evaluations. Integrand is always a product of two basis
functions, its polynomial order therefore is up to 2p in each direction. Quadrature
rule that will calculate integrals exactly has approximately p3 points (each 1D rule
has approximately p points). Thus, calculation of one integral costs O(p3) function
evaluations. Since we have to do (p+1)3×(p+1)3 such calculations, total asymptotic
complexity of the evaluation of the local stiffness matrix is O(p9).

It is obvious, that this is extremely unfavorable and makes assembling procedure
very time-consuming. For the numerical solution of partial differential equations in
more than 3 dimensions, this estimate is even more severe and makes it virtually
impossible to use such integration. For truly high-dimensional calculations, which
are becoming more and more desirable for example for financial problems, completely
different ways towards estimation of the values of the integrals, such as Smoljak’s
schemes are used. For the main idea see Section 4.2.

3.2 Hierarchical elements

In the following we describe several ideas how to make the calculation more
economical. If we use hierarchical rather then nodal basis, the basis of an element
of order p is obtained by adding several polynomial functions of order p to the basis
of an element of order p − 1. Therefore, the basis consist of polynomials of various
orders from 1 up to p and obviously it would be waste to integrate product of two low-
degree polynomials with quadrature rule which is exact for product of polynomials
of degree p. We consider basis functions in the form (2).

Assume we have to calculate product of two functions of degrees (px, py, pz) and
(qx, qy, qz). Obviously, the rule capable of exact calculation is of order (px + qx,
py + qy, pz + qz). However, using such rules has slight drawback. When we calculate
the value of the integral, we have to store precalculated values of all shape functions
in all integration points of the particular rule. If we had precalculated values of all
shape functions for all rules of order (px, py, pz), px, py, pz ∈ {1 . . . P}, where P is the
maximal degree of polynomials used in the basis, the size of the tables would occupy
a big portion of the computer memory. Possible solution of this problem is to use
only quadrature rules with the same order in all directions, i.e. instead of a rule of
order (px, py, pz) we use a rule of order (pm, pm, pm), where pm = max(px, py, pz) even
though it has more points than necessary.

132

4 Alternative approaches to quadrature

In the previous section we described how a simple numerical quadrature works.
We have seen, however, that this approach may lead to quadrature rules with very
high number of integration points. In this section we want to describe two different
approaches. The first is based upon the works [2], [1]. Ideas used there for 2D are
adapted to 3D case and to different technique of construction of basis functions,
which allows it’s substantial simplification.

The second alternative is presented mainly for reference. Smoljak’s schemes are
used for integration in partial differential equations in more dimensions, where all
conventional approaches fail due to the “curse of dimensionality”.

4.1 Reordering of quadrature

We will use the fact, that both basis functions and integration rules are con-
structed as cartesian products of 1D functions and integration rules. Thanks to this
structure, we can reorder the whole calculation, save some results into auxiliary fields
and use them for more integrals of the stiffness matrix.

4.1.1 General algorithm

In the articles [2], [1], the authors distinguish between vertex, edge and bubble
basis functions and use slightly different algorithm for each group. Our algorithm
does not do that.

We consider basis functions on the reference domain K = [−1, 1]3 in the form

Fk1,k2,k3(ξ
1, ξ2, ξ3) = f 1

k1
(ξ1)f 2

k2
(ξ2)f 3

k3
(ξ3), (2)

where (k1, k2, k3) ∈ M = {1, . . . , n1} × {1, . . . , n2} × {1, . . . , n3}. Our goal is to
calculate all integrals ∫

K
Fk(ξ)Fk′(ξ)Z(ξ) dξ, (3)

where k, k′ ∈ M . Z(ξ) stands for the rest of the integrand independent on the basis
functions. It can be Jacobian of reference mapping, material parameter or anything
else. Of course this part of the integrals does not have product structure like the
basis functions, but, on the other hand, is the same for all integrals calculated. The
integrals will be approximated by one quadrature rule obtained as a product of three
1D rules with sufficiently high order in each direction. Individual 1D rules may have
different order:

R1 = {(w1
i , ξ

1
i), i = 1, . . . ,m1},

R2 = {(w2
i , ξ

2
i), i = 1, . . . ,m2},

R3 = {(w3
i , ξ

3
i), i = 1, . . . ,m3},

where wj
i stands for weight and ξji for integration point. The compound rule has

then the form:

R = {(w1
i1
w2

i2
w3

i3
, (ξ1i1 , ξ

2
i2
, ξ3i3)), i1 = 1, . . . ,m1, i2 = 1, . . . ,m2, i3 = 1, . . . ,m3},

133

the number of integration points being m = m1m2m3. The integral from (3) can be
approximated as

m∑

i=1

wiFk(ξi)Fk′(ξi)Z(ξi). (4)

Using the product structure of basis functions and integration rules, the latest can
be expanded to

m1∑

i1=1

m2∑

i2=1

m3∑

i3=1

w1
i1
w2

i2
w3

i3
f 1
k1
(ξ1i1)f

2
k2
(ξ2i2)f

3
k3
(ξ3i3) f

1
k′1
(ξ1i1)f

2
k′2
(ξ2i2)f

3
k′3
(ξ3i3)Z(ξ

1
i1
, ξ2i2 , ξ

3
i3
).

(5)
Now the summation can be reordered:

m1∑

i1=1

w1
i1
f 1
k1
(ξ1i1)f

1
k′1
(ξ1i1)

m2∑

i2=1

w2
i2
f 2
k2
(ξ2i2)f

2
k′2
(ξ2i2)

m3∑

i3=1

w3
i3
f 3
k3
(ξ3i3)f

3
k′3
(ξ3i3)Z(ξ

1
i1
, ξ2i2 , ξ

3
i3
). (6)

Let us introduce auxiliary field G(k3, k
′
3, i1, i2), where

G(k3, k
′
3, i1, i2) =

m3∑

i3=1

w3
i3
f 3
k3
(ξ3i3)f

3
k′3
(ξ3i3)Z(ξ

1
i1
, ξ2i2 , ξ

3
i3
). (7)

It is important to realize, that the just defined term really depends only on k3, k
′
3, i1

and i2. Indeed, all terms depending on k1, k
′
1, k2 and k′

2 were put in front of the last
sum and i3 is being summed over.

Similarly, let us introduce another auxiliary field H(k2, k
′
2, k3, k

′
3, i1):

H(k2, k
′
2, k3, k

′
3, i1) =

m2∑

i2=1

w2
i2
f 2
k2
(ξ2i2)f

2
k′2
(ξ2i2)G(k3, k

′
3, i1, i2). (8)

This field depends also on k2 and k′
2, but, thanks to the summation, does not depend

on i2. Now the integral (3) can be approximated as

∫

K
Fk(ξ)Fk′(ξ)Z(ξ) dξ ≈

m1∑

i1=1

w1
i1
f 1
k1
(ξ1i1)f

1
k′1
(ξ1i1)H(k2, k

′
2, k3, k

′
3, i1) (9)

When generating the matrix of the integrals, we first precalculate the field G, than
the field H and finally use it to calculate all the integrals (9), where k, k′ ∈ M .

4.1.2 Asymptotic analysis

Now let us estimate the amount of work needed to generate the stiffness ma-
trix. The numerical comparisons are presented in Section 5, here we want to do
just a rough estimate. As in Section 3.1, we assume, that the polynomial degree
of our basis functions is up to p in each direction. Therefore we have p3 functions
and the 1D integration rules, that comprise the final integration rule, have approxi-
mately p integration points.

134

In Section 3.1, we approximated the work needed to generate the stiffness matrix
to O(p9). In the algorithm described above, we first precalculate field G, which
requires O(p4) work. Then the field H is precalculated, which requires O(p5). That
should be negligible in comparison with the main part, which are calculations using
the formula (9). There are p3 functions, therefore we have to calculate p6 integrals.
But in the formula (9) there is only one summation, with respect to i1. Other
summations are hidden in the auxiliary fields. Therefore the complexity of this part
is O(p7). Comparisons of real number of operations needed to calculate the matrix
will be presented in Section 5.

4.2 Sparse schemes

The idea of sparse schemes was first introduced by Smolyak in [3]. The goal of this
approach is to construct an integration grid, similar to the simple product grid, but
with fewer points. The reason, why this is possible, is that slight under-integration
does not always spoil the convergence.

From the experiments and comparisons we made it seems that this approach
is not the most successful for problems in three dimensions. It’s role starts to be
vital for problems in much more dimensions, which arise in various fields including
financial math. Sparse grids seems to be the only method capable to cope with the
“curse of dimensionality”, when number of integration points rise exponentially with
number of dimensions.

5 Comparisons

In this section we want to compare different approaches to quadrature with re-
spect to number of operations needed.

5.1 CPU time of assembling

The solving process in our code has two main parts, assembling and solving the
stiffness matrix. A CPU time needed to perform each part very strongly depends on
the problem setting. It depends not only on the number of elements of the mesh and
the polynomial order used in the finite element space, but also on the structure of the
mesh and use of hanging nodes. Often the assembling time exceeds the time needed
to solve the resulting linear system, so faster quadrature can be very welcomed in
some cases.

5.2 Performance of different quadrature techniques

In Figure 1 we can see a comparison of number of operations needed to assembly
a mass matrix of the element of various orders. On the graph we can see ratios
of number of operations of individual methods with respect to the simple product
method (it is therefore 1 for all polynomial orders.)

The usefulness of the faster quadrature depends on the order used, but even
for order 5 we get ten times faster algorithm, comparing to the integration of each
integral with optimal, but isotropic order.

135

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10 12 14 16 18 20

simple product
variable order isotropic

variable order
reordering

Fig. 1: Comparison of performance of described methods with respect to the simple product
method. On the x axis is order of an element, on the y axis quotient of number of operations
of each method.

5.3 Conclusions

We have shown, that the concept of reordering of summation works well and
decreases number of operations needed to construct the local stiffness matrix. It’s
effect grows with growing order of an element. Even though incorporating into the
code might bring certain complications, it is definitively worth considering.

References

[1] Eibner, T. and Melenk, J.M.: Fast algorithms for setting up the stiffness matrix
in hp-FEM: a comparison. Numerical Analysis Report 3/05 .

[2] Melenk, J.M., Gerdes, K., and Schwab, C.: Fully discrete hp-finite elements: Fast
quadrature. Research Report No. 99-15 (1999).

[3] Smolyak, S.A.: Quadrature and interpolation formulas for tensor product of
certain classes of functions. Dokl. Akad. Nauk (1963), 240–243.

[4] Solin, P., Segeth, K., and Dolezel, I.: Higher-Order Finite Element Methods.
Chapman & Hall/CRC Press, Boca Raton, 2004.

136

